
Genetics and population analysis

admixturegraph: an R package for admixture

graph manipulation and fitting

Kalle Lepp€al€a, Svend V. Nielsen and Thomas Mailund*

Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on August 23, 2016; revised on December 14, 2016; editorial decision on January 20, 2017; accepted on January 24, 2017

Abstract

Summary: Admixture graphs generalize phylogenetic trees by allowing genetic lineages to merge

as well as split. In this paper we present the R package admixturegraph containing tools for build-

ing and visualizing admixture graphs, for fitting graph parameters to genetic data, for visualizing

goodness of fit and for evaluating the relative goodness of fit between different graphs.

Availability and Implementation: GitHub: https://github.com/mailund/admixture_graph and CRAN:

https://cran.r-project.org/web/packages/admixturegraph.

Contact: mailund@birc.au.dk.

1 Introduction

The relationship between populations is not always a simple tree. In

addition to the splitting events, where an ancestral population split

into two or more isolated groups, admixture events can merge two

or more populations. Admixture graphs are extensions of phylogen-

etic trees that allow such merging events.

Inference of admixture graphs has not received the same attention

as phylogenetic trees, but a number of methods have recently been de-

veloped for fitting genetic data to graphs and for using heuristics or

brute-force search approaches to finding best-fitting graphs qpgraph

(Castelo and Roberato, 2006), TreeMix (Pickrell and Pritchard, 2012),

AdmixTools (Patterson et al., 2012; Zhao and Patterson, 2016),

MixMapper (Lipson et al., 2013). These methods model the genetic re-

lationship between populations as a graph where observed populations

are represented as leaves, inner nodes represent ancestral populations,

and edges represent the genetic drift separating an ancestral population

from a descendent population. Without admixture events, the structure

is simply a tree, but when the ancestry of the populations contain ad-

mixture, the graph contains nodes with more than one parent.

The graph describes the genetic drift within populations and the

correlation of drift between populations. Data is usually summarized

in some form studying patterns of allele frequency correlations across

populations. In the TreeMix method by Pickrell and Pritchard (2012)

data is thus represented as the covariance matrix of genetic drift while

the AdmixTools software by Patterson et al. (2012) summarizes pat-

terns of drift through so-called f-statistics. Given a graph topology

together with edge lengths and admixture proportions the expected

drift patterns can be computed and a likelihood derived and param-

eters of the graph can be inferred.

In this paper we describe the R package admixturegraph. This

package contains functionality for:

• constructing and visualizing admixture graphs
• fitting graph parameters and visualizing the goodness-of-fit
• computing Bayes factors between graphs for comparing them
• exploring the space of graph topologies to find the best fitting

graphs

For comparison, qpgraph and AdmixTools work on a user specified

admixture graph, and MixMapper and TreeMix use a sequential

heuristic building new admixture events based on the previous ones.

The package admixturegraph can be used either for brute-force

search on the graph topologies or for a heuristic approach general-

izing the sequential one, building more complicated admixture

graphs from a selected set of well performing simpler admixture

graphs (as the sequential approach is not guaranteed to converge to-

wards the best fitting admixture graphs). The package does not

automatically infer an admixture graph from the data.

The R package does not add functionality that cannot be found

in existing software, but by providing an R interface to working

interactively with admixture graphs, fitting and visualizing the

goodness of fit of graphs, we believe that we make admixture graphs

more accessible to users.

VC The Author 2017. Published by Oxford University Press. 1738

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 33(11), 2017, 1738–1740

doi: 10.1093/bioinformatics/btx048

Advance Access Publication Date: 31 January 2017

Applications Note

https://github.com/mailund/admixture_graph
https://cran.r-project.org/web/packages/admixturegraph
Deleted Text:)
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: ,
Deleted Text: s
http://www.oxfordjournals.org/

2 Features

The admixturegraph R package provides a framework for

constructing and analysing admixture graphs and evaluating their

fit to genetic data summarized as f-statistics (Patterson et al.,

2012).

2.1 Constructing and visualizing admixture graphs
Admixture graphs are constructed using R functions specifying the

nodes and edges and naming the admixture proportion parameters.

Figure 1a shows a toy example dataset, adapted from Cahill et al.

(2013), consisting of one black bear (BLK), one polar bear (PB) and

a number of brown bear samples. Figure 1b shows example code for

constructing an admixture graph that models that the ABC-bears

(Adm, Bar, Chi) are admixed between polar bears and brown bears

as suggested by Cahill et al. (2013). Figure 1e shows an alternative

where polar bears are admixed (see Lan et al., 2016, https://dx.doi.

org/10.1101/047498).

Unlike visualizing trees, which are always planar graphs, it

is not trivial to present graphs in a visually pleasing way. We

have therefore implemented heuristics for laying out graphs for

plotting while providing a number of options for overruling the

heuristics to customize plots. Examples of plotted graphs are

shown in c and e.

2.2 Fitting graph parameters and visualizing fits
For fitting graph parameters to data, the data should be collected

in an R data frame or equivalent (see package documentation

for details on the expected format). The fitting procedure first

extracts from the graph topology a set of equations for the ex-

pected values of each f-statistics in the data. These are linear equa-

tions on edge lengths and polynomials on admixture proportions.

From the observed data and this set of equations, the likelihood of

parameters can be computed and maximized. The likelihood used

is

detð2pSÞ�1=2 exp ð�L=2Þ ;

where

L ¼ ðF � f ÞtR�1ðF � f Þ ;

f is the vector of observed statistics, F is the vector of statistics pre-

dicted by the graph topology and parameters, and R is the covari-

ance matrix of the observed statistics f, which is either given by the

user or replaced by a proxy of the identity or a diagonal matrix con-

structed from Z-scores given by AdmixTools for instance. The maxi-

mizing procedure used alternates between solving the linear problem

on edge lengths, which can be optimized analytically, and the poly-

nomial problem on admixture proportions, which is solved using

numerical optimization.

Once we have fitted a graph to data we can visualize the

goodness-of-fit by plotting the expected statistics against the

observed statistics (see Fig. 1d and f where shows the fit of the two

graphs in c and e). The genetic data is shown as observations with

error bars (black lines) while the expected values are shown as solid

dots.

2.3 Posterior distributions and graph comparisons
Fitting graph parameters to data provides a maximum likelihood

point-estimate. To obtain confidence intervals for parameters, one

can use a blocked jackknife or bootstrap procedure as in (Patterson

et al., 2012) but the admixturegraph package also provides an alter-

native in the form of a Markov Chain Monte Carlo (MCMC)

procedure for sampling from the posterior distribution of joint

parameters.

Comparing the fit of two different graphs is not straight forward

since graphs can have very different numbers of parameters and are

usually not nested models. Instead we propose to use Bayes fac-

tors—the ration of the likelihood of one graph over another—to

compare models. To do this it is necessary to integrate out the graph

parameters and obtain a likelihood for a topology alone. To esti-

mate this integral we use the MCMC to obtain samples from the

posterior likelihood and use these in an importance sampler proced-

ure to compute the graph likelihood.

2.4 Exploring the space of graph topologies
While we can compare the fit of different graph topologies to data,

there are no known algorithms for inferring the optimal graph

topology. Instead the package implements a few functions for

brute force exploration of topologies and heuristics for extending

topologies.

The set of all possible graphs, even when limited to one or two

admixture events, grows super-exponentially in the number of

leaves and it is generally not computationally feasible to explore

this set exhaustively. Still, we give graph libraries for searching

through all possible topologies with not too many leaves and ad-

mixture events. For larger graphs we provide functions for explor-

ing all possible graphs that can be reached from a given graph by

adding one extra admixture event or by adding one additional leaf.

However, the best fitting admixture graphs are not necessarily ex-

tensions of best fitting smaller graphs, so we recommend that users

not only expand the best smaller graph but a selected few best of

them.

(a)

(c)

(e) (f)

(d)

(b)

Fig. 1. (a) Example data in the form of D statistics (equivalent to f4 statistics.

(b) Example of graph construction and plotting code. (c) and (e) Examples of

admixture graphs. (d) and (f) Goodness-of-fit of the graphs in (b) and (d)

admixturegraph 1739

Deleted Text: s
Deleted Text: s
Deleted Text:)
Deleted Text:
Deleted Text:)
Deleted Text:)
Deleted Text: ,
Deleted Text:)
https://dx.doi.org/10.1101/047498
https://dx.doi.org/10.1101/047498
Deleted Text: s
Deleted Text: s
Deleted Text:)
Deleted Text:)
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: Figure
Deleted Text:)
Deleted Text:)
Deleted Text:)
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:

3 Conclusion

We have presented an R package for exploring and fitting admixture

graphs. The package provides functionality for constructing and visual-

izing admixture graphs, for fitting graph parameters to genetic data,

for visualizing goodness-of-fit, and for comparing the quality of fits be-

tween non-nested graph models. While the package does not contain

algorithms for automatically inferring optimal graph topologies, it does

provide functionality for exploring the space of possible topologies.

Funding

This research was funded by the Danish Council for Independent Research,

Sapere Aude grant 12-125062.

Conflict of Interest: none declared.

References

Cahill,J.A. et al. (2013) Genomic evidence for island population conversion

resolves conflicting theories of polar bear evolution. PLoS Genet., 9,

e1003345–e1003345.

Castelo,R. and Roberato,A. (2006) A robust procedure for Gaussian graphical

model search from microarray data with p larger than n. J. Mach. Learn.

Res., 7, 2621–2650.

Lan,T. et al. (2016) Genome-Wide Evidence for a Hybrid Origin of Modern

Polar Bears. bioRxiv 047498.

Lipson,M. et al. (2013) Efficient moment-based inference of admixture param-

eters and sources of gene flow. Mol. Biol. Evol., 30, 1788–1802.

Patterson,N. et al. (2012) Ancient admixture in human history. Genetics, 192,

1065–1093.

Pickrell,J. and Pritchard,J.K. (2012) Inference of population splits and mix-

tures from genome-wide allele frequency data. PLoS Genet., 8, e1002967.

Zhao,M. and Patterson,N. (2016) ADMIXTOOLS v4.1.

1740 K.Lepp€al€a et al.

Deleted Text: s
Deleted Text: s

