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Abstract

Emerging evidence indicates that dysfunctional glutamate neurotransmission is critical in the 

initiation and development of alcohol and drug dependence. Alcohol consumption induced 

downregulation of glutamate transporter 1 (GLT-1) as reported in previous studies from our 

laboratory. Glutamate is the major excitatory neurotransmitter in the brain, which acts via 

interactions with several glutamate receptors. Alcohol consumption interferes with the 

glutamatergic signal transmission by altering the functions of these receptors. Among the 

glutamatergic receptors involved in alcohol-drinking behavior are the metabotropic receptors such 

as mGluR1/5, mGluR2/3, and mGluR7, as well as the ionotropic receptors, NMDA and AMPA. 

Preclinical studies using agonists and antagonists implicate these glutamatergic receptors in the 

development of alcohol use disorder (AUD). Therefore, the purpose of this review is to discuss the 

neurocircuitry involving glutamate transmission in animals exposed to alcohol and further outline 

the role of metabotropic and ionotropic receptors in the regulation of alcohol-drinking behavior. 

This review provides ample information about the potential therapeutic role of glutamatergic 

receptors for the treatment of AUD.
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1. Introduction

Alcoholism is a progressive and chronic relapsing disorder, consequently leading to 

detrimental health outcomes. The positive reinforcing effect, known as the rewarding effect, 

associated with initial alcohol consumption is suggested to be the driving force promoting 

chronic alcohol consumption, subsequently leading to the development of alcohol use 

disorder (AUD) [For review see ref. (Gilpin and Koob, 2008)]. This effect is associated with 

changes in brain neurochemistry, specifically alterations of the neurotransmitters that are 

sensitive to the acute effects of alcohol (Weiss and Porrino, 2002).

Ample evidence suggests the involvement of the mesocorticolimbic dopaminergic system in 

the development of drug dependence. In addition, enhanced dopaminergic transmission in 

the nucleus accumbens (NAc) plays a key role in the initiation of addictive behavior. It is 

important to note that the reward pathways involve multiple brain regions, including the 

ventral tegmental area (VTA) and NAc (Russo and Nestler, 2013). Alcohol acts as a positive 

reinforcer in the mesocorticolimbic reward system by inducing the release of dopamine in 

the VTA, which stimulates the reinforcing effect of alcohol (Imperato and Di Chiara, 1986). 

For instance, studies have reported that acute administration of alcohol induced rewarding 

effects due to an increase in dopaminergic neurotransmission in the VTA and NAc [For 

review see ref. (Spanagel and Weiss, 1999)]. However, an increase in the number of 

spontaneously active dopaminergic neurons was found in the posterior VTA after chronic 

alcohol consumption (Morzorati et al., 2010). Importantly, the primary dopaminergic 

projections within this system originate in the VTA and innervate several areas, including 

the NAc and the prefrontal cortex (PFC). However, the circuitry is complex and involves 

innervation through dopaminergic, glutamatergic and GABAergic projections. Moreover, 

enhanced responses of postsynaptic glutamate receptors are responsible for the increase in 

dopaminergic firing (Fitzgerald et al., 2012). This later study suggests that glutamatergic 

innervation in the VTA plays a crucial role in glutamate-stimulated dopamine release. The 

dysfunctional connectivity and alteration in glutamatergic transmission are associated with 

chronic alcohol seeking, relapse, craving, tolerance and withdrawal (Alasmari et al., 2015a; 

Bäckström and Hyytiä, 2004; Dahchour et al., 1998; Krupitsky et al., 2007a; Nagy, 2008; 

Rossetti et al., 1999), which provide evidence of the involvement of glutamate transmission 

in the NAc and VTA in alcohol-seeking behavior. The apparent role of glutamate in the 

development of AUD suggests glutamatergic system as a potential therapeutic target to block 

the reinforcing effects of alcohol as well as to attenuate chronic and reinstatement of 

alcohol-seeking behavior (Alasmari et al., 2016; Bäckström and Hyytiä, 2004; Besheer et 

al., 2010; Qrunfleh et al., 2013).

2. Neurocircuitry involving glutamate transmission in AUD

Dependence on drugs of abuse involve a number of brain regions, including the NAc, 

located in the ventral striatum (Sobolevsky et al.), VTA, basal lateral amygdala (BLA), PFC, 

hippocampus (HPC), dorsal medial thalamus (DMT), ventral palladium (VP), substantial 

nigra (SNr), motor thalamus (MT), and motor cortex (MC) (Koob and Volkow, 2010) (Fig. 

1). Each of these regions has glutamatergic projections and neurons containing glutamate 

receptors, providing an anatomical basis for glutamatergic transmission in addiction (Gass 
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and Olive, 2008). Glutamatergic projections from the PFC to the NAc have been implicated 

in the initiation and learning of addictive behaviors (Moussawi and Kalivas, 2010), which 

are subsequently regulated by dopaminergic projections from the VTA (Deng et al., 2009). 

These glutamatergic pathways, between the PFC and NAc, are also thought to play a key 

role in addictive behaviors and are important for reinstituting drug seeking behavior (Kalivas 

and Volkow, 2005). Glutamatergic projections from the AMG and HPC to the PFC and NAc 

establish and provide previously learned information associated with experience, further 

influencing complex behavioral responses (Kalivas and Volkow, 2005). Interestingly, it is 

also found that the glutamatergic system plays a critical role in alcohol-associated 

dependence, including chronic alcohol seeking and relapse (Alasmari et al., 2015a; 

Bäckström and Hyytiä, 2004; Dahchour et al., 1998; Krupitsky et al., 2007a; Nagy, 2008; 

Rossetti et al., 1999).

The NAc is a key player in the mesolimbic dopaminergic system, which receives 

dopaminergic inputs through afferent connections from the VTA [For review see ref. 

(Alasmari et al., 2015b; Pistillo et al., 2015)]. It is important to note that the NAc shell 

receives dopaminergic projections from the VTA and is responsible for motivation and 

reward; however, the NAc core is innervated mainly by glutamatergic projections from the 

HPC and AMG and is responsible for sensory motor integration, goal-directed behavior, and 

emotional cues (Guo et al., 2009; Suto et al., 2010). Despite the complexity of the brain 

regions and signaling pathways, chronic alcohol exposure is characterized by a reduced 

function of the reward neurocircuitry and an increased glutamatergic system function 

(Vengeliene et al., 2008).

3. Glutamate homeostasis

Under normal conditions, glutamate is released from the presynaptic neurons and activates 

post-synaptic ionotropic receptors, which can lead to an increased influx of Na+ and Ca+2 

ions (Mark et al., 2001). Glutamate concentrations in the synaptic cleft is stringently 

regulated by a combination of two processes, glutamate release and glutamate clearance 

(Kanai and Hediger, 2003). It is noteworthy that the astrocytes play an important role in the 

process of glutamate clearance (Danbolt, 2001). The excess of synaptic glutamate is taken 

up by astrocytes and converted to glutamine by glutamine synthetase; glutamine is then 

released into the extracellular space and further taken up by the presynaptic neurons and 

reconverted to glutamate (Danbolt, 2001; Newcomb et al., 1997). We suggest here that the 

glutamine-glutamate cycle is responsible for regulating the extracellular glutamate 

concentration and maintenance of glutamate homeostasis.

Currently, the literature shows that there are five known astrocytic membrane-bound 

glutamate transporters, or excitatory amino acid transporters (EAAT1-5). Each of these 

transporters is expressed in varying proportions within different brain regions. EAAT1 

(glutamate aspartate transporter, GLAST) and EAAT2 (glutamate transporter 1, GLT-1) are 

Na+ dependent transporters that intake 3 Na+ and 1 H+ ions and outputs K+ ions therefore, 

generating a concentration gradient leading to an influx of glutamate (Fig. 2). EAAT1 is 

primarily localized in the cerebellum with moderate expression in the forebrain (Fig. 2) 

(Furuta et al., 1997). Alternatively, GLT-1 is physiologically predominant in the forebrain, 
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with minimal expression in the cerebellum (Furuta et al., 1997). Due to its nominal 

expression in the brain, the role of EAAT3 remains debatable. EAAT4 is mostly expressed in 

the cerebellum, whereas EAAT5 is predominantly expressed in the retina (Arriza et al., 

1997; Furuta et al., 1997). Thus, EAAT1 and EAAT2 are the driving forces in regulating 

glutamate uptake in the brain (Danbolt, 2001; Duan et al., 1999). In contrast to the 

aforementioned family, cystine/glutamate exchange transporter (xCT) is predominantly 

involved in elevating extracellular glutamate concentrations (Fig. 2). It is important to note 

that glutamate is exchanged for extracellular cystine through xCT. This glutamate interacts 

with the metabotropic receptors present on the pre- and post-synaptic neurons (Moran et al., 

2005). The stimulation of xCT has been found to modulate glutamate release from the 

presynaptic neurons (Kalivas, 2009; Pomierny-Chamiolo et al., 2014). xCT regulates 

glutamate homeostasis through the involvement of the presynaptic mGluR2/3. Moreover, a 

decrease of xCT expression can lead to a reduction in extrasynaptic glutamate level. This 

effect may cause a loss of glutamatergic tone on presynaptic mGluR2/3, which can lead to a 

marked increase in glutamate release from presynaptic glutamatergic neurons (Moran et al., 

2005).

Importantly, acute alcohol consumption is known to have an inhibitory effect on 

glutamatergic neurotransmission in the mesocorticolimbic regions. Moreover, studies have 

shown that acute alcohol intake decreases extracellular glutamate concentrations in the 

cortical area (Tiwari et al., 2014). Despite its acute inhibitory effects on glutamate activity, 

chronic alcohol consumption increases extracellular glutamate concentrations in the NAc 

(Das et al., 2015). Several preclinical studies have shown that alcohol consumption elevates 

the extracellular glutamate concentrations within several mesocorticolimbic regions (Das et 

al., 2015; Ding et al., 2012; Ding et al., 2013; Ward et al., 2009). We suggest here that an 

increase in extracellular glutamate concentrations could be due to an increase in glutamate 

release or a decrease in glutamate uptake.

Initially, acute ethanol exposure is known to attenuate glutamate release from the 

presynaptic neuron as well as postsynaptic receptor activity. In addition, the concentration of 

alcohol is an important determinant of the receptor activity. For instance, exposure to lower 

concentrations of ethanol primarily affects NMDAR-mediated currents, while AMPAR-

mediated currents are exclusively affected by exposure to high concentrations of ethanol 

(Kalev-Zylinska and During, 2007; Marty and Spigelman, 2012; Santerre et al., 2014). 

However, as the exposure progresses to a chronic state, studies have found an increase in the 

expression of the NMDA and AMPA receptor in mesocorticolimbic areas (Chandler et al., 

1999). Several preclinical studies have reported that acute and chronic ethanol consumption 

increase extracellular glutamate concentrations in the NAc (Dahchour et al., 2000; Das et al., 

2015; Lallemand et al., 2011; Melendez et al., 2005). This has been substantiated, in animal 

models, through behavioral responses induced by investigational alterations of extracellular 

glutamate concentrations. It is noteworthy that an increase in glutamate concentrations 

actuated alcohol consumption, while depletion in glutamate concentrations attenuated 

consumption (Das et al., 2015; Kapasova and Szumlinski, 2008; Szumlinski et al., 2008). 

Moreover, increased extracellular glutamate concentrations, associated with chronic ethanol 

consumption, have been attributed to diminishglutamate uptake (Melendez et al., 2005). In 

conjunction, a downregulation of glutamate uptake was observed in the cerebral cortex of 
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alcohol-preferring cAA rats (Schreiber and Freund, 2000). Our lab has shown that chronic 

ethanol consumption decreases the expression of GLT-1, GLT-1 isoforms and xCT (Aal-

Aaboda et al., 2015; Alhaddad et al., 2014a; Alhaddad et al., 2014b; Hakami et al., 2016; 

Sari and Sreemantula, 2012). We have also shown that pharmacological upregulation of 

GLT-1 and xCT attenuated ethanol-drinking behaviors, including continuous and relapse 

ethanol drinking (Alasmari et al., 2015a; Alhaddad et al., 2014a; Alhaddad et al., 2014b; 

Goodwani et al., 2015; Rao and Sari, 2014; Rao et al., 2015). Ceftriaxone, a β-lactam 

antibiotic, was able to decrease ethanol intake, an effect was associated with upregulation of 

GLT-1 expression in central reward brain regions (Rao and Sari, 2014). However, it is 

apparent that xCT activation in the NAc stimulates presynaptic metabotropic receptors 2/3 

(mGluR2/3), thereby decreasing the synaptic glutamate levels (Moran et al., 2005). 

Furthermore, stimulation of mGluR2/3 has been found to attenuate ethanol-seeking 

behavior. In addition, inhibition of mGluR5, mainly localized to post-synaptic neurons, 

revealed a significant decrease in ethanol-seeking behavior (Adams et al., 2010; Backstrom 

et al., 2004; Sinclair et al., 2012). Together, acute and chronic alcohol consumption may 

affect various aspects of glutamatergic system, including glutamate receptors and 

transporters through distinct target proteins in the synapse.

4. Glutamate receptors in AUD

Two major types of receptors are involved in the development of AUD: metabotropic 

glutamate receptors (mGluRs) and ionotropic glutamate receptors (iGluRs). The 

pharmacological roles of these receptors are summarized in Table 1. Several studies 

demonstrated the implications of these receptors in AUD (Table 1).

4.1. Metabotropic glutamate receptors

mGluRs belong to the G-protein coupled receptor (GPCR) superfamily (Fig. 3). These 

receptors mediate synaptic glutamatergic neurotransmission through an intracellular second 

messenger, making mGluRs slow mediators of glutamate, as compared to iGluRs. These 

seven-transmembrane spanning receptors consist of a large extracellular N-terminal domain, 

which encompasses an endogenous ligand binding site for glutamate, and an intracellular C-

terminus (Niswender and Conn, 2010). Eight subtypes of mGluRs have been identified and 

categorized into three distinct groups based on pharmacological selectivity, sequence 

homology, and signal transduction effector pathway (Kearney et al., 1997; Niswender and 

Conn, 2010) (Fig. 3). Several studies demonstrated that mGluRs ligands reduced alcohol 

seeking behaviors (Table 2). The chemical names of mGluRs ligands are listed in Table 3.

4.1.1. Group 1 mGluRs—Group 1 receptors (mGluR1 and mGluR5) are mainly located 

postsynaptically. These receptors mediate their signaling by coupling to Gq proteins 

followed by stimulation of phospholipase C (PLC), which further increases the production 

of inositol (1,4,5)-triphosphate [Ins (1,4,5)P3] (Kenny and Markou, 2004). This subsequently 

induces the release of Ca2+ from intracellular stores as well as stimulates diacylglycerol that 

increases phosphokinase C (PKC) activity (Kenny and Markou, 2004).
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4.1.1.1. mGluR1: mGluR1 is widely distributed in the central nervous system (CNS) with 

significant levels of expression localized in the olfactory bulb, superior colliculus, HPC, 

lateral septum, superior colliculus, thalamus and cerebellum (Ryo et al., 1993; Salt et al., 

2014; Shigemoto et al., 1992). Furthermore, mGluR1 is moderately expressed in other areas 

of the CNS such as the dorsal striatum, hypothalamus, pallidum, ventral midbrain, and 

cerebral cortex; while considerably low expression is observed in the AMG, medial septum, 

NAc and brainstem [For review see ref. (Olive, 2009)]. The role of mGluR1 in AUD has not 

been well-established. Interestingly, JNJ 16259685, a potent mGluR1 antagonist, reduced 

alcohol self-administration as well as alcohol reinforcement break-points in alcohol-

preferring rats. However, another study reported that this compound induced a significant 

impairment in locomotor behavior and a reduction in sucrose break-points (Besheer et al., 

2008a). In addition, EMQMCM, a selective mGluR1 antagonist, attenuated the conditioned 

place preference (CPP) to alcohol and the seizures associated with alcohol withdrawal 

(Kotlinska et al., 2011). Moreover, CPCCOEt, another selective mGluR1 antagonist, also 

reduced the rewarding properties of alcohol, voluntary consumption of alcohol, and alcohol-

induced place conditioning (Szumlinski et al., 2006). In contrast, other studies reported a 

finding where CPCCOEt failed to alter the response to the reinforcing effects of alcohol in 

mouse models (Hodge et al., 2006). Thus, further studies are warranted to demonstrate the 

role of mGluR1 in alcohol seeking. However, from the available literature, it appears that 

antagonizing mGluR1 can be a prolific therapeutic approach in targeting AUD.

4.1.1.2. mGluR5: mGluR5 is expressed mainly in the forebrain and in the limbic structures, 

specifically in the cerebral cortex, HPC (CA1-CA3 regions and dentate gyrus), basal 

ganglia, olfactory bulb, striatum and NAc (Pomierny-Chamiolo et al., 2014). A competitive 

antagonist to mGluR5, MPEP, was able to reduce the expression of alcohol-associated 

rewarding effects assessed by an alcohol self-administration paradigm (Hodge et al., 2006; 

Schroeder et al., 2005; Szumlinski et al., 2006). Furthermore, studies reported that mice 

lacking mGluR5 show a reduced consumption of alcohol, displayed a place preference for 

alcohol in a CPP paradigm, and exhibited increased sensitivity to the reinforcing effects of 

alcohol (Bird et al., 2008). mGluR5 blockers, MPEP and acamprosate, have the ability to 

attenuate alcohol-seeking behavior (Blednov and Harris, 2008). MPEP also attenuated 

alcohol-seeking and relapse behaviors determined by measuring the alcohol deprivation 

effect (Yin et al.) (Backstrom et al., 2004). Previous studies were performed to evaluate the 

functional role of mGluR5 in effects associated with alcohol, these studies revealed that 

interoceptive effects of alcohol require activation of mGluR5 in the NAc (Besheer et al., 

2009). Furthermore, microinjection of MPEP in NAc reduced alcohol self-administration 

(Besheer et al., 2010). In addition, MPEP attenuated relapse of alcohol seeking behavior 

associated with increased ERK1/2 phosphorylation (Schroeder et al., 2008).

MTEP, another selective mGluR5 antagonist, has revealed ability to reduce alcohol self-

administration as well as reinstatement of alcohol-drinking behavior (Sidhpura et al., 2010). 

A recent study reported that mGluR5 blockade by MTEP, in the NAc and basolateral AMG, 

eliminated cue-induced reinstatement to alcohol in rat models (Sinclair et al., 2012), 

suggesting a significant role of mGluR5 antagonism in attenuating reinstatement of alcohol 

seeking. Moreover, MTEP has also been shown to attenuate CPP to alcohol and seizures 
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associated with alcohol withdrawal (Kotlinska et al., 2011) as well as alcohol withdrawal-

induced anxiety behavior measured in elevated plus-maze tests in rats (Kotlinska and 

Bochenski, 2008). The anti-alcohol effect assessed by measuring alcohol consumption of a 

new compound, GET73, N-[(4-trifluoromethyl) benzyl] 4-methoxybutyramide, has also 

been attributed to the ability of the compound to interact with mGluR5 (Ferraro et al., 2013). 

These findings suggest that a pharmacological blockade of mGluR5 may be a feasible 

therapeutic approach to modulate alcohol-drinking behavior.

4.1.2. Group 2 mGluRs—Group 2 receptors (mGluR2 and mGluR3) are present both pre- 

and post-synaptically; these receptors are linked to Gi/o proteins, negatively controlling the 

activity of adenylyl cyclase thereby decreasing the intracellular concentrations of cAMP 

(Kenny and Markou, 2004). In vivo studies have revealed that LY379268, an mGluR2/3 

agonist, has shown promising results in reducing alcohol self-administration, cue-induced 

alcohol seeking (Backstrom and Hyytia, 2005; Sidhpura et al., 2010) as well as foot-shock 

stress-induced reinstatement to alcohol-seeking (Sidhpura et al., 2010; Zhao et al., 2006). 

Furthermore, LY404039, an mGluR2/3 agonist, showed a reduction in the response to 

alcohol in a Pavlovian spontaneous recovery test and expression of an ADE during relapse 

without any effect on response to alcohol under maintenance conditions (Rodd et al., 2006). 

Therefore, stimulating mGluR2/3 can lead to attenuation of alcohol-seeking and relapse 

behavior with no effect on alcohol self-administrative behavior (Rodd et al., 2006). 

Interestingly, several studies suggested that alterations in mGluR2/3 sensitivity is involved in 

chronic alcohol exposure or withdrawal-induced neuroadaptive changes assessed by 

measuring the ability of LY379268 to reduce foot-shock stress-induced alcohol self-

administration and reinstatement to alcohol seeking in non-dependent and post-dependent 

rats (Kufahl et al., 2011; Sidhpura et al., 2010). However, LY379268, at high doses, also was 

able to interfere with the behavior associated with natural reward, observed with common 

reinforcers such as sweetened condensed milk (Baptista et al., 2004), or sucrose (Bossert et 

al., 2006), suggesting that effects of LY379268 on alcohol seeking are not specific to 

alcohol. Interestingly, this compound also exhibited a significant reduction in the 

spontaneous locomotor activity at doses reported to attenuate alcohol self-administration and 

reinstatement (Backstrom and Hyytia, 2005). Moreover, LY379268 exerts neuroprotective 

effects by inhibiting glutamate release through the stimulatory action on both presynaptic 

mGluR2/3 as well as glial mGluR3 [For review see ref. (Imre, 2007)]. These data suggest 

that mGluR2/3 agonists might be promising therapeutic compounds to attenuate alcohol-

seeking behavior.

4.1.3. Group 3 mGluRs—Group 3 of mGlu family receptors are comprised of mGluR4, 

mGluR6, mGluR7 and mGluR8, all of which are mainly localized presynaptically. These 

receptors are also coupled to Gi/o proteins, which negatively regulate adenylyl cyclase 

activity (Kenny and Markou, 2004). Both mGluR4 and mGluR7 are autoreceptors on 

presynaptic glutamatergic corticostriatal terminals and/or hetereceptors on GABAergic 

striatopallidal and striatonigral terminals (Corti et al., 2002), while mGluR8 mRNA is highly 

expressed in the cortex and striatum (Bragina et al., 2015; Brandstatter et al., 1996; 

Messenger et al., 2002). mGluR6 mRNA is restrictedly expressed in retina (Laurie et al., 

1997), and therefore this receptor is not suggested to play a major role in drug addiction.
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Among several group 3 mGluRs, mGluR7 has been investigated extensively for its important 

functional role in drug addiction. An exciting study performed in mouse models revealed a 

mutation of a cis-regulated gene (Grm7), which encodes mGluR7, is involved in the 

development of AUD. This mutation was found to reduce mGluR7 (Grm7) expression and 

consequently increase alcohol consumption in a preference-drinking behavioral paradigm 

(Vadasz et al., 2007). Several studies, involving mGluR7 knockdown animal models, have 

also substantiated the importance of this receptor in modulating alcohol intake. Furthermore, 

studies revealed that deletion of Grm7in mouse models, can lead to an increase in alcohol 

consumption. Conversely, a Grm7 variant-possessing subcongenic and congenic mice, 

characterized by greater Grm7 mRNA, consumed less alcohol (Gyetvai et al., 2011) 

suggesting that Grm7 plays a major role in mGluR7-mediated alcohol drinking. Several 

positive and negative pharmacological modulators of mGluR7 have also been investigated 

against alcohol seeking to establish the importance of this receptor in alcohol addiction. An 

mGluR7-specific allosteric agonist, AMN082, has been reported to attenuate alcohol 

consumption (Salling et al., 2008). However, this compound also has been shown to reduce 

sucrose intake in the B6 mouse model indicating that the effect of mGluR7-agonist on 

alcohol intake is not specific (Salling et al., 2008). The plausible mechanism of action 

underlying the effect of AMN082 could be due to its ability to increase non-vesicular GABA 

levels and consequently extracellular vesicular glutamate levels in the brain, since group 3 

mGluR antagonist abolished AMN082-increased glutamate but not GABA concentrations in 

the NAc (Li et al., 2008).

Additionally, other group 3 mGluRs have been examined for their efficacy in reducing 

alcohol-drinking behavior. Mice lacking mGluR4 failed to show alcohol-induced stimulation 

of motor activity, which was observed in wild type animals (Blednov et al., 2004). However, 

there was no difference observed in alcohol intake and preference in a two-bottle paradigm, 

the severity of withdrawal associated with acute alcohol intake, as well as the duration of 

loss of the righting reflex (Blednov et al., 2004). Thus, these findings implicate that mGluR4 

might mediate the motor stimulant effects of alcohol, with no effect on alcohol-

consumption. Furthermore, systemic administration of mGluR8 agonist, (S)-3,4-DCPG, 

reduced alcohol self-administration and reinstatement to alcohol seeking in rats, although 

the effect on alcohol was observed with doses that have been found to decrease spontaneous 

locomotor activity (Backstrom and Hyytia, 2005). However, a compound with agonistic 

activity at mGluR8 and less motor-suppressant effects may be helpful in establishing the role 

of these receptors in alcohol-seeking behavior (Backstrom and Hyytia, 2005).

4.2. Ionotropic glutamate receptors

Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels responsible 

for mediating the rapid-responses to all major excitatory neurotransmitters of the CNS in 

mammals (Cognet et al., 2007; Stawski et al., 2010). Importantly, all iGluR subunits 

encompass three transmembrane domains (M1, M3 and M4); the M2 domain forms a re-

entrant loop on the cytoplasmic side that determines the selectivity of the ion channel 

(Sobolevsky et al., 2009; Traynelis et al., 2010) (Fig. 4). The glutamate recognition site (S1) 

is located on the extracellular amino-terminal domain, with the M3-M4 loop comprising the 

second necessary component of the glutamate recognition site (S2) (Bigge, 1999). In 
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addition, iGluR activity is modulated by the phosphorylation sites present on the 

intracellular carboxyl terminus, which are also involved in signal transduction (Bigge, 1999). 

These receptors are further categorized into three subtypes: 1) N-methyl-D-Aspartic acid 

(NMDA) receptors; 2) α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (Chaudhry 

et al.) receptors; and 3) Kainic acid (Kainate, KA) receptors. AMPA and KA receptors are 

often termed as non-NMDA receptors. Studies revealed that NMDA receptor antagonists, 

AMPA receptor antagonists and KA receptor antagonists were able to attenuate alcohol-

drinking behaviors (Table 2). Chemical name of NMDA, AMPA and KA receptors ligands 

are listed in Table 3.

4.2.1. NMDA receptors—NMDA receptors are nonspecific cation channels that allow 

calcium and sodium influx as well as potassium efflux from neurons. These heterotetrameric 

proteins are composed of two main subunits, NR1 and NR2. NMDA receptors are distinct 

due to the need for co-activation by binding with two ligands. NR1 subunits bind glycine or 

d-serine, a co-agonist for efficient function, while NR2 contains a glutamate binding domain 

(Gonda, 2012). NMDA is regulated by several endogenous and exogenous compounds. 

Glutamate, sodium, calcium, and potassium are responsible for the receptor stimulation and 

excitatory effects. However, zinc, copper and magnesium have been reported to block the 

channel and causing antagonistic effects (Eby and Eby, 2006; Gass and Olive, 2008; 

Huggins and Grant, 2005; Rambo et al., 2012; Trombley et al., 1998). These receptors have 

been mostly found on presynaptic nerve-terminals and glial cells (Garcia-Junco-Clemente et 

al., 2005; Paoletti and Neyton, 2007), with an implication in neural plasticity (Coyle and 

Tsai, 2004; Malenka and Nicoll, 1993; Paoletti et al., 2013).

An increase in glutamatergic transmission has been detected in the striatum of mice 

undergoing alcohol withdrawal (Chen et al., 2011). This later study demonstrated that 

alcohol withdrawal increased the activity of NR2B NMDA receptor subunit, which may 

cause a significant increase in alcohol consumption. Moreover, alterations in NMDA 

receptor synaptic plasticity in the NAc might be associated with ethanol-induced locomotor 

sensitization, and this effect was associated with significant increase in alcohol intake 

(Abrahao et al., 2013). Furthermore, inhibition of the NR2B subunit of NMDA in the dorsal 

medial striatum has been shown to significantly decrease alcohol consumption in chronically 

exposed rats, which is indicative of NR2B NMDA receptor subunit playing a crucial role in 

alcohol consumption (Wang et al., 2010). Additionally, studies have shown that memantine 

and MK-801, NMDA receptor antagonists, affect several behavioral aspects associated with 

alcohol consumption such as alcohol sensitization, locomotor activities and sedative 

properties (Malpass et al., 2010; Meyer and Phillips, 2003; Paoletti et al., 2013; Shen and 

Phillips, 1998). Memantine also exhibited promising results in attenuating motor impairment 

as well as preventing cerebellar cell loss, thus indicating its neuroprotective effects (Idrus et 

al., 2011). However, memantine was not able to improve the learning deficit associated with 

binge alcohol consumption (Idrus et al., 2011). Interestingly, a study performed on male 

Myers’ high-alcohol-preferring (mHEP) rats reported that memantine dose-dependently 

decreased alcohol consumption in a 24-hour two-choice volitional consumption paradigm 

(Malpass et al., 2010). However, a study reported that memantine administration heightened 

the aggressive behavior associated with alcohol consumption (Newman et al., 2012). It is 
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noteworthy that memantine treatments exerted the ability to reduce self-administration to 

alcohol (Jeanblanc et al., 2014).

Interestingly, blocking the NMDA receptor by memantine or MK-801 has been shown to 

reduce alcohol withdrawal induced-seizures and neurotoxicity (Grant et al., 1990; Stepanyan 

et al., 2008). In clinical studies, memantine has been found to attenuate cue-induced craving 

for alcohol (Krupitsky et al., 2007a) and withdrawal associated with alcohol consumption 

(Krupitsky et al., 2007b). We suggest here that NMDA receptor antagonists might have 

beneficial effects against alcohol withdrawal-induced seizure.

Several studies found that NMDA receptors have a major role in the intoxicating effects of 

alcohol. Most studies have focused on finding NMDA receptor antagonists to block the 

inhibitory effects of alcohol on NMDA receptor. However, the effects of NMDA receptor 

agonists on alcohol intoxication have not been well studied yet. A study used d-serine as an 

agonist to overstimulate the NMDA receptors and counteract the alcohol intoxicating effects 

(Lockridge et al., 2012). This study also showed that administration of d-serine prior to 

alcohol exposure prolonged the latency of the loss of righting reflex and shortened the 

duration of the reflex (Lockridge et al., 2012). Interestingly, a significant decrease in alcohol 

preference has been reported in mice treated with d-serine (Lockridge et al., 2012). Together, 

targeting NMDA receptor could be a potential therapeutic approach for treatment of AUD.

4.2.2. AMPA and kainic acid receptors—AMPA receptors are heterotetrameric protein 

complexes composed of four subunits: GluR1, GluR2, GluR3, and GluR4. Each GluR 

subunit has a glutamate binding site. Agonists can bind to any of the four subunits on the 

channel. However, the stimulation of this receptor starts after the binding of two ligands, 

which may cause an increase in the current (Mayer and Armstrong, 2004; Mayer, 2005). It is 

important to note that channel’s permeability to ions is governed by the GluR2 subunit. 

Studies have shown that AMPA receptors containing GluR2 subunit are impermeable to 

Ca2+. Additionally, AMPA receptors modulate most of the excitatory neurotransmissions in 

the brain, which make them potential drug targets for treatment of neurological disorders 

and alcohol addiction (Chang et al., 2012). AMPA receptors are suggested to be involved in 

the induction of synaptic plasticity (Cooke and Bliss, 2006; Cull-Candy et al., 2006; 

Derkach et al., 2007; Santos et al., 2009).

Similar to NMDA and AMPA receptors, KA receptors also are heterotetrameric complexes 

comprised of several subunits termed as GluR5, GluR6, GluR7, KA1 and KA2 (Darstein et 

al., 2003). KA receptors have been found permeable to Na+ and K+ ions, suggesting that KA 

receptors participate in excitatory postsynaptic currents. It is important to note that KA 

receptors have been located in presynaptic neurons modulating glutamate release (Huettner, 

2003).

AMPA is a well-known ionotropic glutamatergic receptor that is implicated in the acute and 

chronic effects of alcohol addiction. Studies revealed that moderate alcohol intake 

upregulated AMPA receptor expression in the central nucleus of the AMG (Salling et al., 

2014). However, certain alcohol concentrations inhibit AMPA receptors by stabilizing the 

receptor in a desensitized state (Moykkynen et al., 2003). Importantly, alcohol exposure was 
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able to increase neural activity dependent pentraxin (NARP) in the NAc (Ary et al., 2012). 

NARP interacts with AMPA receptors, which facilitates excitatory synapse formation 

through aggregation of AMPA receptors at specific synapses. This interactive mechanism is 

an important part of regulating neuroplasticity and might be affected by alcohol exposure 

(Ary et al., 2012). In several preclinical studies performed in rodents, exposure to alcohol 

induced a significant increase in the expression and synaptic localization as well as modulate 

the function of AMPA receptor in certain regions of the brain reward circuitry (Chandler et 

al., 1999; Christian et al., 2012; Wang et al., 2012). Moreover, infusion of an AMPA 

receptor inhibitor into the dorsomedial striatum exhibited promising results in reducing 

alcohol consumption in rats (Wang et al., 2012).

Studies indicate that potentiation of AMPA receptors may be able to inhibit alcohol-induced 

intoxication. LY404187 and LY451395, both selective biarylsulfonaminde AMPA agonists, 

were found to reverse the acute intoxication induced by alcohol consumption. In addition, 

both compounds significantly reversed the loss of motor coordination and operant task 

disruption induced by ethanol (Jones et al., 2008). Thus, AMPA receptor antagonists may 

have an important role as a possible therapeutic compounds for managing acute ethanol 

intoxication (Jones et al., 2008).

Additionally, AMPA receptors have shown an extensive role in alcohol craving and relapse-

like behavior (Bäckström and Hyytiä, 2004; Sanchis-Segura et al., 2006; Stephens and 

Brown, 1999). Increased AMPA receptor activity with aniracetam was shown to increase 

both self-administration and cue-induced reinstatement of alcohol (Cannady et al., 2013). 

Furthermore, GYKI 52466, a selective AMPA antagonist, reduced the reinstatement of 

alcohol-seeking behavior and ADE. These data provide ample evidence that AMPA 

receptors might be used as therapeutic targets for treatment of relapse-like alcohol behavior 

(Sanchis-Segura et al., 2006). Several in vivo studies have revealed that mixed 

AMPAR/KAR antagonists CNQX or NBQX can attenuate operant alcohol reinforcement 

(Stephens and Brown, 1999) and cue-induced alcohol-seeking behaviors (Bäckström and 

Hyytiä, 2004; Czachowski et al., 2012). However, the AMPA/KA receptor blockade also has 

shown ability to attenuate sucrose or saccharin intake, thus indicating the attenuation as a 

general appetitive suppressant effect (Stephens and Brown, 1999). A study revealed that 

injection of DNQX directly into the AMG attenuated withdrawal-related anxiety (Lack et 

al., 2007). Additionally, administration of the AMPA receptor antagonist, into the 

dorsomedial striatum, attenuated alcohol self-administration with no effect on sucrose 

(Wang et al., 2012). These data further support AMPA receptors as a potential therapeutic 

target for the treatment of AUD. However, studies are warranted to investigate the role of 

KA receptor in the attenuation of alcohol drinking behavior.

5. Allosteric modulation of GPCRs: pros and cons

Allosteric modulation of GPCRs provides a plethora of practical advantages over the 

orthosteric modulation. For example, many orthosteric ligands (proteins and peptides) of 

GPCRs are limited due to their lack of drug-like properties as well as their ability to cross 

the blood-brain barrier (Conn et al., 2014). Thus, small-molecule allosteric modulators 

provide an alternative strategy to target GPCRs in the CNS (Gregory et al., 2011). The 
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highly conserved orthosteric binding site within the subfamily is a significant hurdle to 

achieve optimum selectivity to target one particular GPCR (Fig. 5). In contrast, the 

heterogeneity in the allosteric binding sites across the receptor subtypes presents a valuable 

approach to obtain receptor selectivity (Fig. 5). Furthermore, some allosteric modulators, 

with no inherent agonistic activity, are effective only in the presence of the endogenous 

ligand (Melancon et al., 2012a). This is critical in maintaining the activity dependence of the 

endogenous ligand without affecting its physiological signaling. The saturation of the 

allosteric binding sites leading to the “ceiling effect” is especially advantageous with 

molecules that have smaller therapeutic window. Unlike orthosteric modulation, the ceiling 

effect associated with the allosteric modulation facilitates higher degree of titration of the 

pharmacological effect without causing significant target-associated toxicity. This can be 

particularly useful where higher doses of the drug are required to obtain a pharmacological 

effect. Allosteric modulation using small molecule modulators also offers improved 

tractability. Despite having important advantages, allosteric modulation has critical 

deficiencies associated with the concept. The significant species differences across the 

allosteric sites, due to their evolutionary divergence, has been a key challenge in preclinical 

studies and in translation of hits from in vitro screens (employing human GPCR) to in vivo 

disease models. Often the allosteric agonists show different pharmacological outcome 

towards different orthosteric ligand for the same receptor – often described as ‘probe 

dependence’. This ‘probe dependence’ becomes a barrier in determining functional 

parameters that are transferrable across different assays in the drug screening process. 

Another important aspect of allosteric modulation is its effect on both the affinity as well as 

the efficacy of the orthosteric ligand. This often necessitates applying multiple-independent 

assays to determine each property of the allosteric modulators, thereby increasing the drug-

discovery program timelines as well as the resources involved (Conn et al., 2009; Conn et 

al., 2014; Gregory et al., 2011; Melancon et al., 2012b).

6. Future directions, limitations and concluding remarks

This review provides ample evidence supporting the possibility to develop drugs that target 

glutamate receptors for the treatment of alcohol use disorders. However, this theoretical 

notion of pharmacologically targeting glutamate receptors for treating AUD often precludes 

the complexity associated with this concept. From drug discovery perspective, in spite of 

overcoming the druggability aspect of the process, few of the key challenges associated with 

targeting glutamate receptors such as selectivity towards its target, efficacy, safety or 

combination of the two or more still remain to be addressed. For example, JNJ 16259685, an 

mGluR1antagonist, induced locomotor impairment and significantly affected sucrose intake 

(Besheer et al., 2008a), despite its high selectivity towards its target. The limitations also 

extend as far as contradiction in findings when the same molecule has been used in different 

studies. For example, there have been inconsistencies in the efficacy of CPCCOEt, an 

mGluR1 antagonist, in two different studies (Hodge et al., 2006; Szumlinski et al., 2006). 

This contradiction in the effect of drug may be due to differences in the models involved in 

the studies. LY379268, an mGluR2/3 agonist, is effective in alcohol intake in different 

animal models. However, its effect on other natural reinforcers such as sweetened milk 
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questions the specificity of the effect of this compound on AUD (Backstrom and Hyytia, 

2005; Baptista et al., 2004; Sidhpura et al., 2010).

The three drug candidates affecting the glutamate-receptors, which are extensively studied in 

preclinical as well as clinical settings for AUD, are acamprosate, memantine and toprimate. 

Acamprosate is known to affect two neurotransmitter systems, including GABA (as an 

agonist) and glutamate (as a NMDAR as well as mGluR5 antagonist). The drug was 

effective in increasing the complete abstinence rate as well as cumulative abstinence 

duration in several long-term placebo-controlled trials in alcohol-dependent patients 

(Lhuintre et al., 1990; Paille et al., 1995; Sass et al., 1996; Whitworth et al., 1996). However, 

in a large clinical trial involving 1383 patients in nine possible treatment groups, 

acamprosate neither alone nor with naltrexone or combined behavioral intervention shows a 

statistically significant reduction in alcohol consumption over placebo (Anton et al., 2006). 

Despite the inconsistencies in findings, acamprosate has an overall advantageous 

pharmacological effect on the alcohol consumption in patients, thereby leading to its 

approval for treatment of AUD in Europe and USA.

Another drug that surpassed the safety and tolerability hurdle and has an extensive potential 

for treatment of AUD is memantine. This drug noncompetitively antagonizes the NMDAR 

in the brain. Clinical studies in alcohol-dependent patients revealed promising results with 

memantine in different aspects of the disease like craving (Krupitsky et al., 2007a)and 

withdrawal (Krupitsky et al., 2007b). However, the drug was not very effective in preventing 

relapse in alcohol-dependent patients (Spanagel and Vengeliene, 2013). This difference in 

the outcomes could be attributed to the involvement of patients at different stages of the 

disease in both trials.

Additional important candidate in the clinical pipeline for treatment of AUD is an 

AMPAR/KAR antagonist, topiramate. Topiramate reduced craving, withdrawal and 

consumption in patients with AUD in several clinical studies (Baltieri et al., 2008; Florez et 

al., 2008; Johnson et al., 2006; Johnson et al., 2003; Johnson et al., 2007; Krupitsky et al., 

2007a; Miranda Jr et al., 2008; Paparrigopoulos et al., 2011; Rubio et al., 2004; 

Rustembegovic et al., 2001). An interesting pharmacogenomics study revealed that a SNP in 

(rs2832407) GRIK1, a gene encoding the kainate GluK1 receptor subunit, moderated the 

efficacy of topiramate (Kranzler et al., 2014).

Drugs like acamprosate and topiramate provide compelling evidence of the potential of 

targeting glutamate receptors to treat AUD. Nevertheless, more preclinical development of 

the molecules to address important questions such as safety, efficacy, potency and specificity 

are warranted to advance these investigational agents into clinical development. The 

heterogeneity of the AUD resulted from different genetic and environmental interactions 

eventually lead to different phenotypes in patients. These phenotypic differences in patients 

remain a key challenging in designing the clinical trials. Thus, employing pharmacogenomic 

tools to understand the right patient-subpopulation for the trial might be a good strategy to 

increase the likelihoods of positive outcome in the clinical trials.
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Antagonism of group 1 mGluRs and iGluRs, AMPA and NMDA, and agonism of group 2 

mGluRs have been suggested to play a key role in preventing relapse and drug-seeking 

behaviors, including alcohol, as well as attenuating withdrawal effects. The metabotropic 

receptors showed fewer negative side effects than their ionotropic counterparts, possibly 

providing a more effective pharmacotherapeutic target. Despite the complexity of addiction, 

dependence, and drug abuse, the discovery of glutamate’s role expands the knowledge of the 

neuromechanisms behind substance dependence. Further studies are warranted to determine 

the mechanisms and pathways involving glutamate receptors in alcohol seeking for more 

effective pharmacotherapies.
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Abbreviations

AC Adenylyl Cyclase

ADE Alcohol Deprivation Effect

AMG Amygdala

AMPA α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AUD Alcohol Use Disorder

BLA Basolateral Amygdala

CNS Central Nervous System

CPP Conditioned Place Preference

DAG Diacylglycerol

EAAT Excitatory Amino Acid Transporter

GABA γ-Aminobutyric acid

GLAST Glutamate Aspartate Transporter

GLT-1 Glutamate Transporter 1

GPCR G-protein coupled receptor

HPC Hippocampus

iGluR Ionotropic Glutamate Receptor

IP3 Inositol (1,4,5)-Triphosphate

KA Kainic Acid Receptor
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MC Motor Cortex

mGluR Metabotropic Glutamate Receptor

MT Motor Thalamus

NAc Nucleus Accumbens

NARP Neural Activity Dependent Pentraxin

NMDA N-Methyl-D-aspartic acid

PFC Prefrontal Cortex

PKC Phosphokinase C

PLC Phospholipase C

SNr Substantia Niagra

VGLUT Vesicular Glutamate Transporter

VP Ventral Pallidum

VS Ventral Striatum

VTA Ventral Tegmental Area

xCT Cystine/Glutamate Exchange Transporter
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Highlights

• Role of metabotropic receptors mGluR1/5, mGluR2/3, and mGluR7 on 

alcohol intake.

• Role of ionotropic receptors, NMDA and AMPA on alcohol intake.

• Implication of glutamatergic receptors in development of alcohol dependence.
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Figure 1. Neurocircuitry involved in AUD
The brain reward circuitry is comprised of five major brain regions – nucleus accumbens 

(NAc), prefrontal cortex (PFC), amygdala (AMG), hippocampus (HPC) and ventral 

tegmental area (VTA) – which are interconnected by the glutamatergic and dopaminergic 

excitatory pathways as well as the inhibitory GABAergic pathway. (A) Glutamatergic 

System – NAc receives glutamatergic inputs from PFC, AMG and HPC, while all three latter 

regions are interconnected by reciprocating glutamatergic projections. (B) Dopaminergic 

System – VTA relays dopaminergic projections to NAc, PFC, AMG and HPC. (C) 

GABAergic System – NAc sends GABAergic inputs to VTA.
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Figure 2. Glutamatergic Neurotransmission
In the presynaptic neuron, glutaminase catalyzes the conversion of glutamine to glutamate, 

which is further loaded into the vesicles by vesicular glutamate transporters (VGLUTs). 

Following depolarization of the presynaptic terminal, the vesicle interacts with SNARE 

proteins on the synaptic membrane, consequently leading to the release of glutamate into the 

synapse. After being released from the presynaptic terminal, the glutamate in the synapse 

interacts with the post-synaptic mGluRs and iGluRs, initiating further cell signaling. Group 

2 and Group 3 mGlu receptors on the presynaptic terminal inhibit the adenylyl cyclase 

activity and negatively regulate the glutamate release from the presynaptic terminal. The 

excess extracellular glutamate is taken up by several glial glutamate transporters such as 

GLT-1 (also known as excitatory amino acid transporter 2, EAAT2) and GLAST (also 

known as excitatory amino acid transporter 1, EAAT1). Inside the glial cell, the glutamine 

synthetase enzyme catalyzes the conversion of glutamate to glutamine, which is further 

transported to the presynaptic neuronal terminal and can be further used in the glutamate-

glutamine cycle. Cystine-glutamate exchanger, (xCT) located on the glial cell, also plays a 

vital role in elevating the synaptic glutamate concentrations, using l-cystine for exchange.
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Figure 3. Schematic representation of metabotropic glutamate receptors (mGluRs)
Glutamate activates the receptor by binding to the extracellular N-terminal domain. (A) 

Upon activation of group 1 mGluR, Gq proteins are stimulated, which further activates 

phospholipase C (PLC). The activation of PLC subsequently catalyzes the production of 

diacylglycerol (DAG) and inositol (1,4,5)-triphosphate (IP3). DAG activates protein kinase 

C (PKC), while IP3 increases the release of Ca2+ from intracellular stores. (B) Activation of 

group 2 mGluRs and group 3 mGluRs leads to stimulation of Gi/o proteins, which further 

inhibits adenylyl cyclase (AC) activity, eventually reducing the intracellular concentrations 

of cAMP.
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Figure 4. Schematic diagram of ionotropic glutamate receptors (iGluRs) subunits
iGluRs contain a large extracellular amino-terminal (N) domain and an intracellular 

carboxy-terminal (C) domain. These receptors constitute four transmembrane domains (M1-

M4), wherein the M2 domain forms a re-enterant loop. Two distinct extracellular loops 

containing S1 and S2 form the ligand-binding region in the receptor.
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Figure 5. 
Schematic representation of orthosteric and allosteric binding sites of metabotropic 

glutamate receptors (mGluRs). mGluRs belong to Class C subtype of G-protein-coupled 

receptors (GPCRs). These receptors are characterized by a large extracellular N-terminal 

domain, termed as the Venus flytrap domain (VFD), which is exclusively used to bind 

orthosteric ligands (e.g. glutamate) (Conn et al., 2009; Gregory et al., 2011; May et al., 

2007). These VFDs are involved in the dimerization of the mGluRs. The transmembrane 

region of mGluRs forms a pocket where the small-molecule modulators bind allosterically, 

with the potential to have more than one binding site. Thus, the allosteric modulators bind to 

a site, which is topographically different from the orthosteric ligand binding site, causing a 

change in receptor conformation further modifying the receptor activity in a positive or 

negative modulation of neutral direction. This modulation in receptor activity can be either 

affected by binding efficacy, binding affinity or varying degrees of both (Melancon et al., 

2012a).
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Table 1

shows the pharmacological classes of glutamate receptors/subtypes and their corresponding ligands/

modulators studied in AUD.

Glutamate receptor Ligands Pharmacological class References

 A. Metabotropic glutamate receptors (mGluRs)

 1. Group 1 mGluRs

mGluR1 JNJ16259685 Antagonist (Besheer et al., 2008a)
(Lum et al., 2014)
(Besheer et al., 2009)

EMQMCM Antagonist (Kotlinska et al., 2011)

CPCCOEt Antagonist (Szumlinski et al., 2008)
(Hodge et al., 2006)
(Reynolds et al., 2015)
(Sharko and Hodge, 2008)
(Besheer et al., 2008a)

mGluR5 MPEP Negative allosteric modulator (Hodge et al., 2006)
(Schroeder et al., 2005)
(Szumlinski et al., 2008)
(Blednov and Harris, 2008)
(Backstrom et al., 2004)
(Besheer et al., 2010)
(Schroeder et al., 2008)
(Lee et al., 2016)
(Reynolds et al., 2015)
(Kumar et al., 2013)
(Downing et al., 2010)
(Cozzoli et al., 2009)
(Besheer et al., 2009)
(Gupta et al., 2008)
(Olive and Becker, 2008)
(Besheer et al., 2008b)
(Sharko and Hodge, 2008)
(Besheer et al., 2006)
(Lominac et al., 2006)
(Cowen et al., 2005)
(Besheer and Hodge, 2005)
(Olive et al., 2005)
(McGeehan and Olive, 2003)

MTEP Negative allosteric modulator (Sidhpura et al., 2010)
(Sinclair et al., 2012)
(Kotlinska et al., 2011)
(Kotlinska and Bochenski, 2008)
(Cozzoli et al., 2014)
(Adams et al., 2010)
(Gass and Olive, 2009a)
(Adams et al., 2008)
(Cowen et al., 2007)

GET73
N-[(4-trifluoromethyl)benzyl]
4-methoxybutyramide

Unknown Ferraro, 2013

SIB-1893 Antagonist (Reynolds et al., 2015)

CDPPB Positive Allosteric Modulator (Gass et al., 2014)

 2. Group 2 mGluRs

mGluR2/3 LY379268 Agonist (Backstrom and Hyytia, 2005)
(Sidhpura et al., 2010)
(Zhao et al., 2006)
(Kufahl et al., 2011)
(Baptista et al., 2004)
(Bossert et al., 2006)
(Besheer et al., 2010)
(Jaramillo et al., 2015)
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Glutamate receptor Ligands Pharmacological class References

(Cannady et al., 2011)
(Olive and Becker, 2008)
(Pati et al., 2016)
(Barker et al., 2016)
(Zhou et al., 2013)
(Griffin et al., 2014)

LY404039 Agonist (Rodd et al., 2006)

LY341495 Antagonist (Barker et al., 2016)
(Zhou et al., 2013)
(Sharko and Hodge, 2008)
(Hodge et al., 2006)
(Jaramillo et al., 2015)
(Laukkanen et al., 2015)

AZD8529 Positive Allosteri Modulator (Augier et al., 2016)

 3. Group 3 mGluRs

mGluR7 AMN-082 Positive Allosteric Modulator (Salling et al., 2008)
(Li et al., 2008)
(Bahi, 2012a)
(Bahi et al., 2012)

MMPIP Negative Allosteric Modulator (Bahi, 2012a)
(Bahi et al., 2012)

mGluR8 (S)-3,4-DCPG Agonist (Backstrom and Hyytia, 2005)

 B. Ionotropic glutamate receptors (iGluRs)

NMDAR MK-801 Antagonist (Meyer and Phillips, 2003)
(Grant et al., 1990)
(Stepanyan et al., 2008)
(Shen and Phillips, 1998)
(Milton et al., 2012)
(Camp et al., 2011)
(Biala and Kotlinska, 1999)
(Boyce-Rustay and Cunningham, 2004)

Memantine Antagonist (Idrus et al., 2011)
(Malpass et al., 2010)
(Newman et al., 2012)
(Jeanblanc et al., 2014)
(Krupitsky et al., 2007a; Krupitsky et al., 2007b)
(Krishnan-Sarin et al., 2015)
(Alaux-Cantin et al., 2015)
(Narayanan et al., 2013)
(Oberlin et al., 2010)
(Evans et al., 2007)
(Escher et al., 2006)
(Bisaga and Evans, 2004)
(Kotlinska, 2001)
Lukoyanov, 2001
(Koros et al., 1999)
(Piasecki et al., 1998)

d-serine Agonist (Lockridge et al., 2012)

CPPene Antagonist (Shelton and Balster, 1997)

CGP-3789 Antagonist (Boyce-Rustay and Cunningham, 2004)

Ketamine Antagonist (Boyce-Rustay and Cunningham, 2004)
(Krystal et al., 2003)

Ifenprodil Antagonist (Boyce-Rustay and Cunningham, 2004)

CP-101,606 Antagonist (Boyce-Rustay and Cunningham, 2004)

(+)-HA-966 Partial Agonist (Boyce-Rustay and Cunningham, 2004)

MRZ 2/579 Antagonist (Bienkowski et al., 2001)

AMPAR AMPA Agonist Fu, 2016
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Glutamate receptor Ligands Pharmacological class References

LY404187 Agonist (Jones et al., 2008)

LY451395 Agonist (Jones et al., 2008)

Aniracetam Agonist (Cannady et al., 2013)
(Rial et al., 2009)
(Vaglenova et al., 2008)
(Wijayawardhane et al., 2007)
(Wijayawardhane et al., 2008)
(Eisenhardt et al., 2015)

GYKI 52466 Antogonist (Sanchis-Segura et al., 2006)
(Broadbent et al., 2003)
(Stephens and Brown, 1999)

AMPAR/KAR CNQX Antagonist (Stephens and Brown, 1999)
(Backstrom and Hyytia, 2006)
(Backstrom and Hyytia, 2007)
(Bäckström and Hyytiä, 2004)
(Czachowski et al., 2012)
(Cannady et al., 2013)

NBQX Antagonist (Stephens and Brown, 1999)
(Bäckström and Hyytiä, 2004)
(Czachowski et al., 2012)
(Wang et al., 2012)
(Sciascia et al., 2015)
(Corbit et al., 2014)
(Karcz-Kubicha and Liljequist, 1995)

DNQX Antagonist (Lack et al., 2007)
(Rial et al., 2009)
(Long et al., 2007)
(Manto et al., 2005)
(Broadbent et al., 2003)

LY326325 Antagonist (Karcz-Kubicha and Liljequist, 1995)

KAR LY466195 Antagonist (Van Nest et al., 2017)
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Table 2

List of ligands/investigational agents studied with the alcohol drinking paradigm employed in each study.

Ligand Receptor Species/Strain Behavioral paradigm/Model References

JNJ16259685 mGluR1 Rats/Alcohol preferring (P) Self-administration (Besheer et al., 
2008a)

Rats/Long Evans Drug discrimination (Besheer et al., 
2009)

Mice/C57BL/6 Drinking-in-the-Dark (Krupitsky et 
al.)

(Lum et al., 
2014)

EMQMCM mGluR1 Mice/Swiss Albino Sensitization (Kotlinska et 
al., 2006)

Rats/Wistar Withdrawal (Kotlinska and 
Bochenski, 

2008)

Rats/Wistar Conditioned place preference (CPP)
Withdrawal

(Kotlinska et 
al., 2011)

CPCCOEt mGluR1 Mice/C57BL/6 Self-administration (Szumlinski et 
al., 2008)

Mice/C57BL/6 Self-administration (Hodge et al., 
2006)

Rats/Alcohol preferring (P) Self-administration (Besheer et al., 
2008a)

Mice/C57BL/6 Alcohol-induced sedation and 
hypnosis

(Sharko and 
Hodge, 2008)

Mice/C57BL/6 Self-administration
Conditioned place preference (CPP)

(Lominac et 
al., 2006)

MPEP mGluR5 Mice/C57BL/6 Self-administration (Hodge et al., 
2006)

Rats/Alcohol preferring (P) Self-administration (Schroeder et 
al., 2005)

Mice/C57BL/6 Self-administration (Szumlinski et 
al., 2008)

Mice/C57BL/6 2-bottle and 4-bottle free-choice
Limited-access test

Withdrawal

(Blednov and 
Harris, 2008)

Rats/Long Evans and Wistar Reinstatement to ethanol-seeking
Alcohol deprivation effect (ADE)

(Backstrom et 
al., 2004)

Rats/Alcohol preferring (P) Self-administration (Besheer et al., 
2010)

Rats/Alcohol preferring (P) Self-administration
Reinstatement to ethanol-seeking

(Schroeder et 
al., 2008)

Mice/C57BL/6 Conditioned place preference (CPP) (Lee et al., 
2016)

Rats/Sprague-Dawley Chronic intermittent ethanol (CIE)
Withdrawal

(Reynolds et 
al., 2015)

Rats/Wistar Withdrawal (Kumar et al., 
2013)

Mice/C57BL/6 Binge-alcohol drinking (Cozzoli et al., 
2009)

Rats/Long Evans Drug discrimination (Besheer et al., 
2009)
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Ligand Receptor Species/Strain Behavioral paradigm/Model References

Mice/C57BL/6 Drinking-in-the-Dark (Krupitsky et 
al.)

(Gupta et al., 
2008)

Mice/C3H/He Withdrawal (Olive and 
Becker, 2008)

Rats/Alcohol preferring (P) Self-administration (Besheer et al., 
2008a)

Mice/C57BL/6 Alcohol-induced sedation and 
hypnosis

(Sharko and 
Hodge, 2008)

Rats/Long Evans Self-administration (Besheer et al., 
2006)

Mice/C57BL/6 Self-administration
Conditioned place preference (CPP)

(Lominac et 
al., 2006)

Rats/Long Evans Self-administration
Ethanol discrimination

(Besheer and 
Hodge, 2005)

Mice/C57BL/6J × 129SvJae Limited-access two-bottle free-choice (Olive et al., 
2005)

Mice/C57BL/6 Conditioned place preference (CPP) (McGeehan 
and Olive, 

2003)

MTEP mGluR5 Rats/Wistar Self-administration
Reinstatement to ethanol-seeking

Withdrawal

(Sidhpura et 
al., 2010)

Rats/Wistar Self-administration
Reinstatement to ethanol-seeking

(Sinclair et al., 
2012)

Rats/Wistar Conditioned place preference (CPP)
Withdrawal

(Kotlinska et 
al., 2011)

Rats/Wistar Withdrawal (Kotlinska and 
Bochenski, 

2008)

Mice/C57BL/6 Binge-alcohol drinking (Cozzoli et al., 
2014)

Rats/Alcohol preferring (P) Self-administration
Reinstatement of ethanol-seeking

(Adams et al., 
2008)

Rats/Wistar Self-administration (Gass and 
Olive, 2009b)

Rats/Alcohol preferring (P) Self-administration
Cue-induced reinstatement of ethanol-

seeking

(Adams et al., 
2010)

Mice/C57BL/6 Self-administration (Cowen et al., 
2007)

Rats/Fawn-Hooded (FH) and Alcohol 
preferring (P)

Self-administration (Cowen et al., 
2005)

CDPPB mGluR5 Rats/Wistar Self-administration, Cue-induced 
reinstatement to ethanol-seeking

(Gass et al., 
2014)

LY379268 mGluR2/3 Rats/Long Evans Self-administration
Reinstatement to ethanol-seeking

(Backstrom 
and Hyytia, 

2005)

Rats/Wistar Self-administration
Reinstatement to ethanol-seeking

Withdrawal

(Sidhpura et 
al., 2010)

Rats/Wistar Self-administration
Conditioned reinstatement to ethanol-

seeking

(Zhao et al., 
2006)
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Ligand Receptor Species/Strain Behavioral paradigm/Model References

Rats/Wistar Self-administration
Conditioned reinstatement to ethanol-

seeking

(Kufahl et al., 
2011)

Rats/Alcohol preferring (P) Self-administration (Besheer et al., 
2010)

Rats/Long Evans Ethanol discrimination (Jaramillo et 
al., 2015)

Rats/Long Evans Ethanol discrimination (Cannady et 
al., 2011)

Mice/C3H/He Withdrawal (Olive and 
Becker, 2008)

Rats/Sprague-Dawley Self-administration, Intermittent 
access to alcohol

(Pati et al., 
2016)

Mice/C57BL/6 Self-administration
Chronic intermittent ethanol (CIE)

(Barker et al., 
2016)

Mice/C57BL/6 Self-administration
Chronic intermittent ethanol (CIE)

(Griffin et al., 
2014)

LY404039 mGluR2/3 Rats/Alcohol preferring (P) Self-administration
Reinstatement of ethanol-seeking

(Rodd et al., 
2006)

LY341495 mGluR2/3 Mice/C57BL/6 Self-administration
Chronic intermittent ethanol (CIE)

(Barker et al., 
2016)

Rats/Wistar Self-administration (Zhou et al., 
2013)

Mice/C57BL/6 Alcohol-induced sedation and 
hypnosis

(Sharko and 
Hodge, 2008)

Mice/C57BL/6 Self-administration (Hodge et al., 
2006)

Rats/Long Evans Ethanol discrimination (Jaramillo et 
al., 2015)

AZD8529 mGluR2/3 Rats/Wistar Self-administration
Cue-induced reintstatment to ethanol-

seeking

(Augier et al., 
2016)

AMN-082 mGluR7 Mice/C57BL/6 Self-administration (Salling et al., 
2008)

Mice/C57BL/6 Conditioned place preference (Bahi, 2012b)

Rats/Wistar Two-bottle free choice drinking (Bahi et al., 
2012)

MMPIP mGluR7 Mice/C57BL/6 Conditioned place preference (Bahi, 2012b)

Rats/Wistar Two-bottle free choice drinking (Bahi et al., 
2012)

(S)-3,4-DCPG mGluR8 Rats/Long Evans Self-administration
Reinstatement to ethanol-seeking

(Backstrom 
and Hyytia, 

2005)

MK-801 NMDAR Mice/DBA/2J Sensitization (Meyer and 
Phillips, 2003)

Mice/C57BL/6 Withdrawal (Grant et al., 
1990)

Rats/Lister-Hooded Self-administration
Pavlovian conditioning

(Milton et al., 
2012)

Mice/PSD-95 KO Two-bottle free-choice
Conditioned place preference

Alcohol deprivation effect

(Camp et al., 
2011)
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Ligand Receptor Species/Strain Behavioral paradigm/Model References

Rats/Wistar Conditioned place preference (Biala and 
Kotlinska, 

1999)

Mice/DBA/2J Conditioned place preference (Boyce-Rustay 
and 

Cunningham, 
2004)

Rats/Long Evans Self-administration
Cue-induced reinstatment to ethano-

seeking

(Backstrom et 
al., 2004)

Memantine NMDAR Rats/Sprague-Dawley Binge-alcohol drinking (Idrus et al., 
2011)

Rats/Myers’ high-ethanol-preferring (mHEP) Two-bottle free choice (Malpass et al., 
2010)

Swiss Webster mice Self-administration (Newman et 
al., 2012)

Rats/Long Evans Self-administration (Jeanblanc et 
al., 2014)

Rats/Long Evans Self-administration
Withdrawal

(Alaux-Cantin 
et al., 2015)

Mice/High Alcohol Preferring (HAP) Delay Discounting
Home-cage drinking

(Oberlin et al., 
2010)

Mice/C57BL/6 Schedule-induced polydipsia (SIP) (Escher et al., 
2006)

Rats/Wistar Withdrawal (Lukoyanov 
and Paula-

Barbosa, 2001)

Rats/Wistar Ethanol-discrimination (Koros et al., 
1999)

d-serine NMDAR Mice/C57BL/6 Ethanol-discrimination (Lockridge et 
al., 2012)

CGP-3789 NMDAR Mice/DBA/2J Conditioned place preference (Boyce-Rustay 
and 

Cunningham, 
2004)

Ketamine NMDAR Mice/DBA/2J Conditioned place preference (Boyce-Rustay 
and 

Cunningham, 
2004)

Ifenprodil NMDAR Mice/DBA/2J Conditioned place preference (Boyce-Rustay 
and 

Cunningham, 
2004)

CP-101,606 NMDAR Mice/DBA/2J Conditioned place preference (Boyce-Rustay 
and 

Cunningham, 
2004)

(+)-HA-966 NMDAR Mice/DBA/2J Conditioned place preference (CPP) (Boyce-Rustay 
and 

Cunningham, 
2004)

MRZ 2/579 NMDAR Rats/Wistar Withdrawal (Bienkowski et 
al., 2001)

CGP39551 NMDAR Rats/Long Evans Self-administration
Cue-induced

Reinstatment to ethano-seeking

(Backstrom et 
al., 2004)
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Ligand Receptor Species/Strain Behavioral paradigm/Model References

AMPA AMPAR Rats/Long Evans Self-administration
Intermittent 2-bottle free-choice

(Fu et al., 
2016)

Aniracetam AMPAR Rats/Alcohol preferring (P) Self-administration
Cue-induced reinstatement

(Cannady et 
al., 2013)

Mice/Transgenic Self-administration
Cue-induced reinstatement to ethanol 

seeking
Alcohol deprivation effect (ADE)

(Eisenhardt et 
al., 2015)

GYKI 52466 AMPAR Rats/Wistar and Mice/Transgenic Cue-induced reinstatement to ethanol 
seeking

Alcohol deprivation effect (ADE)

(Sanchis-
Segura et al., 

2006)

Mice/DBA/2J Sensitization (Broadbent et 
al., 2003)

Rats/Lister-Hooded Self-administration (Stephens and 
Brown, 1999)

CNQX AMPAR/KAR Rats/Long Evans Self-administration
Cue-induced reinstatment to ethanol-

seeking

(Backstrom et 
al., 2004)

Rats/Long Evans Self-administration (Czachowski 
et al., 2012)

NBQX AMPAR/KAR Hooded Lister rats Self-administration (Stephens and 
Brown, 1999)

Rats/Long Evans Self-administration
Cue-induced reinstatment to ethanol-

seeking

(Sciascia et al., 
2015)

Rats/Long Evans Self-administration (Corbit et al., 
2014)

DNQX AMPAR/KAR Rats/Sprague-Dawley Chronic intermittent ethanol (CIE)
Withdrawal

(Lack et al., 
2007)

Mice/DBA/2J Sensitization (Broadbent et 
al., 2003)

Rats/Alcohol preferring (P) Self-administration
Cue-induced reinstatement to ethanol

(Cannady et 
al., 2013)

LY466195 KAR Rats/Sprague-Dawley and Long Evans Intermittent two-bottle free-choice (Van Nest et 
al., 2017)
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Table 3

Glutamate receptors, ligands and their chemical names

Receptor subtype Ligand Chemical name

mGluR1 JNJ16259685 (3,4-Dihydro-2H-pyranol[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone

EMQMCM (3-Ethyl-2-methylquinolin-6-yl)-(4-methoxycyclohexyl)-methanone

CPCCOEt 7-Hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester

mGluR5 MPEP 2-Methyl-6-(phenylethynyl)pyridine

MTEP 3-[2-Methyl-1,3-thiazol-4-yl)ethynyl]pyridine

GET73 N-[(4-trifluoromethyl)benzyl] 4-methoxybutyramide

SIB-1893 (E)-2-methyl-6-(2-phenylethenyl)pyridine

CDPPB 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide

mGluR2/3 LY379268 (1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid

LY404039 (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid

LY341495 (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propanoic acid

AZD8529 (7-methyl-5-(3-piperazin-1-ylmethyl-[1,2,4]oxadiazol-5-yl)-2-(4-trifluoromethoxybenzyl)-2,3-dihydroisoindol-1-one)

mGluR7 AMN-082 N,N’-bis(diphenylmethyl)-1,2-ethanediamine dihydrochloride

MMPIP 6-(4-Methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one hydrochloride

mGluR8 (S)-3,4-DCPG (S)-3,4-dicarboxyphenylglycine

NMDAR MK-801 (5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine

Memantine 3,5-dimethyladamantan-1-amine

d-serine (R)-2-amino-3-hydroxypropanoic acid

CPPene (R)-4-[(2E)-3-Phosphono-2-propenyl]-2-piperazinecarboxylic acid

CGP-3789 (DL-(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid; 4-methyl-APPA)

Ketamine 2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone

Ifenprodil 2-(4-benzylpiperidino)-1-(4-hydroxyphenyl)-2-methyl-1-ethanol

CP-101,606 1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol

(+)-HA-966 (+)-3-Amino-1-hydroxy-2-pyrrolidone

MRZ 2/579 1-amino-1,3,3,5,5-pentamethylcyclohexane hydrochloride

AMPAR AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

LY404187 N-[(2S)-2-(4’-cyanobiphenyl-4-yl)propyl]propane-2-sulfonamide

LY451395 N-[(2R)-2-[4-[4-[2-(methanesulfonamido)ethyl]phenyl]phenyl]propyl]propane-2-sulfonamide

Aniracetam 1-(4-methoxybenzoyl)-2-pyrrolidinone

GYKI 52466 1-(4-aminophenyl)-4-methyl-7, 8-methylenedioxy-5H-2,3-benzodiazepine

AMPAR/KAR CNQX 7-nitro-2,3-dioxo-2,3-dihydroquinoxaline-6-carbonitrile

NBQX 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione

DNQX 6,7-dinitroquinoxaline-2,3-dione

LY326325 3-Isoquinolinecarboxylic acid

KAR LY466195 6-[(2-carboxy-4,4-difluoropyrrolidin-1-yl)methyl]-decahydroisoquinoline-3-carboxylic acid
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