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Abstract

Solid tumors, beyond mere accumulation of cancer cells, form
a complex ecosystem consisting of normal epithelial cells,
fibroblasts, blood and lymphatic vessels, structural components,
and infiltrating hematopoietic cells including myeloid and
lymphoid elements that impact tumor growth, tumor spreading, and
clinical outcome. The composition of the immune microenvironment
is diverse, including various populations of T cells, B cells,
dendritic cells, natural killer cells, myeloid-derived suppressor cells,
neutrophils, or macrophages. The immune contexture describes
the density, location, and organization of these immune cells

within solid tumors. In lung cancer, which is the deadliest type of
cancer, andparticularly innon–small cell lung cancer, itsmost prevalent
form, reportshavedescribed someof the interactionsbetween the tumor
and the host. These data, in addition to articles on various types of
tumors, provide a greater understanding of the tumor–host
microenvironment interaction and stimulate the development of
prognostic and predictive biomarkers, the identification of novel target
antigens for therapeutic intervention, and the implementation of tools
for long-term management of patients with cancer.
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Worldwide, lung cancer is the most
common cause of cancer-related deaths (1).
There are several histological subtypes of
lung cancer, which differ in their relative
frequency, location within the lung, and
tendency to metastasize. Small cell lung
cancer (SCLC), which often presents with
widespread disease at the time of diagnosis,
represents about 15% of all lung cancer
cases (2). Non–small cell lung cancer
(NSCLC) represents the remaining 85% of
lung cancers, and the 5-year overall survival
(OS) rate is about 15% (3). At present,
NSCLC staging is based on the seventh

tumor/lymph node/metastasis (TNM)
classification (4, 5). This classification
provides a standardized description of the
disease and describes the severity of cancer
based on the size and/or extent of the
primary tumor, and whether or not it has
spread to lymph nodes and/or distant
organs. TNM stage grouping is currently
considered the best determinant of the
prognosis of patients with NSCLC (6, 7).

We have witnessed a change of view of
cancer as an autonomous cellular disease
comprising six biological capabilities (8)
to that of a regulated disease involving

the immune components of their
microenvironment, called immune
contexture. To their original hallmarks of
cancer published in 2000 (8), Hanahan and
Weinberg added two emerging hallmarks
and two enabling characteristics, including
“evading immune destruction” and “tumor-
promoting inflammation” (9). This major
evolution in the view of neoplastic disease
reflects that cancer is now considered
a complex ecosystem with many players
that could impact tumor growth, spread,
and clinical outcome (10, 11). During
cancer development, tumor cells interact
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with their microenvironment and the
immune contexture shapes their eventual
destiny. Increasing evidence has established
the potential key contribution of
tumor-infiltrating immune cells in the
development and progression of cancers
and in the tumor response to therapy
(12, 13). In colorectal cancer, a strong
association between the quality, quantity,
and coordination of intratumoral immune
cell infiltration and patient survival has
been elegantly reported (14, 15). Strikingly,
the type and density of T cells infiltrating
these tumors were found to be more
powerful prognostic factors than standard
pathological criteria, underscoring the need
for clinicians to consider infiltrating
immune cells when determining the
prognosis of patients with cancer (16).
Moreover, the organization of the immune
cells and more particularly the presence of
local lymph node–like structures seem to be
of major importance in shaping protective
antitumor immune responses (17–19).

There is now growing evidence that
innate and adaptive immune cells interact in
the lung tumor microenvironment and that
the immune contexture of these events
(i.e., the structural and functional links
between local immunity and other variables
in the tumor microenvironment) impacts
cancer cells and clinical outcome. Here, we
review the association between NSCLC and
immune surveillance, immune escape, and
immune subversion mechanisms as well
as the prognostic value of the tumor immune
microenvironment.

Immunosurveillance of
Lung Cancer

General Concept
The immune-editing concept proposed by
Dunn and colleagues (20), reflecting the
evolution of the interactions between
immune and tumor cells during cancer
development, can be applied to NSCLC.
Although it is difficult to provide proper
proof of immunosurveillance in humans
(21), a large body of evidence supports
the idea that developing cancers are not
ignored by the immune system. Evidence
for immunosurveillance of lung cancer can
be found in patients with HIV infection
who have an increased frequency of virally
induced malignancies (22, 23), and in
immunosuppressed organ transplant
recipients who have a higher risk of

developing NSCLC (24). Further support of
immunosurveillance in NSCLC can be
found in studies that have demonstrated
the ability of the immune system to
spontaneously recognize tumor-associated
antigens (TAAs) (25). In addition,
immune-mediated paraneoplastic
syndromes are often encountered in lung
cancer (26). These syndromes occur in up
15% of patients with cancer, and lung
cancer was found to be the malignancy
most frequently associated with
paraneoplastic syndrome (27).
Paraneoplastic neurologic disorders
develop in patients with cancer when an
efficient antitumor immune reaction
attacks the nervous system, because
targeting antigens expressed by cancer cells
share antigenic properties with healthy
neurons (28). Autoimmune responses
against Hu proteins have been described,
and HuD, a Hu family member normally
expressed in neurons, is frequently
observed as aberrantly expressed in lung
cancer cells. There is other evidence that
patients with lung cancer may also produce
antibodies against other antigens. One
example, among others, is found in studies
showing the presence of SOX antibodies in
the sera of patients with lung cancer with and
without paraneoplastic neurologic disorders
(29). Together, these results show that lung
cancers can be immunogenic tumors eliciting
different serum antibody responses.
Moreover, as reported for other solid tumors,
the immune microenvironment of NSCLC
has a strong prognostic value (12).
Altogether, these data support the idea that
the immune system is able to recognize and
eliminate malignant cells.

Actors in Immunosurveillance
In lung tumors, the immune infiltrate
comprises adaptive and innate immune cell
populations (12, 30, 31). These immune
cells are not randomly distributed within
the tumor but rather are highly organized
(Figure 1) (18). This high degree of
organization is reflected by the presence
of ectopic lymph node–like structures or
tertiary lymphoid structures (TLSs). As
reported for infectious diseases (32),
autoimmune disorders (33), and allograft
rejection (34), the intratumor ectopic
lymphoid structures are composed of
a B-cell follicle containing follicular helper
T cells, tingible body macrophages and
a network of follicular dendritic cells, and
a T-cell area with mature dendritic cells

(DCs), and are surrounded by high
endothelial venules (Figure 1) (18, 35).
Direct evidence of class switching has not
been reported yet, but it has been observed
that activation-induced cytidine deaminase,
an indispensable enzyme in both class
switch recombination and somatic
hypermutation, is expressed by germinal
center B cells of some ectopic lymphoid
structures (36). Several integrins, adhesion
molecules, and chemokines are likely to
play a role in the recruitment of T cells
from the blood to TLSs (35). As previously
shown in secondary lymphoid organs (37),
it has been hypothesized that this process
implicates rolling and transmigration
via high endothelial venules expressing
peripheral node addressin (35). The role
of TLSs has been well documented in
respiratory immunity during viral
infections. Notably, Moyron-Quiroz and
colleagues have shown in two elegant
studies that mice lacking spleen, lymph
nodes, and Peyer’s patches were able to
mount robust primary but also secondary
B- and T-cell responses to inhaled
influenza, due to compensatorily developed
TLSs (38, 39). A body of evidence suggests
that the presence of TLSs impacts on the
local immune microenvironment in the
lung. First, high densities of TLSs are
associated with high numbers of activated
and effector-memory CD81 T cells inside
the tumor (40). Another argument for
a role of TLSs in the antitumor immune
reaction is the presence of measurable IgG
and/or IgA to tumor antigens from B cells
purified from TLS-containing lung tumor
tissues (Figure 1). Indeed, Germain and
colleagues have reported that among 34
patients with NSCLC tested, more than
40% developed antibody reactivity against
up to seven different TAAs (including
LAGE-1, melanoma antigen [MAGE]
family antigens, TP53, and NY-ESO-1)
(36). In lung cancer, the positive correlation
between high densities of TLSs and
improved survival of patients supports
the idea that these ectopic lymphoid
structures are important in shaping
protective immune responses (18, 36, 40).
Interestingly, we found that patients with
few TLSs had poor survival despite high
numbers of infiltrating CD81 T cells,
suggesting that CD81 T cells not educated
in situ within TLSs are inefficient in
controlling tumor progression in early- and
late-stage NSCLC treated or not with
neoadjuvant chemotherapy (40; R. Remark
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and D. Damotte, unpublished data). These
data suggest that an immune reaction
might occur within lung tumors
independently of the secondary lymphoid
organs. However, further analyses on the
potential association between the presence
of TLSs and the immunogenicity of tumors,
as well as the specificity of the immune
response, are needed to know the drivers
leading to the formation of such structures
and whether they are specific to tumor cells.

Few studies have been performed on the
immune contexture in metastases or lymph
nodes. Unpublished data from our group
revealed that an immune contexture is present
and organized in primary lung tumors, liver
metastases from lung cancer, and lung
metastases of various origins (colorectal, renal
cell, and breast cancers, as well as melanoma).
We also reported that whereas the immune
contexture differs between lung metastases
from colorectal cancer and lung metastases
from renal cell carcinomas, there was

a significant correlation in the density of
immune cell infiltrates between primary and
metastatic sites in the same patient, conferring
similar prognostic value (41). This
comparative analysis of metastases from
colorectal and renal cell cancers within the
same organ, the lung, in relation to the
primary site suggested that the malignant
cell rather that the host tissue influences
the establishment of a specific immune
contexture driving clinical outcome.

Immunosuppressive Cells in the
Immune Microenvironment
Myeloid-derived suppressor cells (MDSCs)
are important components of the immune
suppressive network and can inhibit host
protective antitumor immunity (42). By
producing vascular endothelial growth
factor, basic fibroblast growth factor,
hypoxia-induced factor 1, tumor growth
factor (TGF)-b, matrix metalloproteinase 9,
and generating reactive oxygen species,

MDSCs create a favorable environment for
tumor growth and metastasis, as well as
neoangiogenesis (42–44). In the lung, these
myeloid cells expressing L-arginase and
inducible nitric oxide synthase are
implicated in the suppression of CD81

T-cell proliferation and decrease CD3z
expression (45, 46). MDSC numbers are
associated negatively with responsiveness to
chemotherapy and positively with shorter
survival (45, 46). In a murine model of lung
cancer, the targeting of MDSCs enhanced
effector and memory CD81 T-cell
responses, as well as natural killer (NK) cell
and antigen-presenting cell activity (47).

Regulatory T cells (Tregs) are also
found in NSCLC and play a role in the
control of antitumor immune reactions by
the following mechanisms: (1) inducing the
expression of B7-H4 by antigen-presenting
cells (APCs) (48), (2) promoting the
direct killing of T cells and APCs (49, 50), (3)
inducing the expression of indoleamine 2,3-
dioxygenase by APCs (51), (4) disturbing
cell metabolism via the production of
adenosine, or (5) secreting IL-10, IL-35, and
TGF-b (52). In lung tumors, these cells are
likely to play a role in suppressing cytotoxic
T-cell responses (30). As suggested in
breast cancer, the location of Tregs in the
tumor microenvironment seems of major
importance in the inhibition of antitumor
immune responses (53).

Tumor Intrinsic Factors with
Immunosuppressive or Immunogenic
Potential
As described in many neoplastic diseases,
lung tumor cells develop escape
mechanisms. It has been demonstrated that
many effector immune cells are anergic and
have reduced functions in the lung tumor
microenvironment (23, 31). In addition,
lung tumor cells may induce a loss or
down-regulation of HLA class I molecules
during tumor progression, modulating the
susceptibility of tumor cells to lysis by
cytotoxic CD81 T lymphocytes and NK
cells (54). It has also been reported that
lung cancer cells are able to produce
immunosuppressive factors in the tumor
microenvironment. For example, they can
secrete a soluble form of MHC class I
chain–related molecule A, inducing down-
regulation of NKG2D expression of CD81

T cells and NK cells, thereby impairing lysis
of cancer cells by these effector cells (55).
Tumor cells are also known to secrete
immunosuppressive cytokines such as
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Figure 1. The immune contexture of non–small cell lung cancer (NSCLC). The immune
microenvironment of lung tumors is composed of T cells, B cells, natural killer (NK) cells, mature and
immature dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, and mast cells.
The great majority of immune cells are found at the interface between the tumor and the normal
tissue, and some of them are organized in tertiary lymphoid structures (TLSs). The latter are
considered a gateway for the entrance of immune cells from the blood to the tumor (via peripheral
node addressin–expressing high endothelial venules [HEVs]). This process is highly regulated through
chemokine/chemokine receptors, interleukins, integrins, and adhesion molecule expression or
secretion. Ab = antibody; B = B cell; FDC = follicular dendritic cell; M =mast cell; mB =memory B cell;
mDC =mature dendritic cell; N = neutrophil; PC = plasma cell; T = T cell; TAAs = tumor-associated
antigens; TFH = follicular helper T cell.
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IL-10 or TGF-b or the tryptophan catabolic
enzyme indoleamine 2,3-dioxygenase,
which are key players involved in the
inhibition of immune responses and
enhancing the proliferation of cancer cells
(56, 57).

Lung cancer cells, among other
components of the tumor microenvironment,
express chemokine receptors and produce
chemokines that regulate the trafficking of
immune and cancer cells. CXCR4, which
promotes tumor cell survival, proliferation,
invasion, and metastasis, was reported as
being overexpressed in tumor cells as
compared with normal cells (58). The role
of the CXCR4–CXCL12 axis has been
highlighted in the metastatic process in
NSCLC (59). It has also been suggested
that the CCL20–CCR6 axis promotes
NSCLC disease progression via their
proinflammatory and proliferative effects
(60). Finally, CXCR1 and CXCR2 as well
as their ligand CXCL8 are expressed and
secreted by NSCLC cells (61). CXCL8
could act as a growth factor for tumor cells in
an autocrine and/or paracrine manner.

It is also important to note that some
genetic alterations have been described in
lung cancers (62). The most frequently
encountered in lung tumors involve
mutations in KRAS, TP53, FHIT, EGFR,
CDKN2, LKB1, RB, and MYC genes.
Epigenetic modifications leading to changes
in the degree of methylation or acetylation
of histone and inducing a modification in
gene expression have also been reported,
such as hypermethylation of TP16,
CDH13, or adenomatous polyposis coli
(63, 64). There is now increasing evidence
that oncogenes impact the tumor
microenvironment to promote immune
escape. For example, Akbay and colleagues
have demonstrated in a murine lung tumor
model that signaling via mutant epidermal
growth factor receptor in tumor cells
directly up-regulates tumor programmed
cell death ligand 1 (PD-L1) expression (65).
It has also been shown that the loss of Lkb1
and Pten leads to lung squamous cell
carcinoma with elevated PD-L1 expression
(66). In a model of pancreatic cancer, it
has been proposed that oncogenic Kras
restrained the antitumor immune response
through the production of granulocyte-
macrophage colony-stimulating factor and
the subsequent suppression of T-cell
immunity (67). In the lung, several tumor
antigens have been found: antigens encoded
by cancer germline genes or mutated

antigens. The presence of these cancer
germline antigens was found to be
associated with poor prognosis (68). Yet,
antibodies and/or circulating effector
T cells can spontaneously develop against
alterations observed in NSCLC. For
example, at the time of surgery, 7% of
patients with NSCLC have circulating
serum antibodies to NY-ESO-1 and another
7% have antibodies to TP53 (S. Gnjatic and
N. Altorki, unpublished data). The presence
of naturally occurring antibody responses
to NY-ESO-1 usually correlates with the
presence of circulating specific CD41 and
CD81 T cells (69). TAAs such as MAGE-
A3 have been used to vaccinate patients
with NSCLC in the adjuvant setting (70),
although unfortunately no clinical benefit
was observed in a randomized phase 3 trial.
Indeed, this antigen-specific cancer
immunotherapeutic (MAGRIT) failed to hit
first and second coprimary end points, as it
did not significantly extend disease-free
survival when compared with placebo.

Immune Checkpoint Expression
and Immunotherapeutic
Intervention in NSCLC

Several reports have shown that tumors are
able to coopt certain immune checkpoint
pathways to escape control by the immune
system, particularly by T cells that are
specific for tumor antigens (71). Indeed,
effective antitumor immunity depends at
least in part on cytotoxic T lymphocytes,
whose fate and killing activity are the
results of a balance between positive
and negative signals conferred through
interactions between various coregulatory
receptors and ligands. They include
inhibitory molecules such as programmed
cell death protein-1 (PD-1), cytotoxic
T-lymphocyte–associated protein-4 (CTLA-
4), and T-cell immunoglobulin and mucin
domain-3 (TIM-3) that can be expressed by
T cells, and their ligands (PD-L1, PD-L2,
B7-H2, etc.) that are expressed by APCs
and cancer cells (71).

In NSCLC, it has been reported that
20–60% of tumors were positive for PD-L1
and/or PD-L2 at lower frequency (72).
The expression of PD-L1 and PD-L2 on
tumor cells was demonstrated on the cell
membrane, in the cytoplasm, or both, in
a focal or scattered pattern. The expression
levels of both ligands were usually lower on
tumor cells than on activated monocytes.

High expression of PD-1 is frequent on
activated and exhausted TILs (73). In the
lung, high expression of PD-1 on tumor-
infiltrating CD81 T cells was associated
with impaired T-cell function. Blocking the
PD-1/PD-L1 pathway induced increased
T-cell proliferation and cytokine production.
High PD-L1 tumor expression has been
correlated with poor prognosis in some
studies (74, 75). However, some studies
have reported a lack of association with
clinical outcomes or even with improved
influx into and survival of lymphocytes in
the tumor microenvironment (72). Velcheti
and colleagues have shown an association
of PD-L1 protein expression with increased
TILs and longer survival (76). One
explanation among others is that the
blockade of PD-1/PD-L1 interactions
affects the development, maintenance, and
function of PD-1–expressing Tregs (77).
CTLA-4 was found on the cell surface and
in the cytoplasm of tumor cells in about
50% of patients with NSCLC. The
expression pattern was heterogeneous.
CTLA-4 overexpression was found to be
associated with good survival (78). This
unexpected result was explained by the
expression of CTLA-4 by tumor cells that
can mediate negative signals, comparable
with those observed in T cells, and possibly
leading to a reduced inflammatory
microenvironment.

Because most of the immune
checkpoints are initiated by ligand–receptor
interactions, they can be blocked or
modulated by specific antibodies (79, 80).
Ipilimumab, a monoclonal blocking
antibody (IgG1) against CTLA-4,
was the first of this class of cancer
immunotherapeutics to be approved by the
U.S. Food and Drug Administration (FDA)
and more recently, the FDA also approved
pembrolizumab, a monoclonal antibody
(IgG4) against PD-1. Although NSCLC
has not traditionally been considered
an immunogenic disease, a better
understanding of immunosurveillance and
the identification of new targets of
immunomodulation have led to the
development of several clinical trials of
checkpoint blockade therapies (81) to
enhance natural antitumor immunity
and induce strong and durable clinical
responses in patients with NSCLC
(Table 1). Interestingly, it has been
suggested that individuals with preexisting
antitumor immune responses may be those
who are more likely to experience clinical
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Table 1. Summary of Clinical Trials Evaluating Various Immune Checkpoint Mediators for Patients with Non–Small Cell Lung Cancer

Target
State of Clinical
Development Trial Design Conclusions

CTLA-4 Phase 1 trial (NCT02040064) Open-label, safety, tolerability, and efficacy
study of tremelimumab plus gefitinib in
EGFR-mutated patients with advanced or
metastatic NSCLC. The expected enrollment
is 24 patients

NA

Phase 2 trial (NCT00312975) Randomized trial comparing tremelimumab
with best supportive care after first-line
platinum-based therapy in patients with
locally advanced or metastatic NSCLC. The
87 patients enrolled received tremelimumab
(n = 44) or best supportive care (n = 43)

Tremelimumab was tolerable, with safety
consistent with prior studies. Among
patients receiving tremelimumab, there
were 4.8% partial responses and 16.6%
stable diseases, compared with 0% and
14.3% patients receiving best supportive
care, respectively. However, progression-
free survival analysis did not demonstrate
superiority of tremelimumab over best
supportive care

Phase 2 study
(NCT01998126)

Trial assessing the toxicity of ipilimumab and
erlotinib in EGFR-mutated patients and
toxicity of ipilimumab and crizotinib in
ALK-mutated patients with stage IV NSCLC.
Estimated enrollment: 46 subjects

NA

Phase 2 study
(NCT00527735)

Multicenter trial including 204
chemotherapy-naive patients with stage
IIIB–IV NSCLC. Subjects were assigned to
a control arm (up to six doses of placebo
plus chemotherapy—paclitaxel and
carboplatin), concurrent anti–CTLA-4
antibody (ipilimumab) regimen (four doses of
anti–CTLA-4 antibody plus the same
combination of chemotherapeutic drugs
followed by two doses of placebo plus
chemotherapy), or phased ipilimumab
regimen (two doses of placebo plus
chemotherapy followed by four doses of
ipilimumab plus chemotherapy)

The authors have reported that phased
ipilimumab plus chemotherapy improved
progression-free survival. However, the
clinical benefit was only slight

Phase 2 study
(2006-000568-95)

Randomized, noncomparative study using
anti–CTLA-4 (tremelimumab) or best
supportive care in patients with NSCLC
(stage IIIB or IV disease) that has responded
or remained stable after platinum-based
therapy

NA

Phase 3 trial (NCT01285609) Randomized, multicenter, double-blind trial in
patients with stage IV/recurrent squamous
NSCLC comparing the effect of ipilimumab
plus paclitaxel and carboplatin vs. placebo
plus paclitaxel and carboplatin is currently
recruiting patients. Estimated enrollment:
920 subjects

NA

PD-1 Phase 1 trial (NCT01295827) Exploration of the clinical activity and
efficacy of anti–PD-1 antibody (MK-3475,
lambrolizumab) in subjects with locally
advanced or metastatic NSCLC. The efficacy
of low, medium, and high doses of the drug
in combination with standard chemotherapy
in participants with locally advanced or
metastatic NSCLC and the effects of low and
high doses of blocking antibody in
treatment-naive and previously treated
participants with NSCLC with PD-L1 gene
expression were also assessed

Some adverse events have been reported,
but most of them were low grade. In this
trial, the potential clinical benefits of the
anti–PD-1 antibody are still being
explored

Phase 1 trial (NCT01840579) Study using pembrolizumab (MK-3475) alone
or in combination with cisplatin/pemetrexed
or carboplatin/paclitaxel in patients with
advanced NSCLC. Estimated enrollment: 30
subjects

NA

(Continued )
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Table 1. (Continued )

Target
State of Clinical
Development Trial Design Conclusions

Phase 1 study
(NCT02007070)

Open-label, nonrandomized, multicenter study of
MK-3475 in subjects with PD-L11 advanced
NSCLC. Estimated enrollment: 24 subjects

NA

Phase 1 trial (NCT01454102) Multiarm safety study of nivolumab in
combination with platinum doublet,
bevacizumab maintenance, erlotinib,
ipilimumab, or nivolumab alone in subjects
with stage IIIB/IV NSCLC. Estimated
enrollment: 412 patients

NA

Phase 1/2 trial
(NCT02039674)

Trial assessing the safety, tolerability, and
efficacy of pembrolizumab (MK-3475) in
combination with chemotherapy or
immunotherapy in participants with locally
advanced or metastatic NSCLC. Estimated
enrollment: 320 subjects

NA

Phase 2 trial (NCT01721759) Assessment of the objective response rate in
patients with advanced or metastatic
squamous NSCLC treated with nivolumab
(BMS-936558) after failure of two prior
systemic regimens. Study ongoing
(estimated enrollment: 100 patients)

NA

Phase 2 trial (NCT01928576) Nivolumab monotherapy after azacitidine1
entinostat or after oral azacitidine (epigenetic
priming study). Estimated enrollment: 120
subjects

NA

Phase 2/3 trial
(NCT01905657)

Study of low/high doses of MK-3475
(pembrolizumab) vs. docetaxel in patients
with NSCLC who have experienced disease
progression after platinum-based
chemotherapy. The estimated enrollment is
920 subjects with PD-L1–positive tumor

NA

Phase 3 trial (NCT00527735) Randomized analysis of the clinical value of
BMS-936558 (nivolumab) in 122 patients
with NSCLC after failure of prior therapy

Objective and durable responses have
been reported in patients with squamous
(response rate, 33%) as well as in
nonsquamous histological type
(response rate, 12%)

Phase 3 trial (NCT01642004) Study of nivolumab (BMS-936558) compared
with docetaxel in subjects with advanced or
metastatic squamous NSCLC after failure
of prior platinum-based chemotherapy.
Estimated enrollment: 264 subjects

NA

Phase 3 trial (NCT01673867) Nivolumab (BMS-936558) monotherapy vs.
docetaxel in metastatic nonsquamous cell
NSCLC after failure of prior platinum-based
chemotherapy. Estimated enrollment: 582
subjects

NA

PD-L1 Phase 1 study
(NCT01846416)

Multicenter, single-arm study evaluating the
efficacy and safety of MPDL3280A in
advanced or metastatic PD-L1–positive
NSCLC. This study is ongoing, but not
recruiting participants (n = 128)

NA

Phase 1 trial (NCT02013219) Open-label, multicenter study assessing the
safety, tolerability, and pharmacokinetics of
MPDL3280A and erlotinib administered
in combination to patients with NSCLC.
Thirty-two patients are expected to be
enrolled in this trial

NA

Phase 1 trial (NCT00729664) Safety, clinical activity, and tolerability
assessment of anti–PD-L1 antibody
(BMS-936559) in 75 patients with advanced
NSCLC. Other patients with cancer were
also included in this trial (55 with melanoma,
18 with colorectal cancer, 17 with renal cell
cancer, 17 with ovarian cancer, 14 with
pancreatic cancer, 7 with gastric cancer, and
4 with breast cancer)

Among 75 patients, 49 were included in
the efficacy analysis. Five objective
responses were observed at doses
of 3 and 10 mg/kg, with response rates
of 8 and 16%, respectively

(Continued )
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benefit from checkpoint-blocking
immunotherapies (82). In patients with
melanoma treated with immune checkpoint
blockade agents, it has been suggested
that a preexisting T cell–rich tumor
microenvironment could be a predictive
marker of good response to therapy (83).
Similar analyses are still missing in NSCLC.
PD-L1 expression on tumor cells has been
reported as a potential predictive biomarker
for PD-1 blockade (84), but data are still
limited. Although some other associations
between tumor microenvironment
biomarkers and clinical activity have been
reported (85, 86), they still need to be more
intensively investigated to validate them
as predictive markers of response or for
selection of patients most likely to
respond to the treatment. These new
immunotherapeutic interventions represent
a major breakthrough in oncology,
especially for the treatment of patients with
advanced or metastatic lung cancer who fail
to respond to chemotherapy or who
relapse. Checkpoint inhibition stands in
contrast to a variety of previous trials
targeting the immune system in patients
with NSCLC who have largely failed in the

clinic (IFN, IL-2, vaccination, etc.) (22).
One of the largest phase 3 studies in
NSCLC with MAGE-A3 protein–based
immunotherapy did not meet its primary
end points, and a planned subanalysis
using a predictive immune gene signature
as a surrogate for immune contexture
unfortunately could not be done. The
limited success of these clinical trials could
be explained by the immunosuppressive
properties of the tumor microenvironment
that counteract T-cell activity, but also
by weak mobilization of immunity,
immunoselection, or immune escape.
Checkpoint blockade may, however, revive
some of these failed strategies through
future rational combinations to further
improve clinical efficacy.

Prognostic Immune
Markers in NSCLC

In a large array of various primary and
metastatic tumors, it has been reported that
the immune microenvironment is often
associated with the clinical outcome of
patients (87, 88). A worldwide task force is

currently working to establish the
immunoscore as an independent prognostic
marker for colorectal cancer (89).

In NSCLC, several studies have
investigated the association between the
presence and density of adaptive or innate
immune cell populations and patient
survival (Table 2). In the majority of
studies, high CD31, CD81, or CD41

T-cell infiltrations were associated with
a favorable prognosis. Tregs were
associated with poor survival in NSCLC.
The ratio of stromal FoxP3 to CD3-
positive cells was also significantly
associated with a higher risk of relapse
(Table 2). It is important to highlight the
absence of specific markers of regulatory
T cells in immunohistochemistry, and
most of the investigators used FoxP3 or
CD25 (also expressed at low levels by
activated T cells) as surrogate markers of
Tregs. As previously stated, the location of
Tregs and their presence within TLSs
could be of major importance in their
impact on the survival of patients with
NSCLC (90). One report demonstrated an
inverse clinical correlation between the
density of IL-17 (a cytokine produced

Table 1. (Continued )

Target
State of Clinical
Development Trial Design Conclusions

Phase 1 study
(NCT01375842)

Assessment of MPDL3280A, in 85 pretreated
patients with advanced or metastatic NSCLC

The treatment was well tolerated and often
yielded rapid, durable responses (overall
response rate, 23%). Objective response
was particularly pronounced in the
population with the highest level of
PD-L1 expression

Phase 1 study
(NCT02000947)

Open-label study evaluating the tolerability and
safety of MEDI4736 in combination with
tremelimumab in subjects with advanced
NSCLC. Estimated enrollment: 208 patients

NA

Phase 2 trial (NCT02031458) Multicenter, single-arm study evaluating the
efficacy and safety of MPD L3280A in
patients with PD-L11 locally advanced or
metastatic NSCLC. Estimated enrollment:
635 subjects

NA

Phase 2 trial (NCT01903993) Multicenter, open-label, randomized trial
evaluating the efficacy and safety of
MPDL3280A compared with docetaxel in
patients with advanced or metastatic NSCLC
that failed to respond to platinum-based
treatment. Enrollment: 287 subjects

NA

Phase 3 study
(NCT02008227)

Randomized trial evaluating the efficacy and
safety of MPDL3280A compared with
docetaxel in patients with locally advanced
or metastatic NSCLC after failure with
platinum-based chemotherapy treatment.
Estimated enrollment: 850 patients

NA

Definition of abbreviations: ALK = anaplastic lymphoma kinase; CTLA-4 = cytotoxic T-lymphocyte–associated protein-4; EGFR = epidermal growth factor
receptor; NA = not available; NSCLC = non–small cell lung cancer; PD-1 = programmed cell death protein-1; PD-L1 = programmed cell death ligand-1.
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Table 2. Summary of Prognostic Immune Markers in Non–Small Cell Lung Cancer

Marker Author and Year Patients (n) Stage(s) Conclusions

T cells Johnson et al. (2000) (91) 95 I (57%) High CD31 in tumor correlated with longer OS
II (18%)
III (21%)

Hiraoka et al. (2006) (92) 109 I (61%) Concurrent high CD41 and CD81 in stroma
correlated with longer survivalII–III (39%)

Kikuchi et al. (2007) (93) 161 I (59%) HLA class I expression correlates with longer OS in
stage I

II–IV (41%) HLA class I expression correlated with CD81 cells
Ruffini et al. (2009) (94) 1,290 I (55%) TILs (mostly CD81 cells) in tumor correlated with

better OSII (21%)
IIIA (17%)

Wakabayashi et al. (2003) (95) 178 I (60%) High CD41 in stroma correlated with longer OS
II (13%) High CD81 in tumor correlated with shorter OS

IIIA (27%)
Al-Shibli et al. (2008) (96) 335 I (63%) High CD41 in stroma correlated with longer DSS

II (27%) High CD81 in stroma correlated with longer DSS
IIIA (10%)

Kawai et al. (2008) (97) 199 IV (100%) Predominant distribution of CD81 T cells in cancer
nests as opposed to cancer stroma correlated with
longer OS

Suzuki et al. (2013) (98) 956 I (100%) Densities of CD31, CD41, CD81, CD45RO1 are not
associated with RFP

Relative proportion of stromal FoxP31 to CD31

correlated with RFP
Goc et al. (2014) (40) 376 I (44%) High CD81 T cells correlated with longer survival

II (27%)
III (28%)
IV (0.5%)

ND (0.5%)
Remark and Damotte,
unpublished data

161 III (100%) High CD81 T cells correlated with longer survival

B cells Germain et al. (2014) (36) 196 I (32%) High density of follicular B cells correlated with
longer survivalII (6%)

III (62%)
Pelletier et al. (2001) (99) 113 I (58%) Peritumoral CD201 correlated with longer survival

II (18%)
III (24%)

Al-Shibli et al. (2008) (96) 335 I (63%) High CD201 in stroma correlated with longer DSS
II (27%)

IIIA (10%)
Suzuki et al. (2013) (98) 956 I (100%) Densities of CD201 are not associated with RFP

Th17 cells Chen et al. (2010) (100) 52 I–II (63%) High IL-171 cell densities correlated with poor
survivalIII (37%)

Tregs Suzuki et al. (2013) (98) 956 I (100%) Densities of FoxP31 cells are not associated with
RFP

Relative proportion of stromal FoxP31 to CD31

correlated with RFP
Tao et al. (2012) (101) 87 ND High Treg densities correlated with poor OS and DFS
Shimizu et al. (2010) (102) 100 I (68%) High FoxP31 correlated with shorter time to recurrence

II (14%) COX-2 expression correlated with shorter time to
recurrence

III (18%) COX-2 expression correlated with FoxP31 infiltration
Petersen et al. (2006) (103) 64 I (100%) High proportion of FoxP31 among TILs in tumor

correlated with shorter DFS
NK cells Platonova et al. (2011) (104) 86 I (83%) Presence of NKp461 NK cells did not impact the

clinical outcomeII (10%)
IV (7%)

Johnson et al. (2000) (91) 95 I (57%) High CD571 NK cell density tended to correlate with
longer OS (P = 0.07)II (18%)

III (21%)
Takanami et al. (2001) (105) 150 I (55%) High CD571 NK cells correlated with longer OS in

patients with adenocarcinomaII (14%)
III (31%)

(Continued )
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Table 2. (Continued )

Marker Author and Year Patients (n) Stage(s) Conclusions

Al-Shibli et al. (2009) (106) 335 I (63%) High stromal CD561 cells correlated with improved
DSSII (27%)

III (10%)
Villegas et al. (2002) (107) 50 I (82%) CD571 cells correlated with longer survival in

patients with squamous cell carcinomaII (12%)
III (6%)

DCs Dieu-Nosjean et al. (2008) (18) 74 I (84%) High DC-LAMP1 mature DCs correlated with longer
survivalII (16%)

Inoshima et al. (2002) (108) 132 I (51%) High S-1001 DCs correlated with longer survival
II (17%)
III (25%)
IV (7%)

Goc et al. (2014) (40) 376 I (44%) High DC-LAMP1 mature DCs correlated with
prolonged survivalII (27%)

III (28%)
IV (0.5%)

ND (0.5%)
Zeid et al. (1993) (109) 130 ND High S-1001 Langerhans cells (LCs) in tumor were

associated with enhanced survival
Germain et al. (2014) (36) 196 I (32%) DC-LAMP1 mature DCs correlated with longer

survivalII (6%)
III (62%)

Johnson et al. (2000) (91) 95 I (57%) High S-1001 LCs in tumor correlated with longer OS
II (18%)
III (21%)

Sautès-Fridman et al.
(2011) (110)

74 I (84%) High CD1a1 LCs and CD141 CD68low interstitial DCs
were associated with longer DSSII (16%)

Al-Shibli et al. (2009) (106) 335 I (63%) High stromal CD1a1 DCs correlated with improved
DSSII (27%)

III (10%)
Remark and Damotte, unpublished data 161 III (100%) High DC-LAMP1 mature DCs correlated with longer

survival
TAMs Chen et al. (2003) (111) 35 I (40%) TAMs in stroma correlated with shorter OS

II (11%)
III (49%)

Kawai et al. (2008) (97) 199 IV (100%) Predominant infiltration of TAMs in cancer nests was
a significant predictor of poor survival

Zeni et al. (2007) (112) 47 I (51%) IL-10-high TAMs associated with shorter OS
II–IV (49%)

Ohri et al. (2009) (113) 40 I (65%) High number of M1 macrophages correlated with
longer survivalII (20%)

III (15%)
Ho et al. (2008) (114) 68 I (35%) TREM-1 expression in macrophages correlated with

shorter DFS and OSII (22%)
III (43%)

Takanami et al. (1999) (115) I (50%) High number of CD681 TAMs correlated with longer
OSII (4%)

III (36%)
IV (10%)

Al-Shibli et al. (2009) (106) 335 I (63%) High CD681 were not associated with DSS
II (27%)
III (10%)

Welsh et al. (2005) (116) 162 I (49%) High stromal and tumor islet CD681 TAMs correlated
with OSII (27%)

IIIa (22%)
IIIb/IV (2%)

Kim et al. (2008) (117) 144 I (55%) TAMs in tumor correlated with prolonged OS
II (17%)
III (26%)
IV (2%)

Ohtaki et al. (2010) (118) 170 IA (56%) Significant association between high numbers of
CD2041 macrophages and poor outcomeIB–IIIA (44%)

Ma et al. (2010) (119) 100 I (35%) High CD681 HLA-DR1 M1 macrophages were
associated with good outcome. CD681 CD1631

M2 macrophages had no prognostic value
II (20%)
III (35%)
IV (10%)

(Continued )
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mainly by Th17 cells)–positive cells and
patient survival (Table 2). This finding is
in accordance with the proinflammatory
properties of Th17 cells. In contrast to
T cells, the clinical impact of B cells is
poorly understood. Every stage of B-cell
differentiation has been observed in
NSCLC. In general, high densities of
B cells were correlated with increased
survival (Table 2). We can hypothesize
that B cells play a role in antitumor
immunity, perhaps by capturing and
presenting tumor antigens to T cells
directly or by generating tumor
antigen–specific antibodies that target
tumor antigens in the form of immune
complexes to professional APCs. As
previously stated, NK cells are also present
in the microenvironment of NSCLC. As
nonspecific markers have been used in the
majority of studies, the clinical impact of
NK cells is poorly understood. However,
using the NKp46 marker, it has been
suggested that the density of NK cells does
not correlate with clinical outcome in
early-stage NSCLC (Table 2). The altered
phenotype of NK cells in the tumor
microenvironment could explain this
absence of clinical impact. As reported for
other solid cancers (11), tumor-associated
macrophages (TAMs) represent another
major component of the immune
microenvironment of NSCLC. In an overly
simplistic manner, TAMs have been
classified as “proinflammatory” M1
macrophages with antitumor activity, and
“proangiogenic and immunosuppressive”
M2 macrophages with protumor activity.
In NSCLC, TAMs with a M1 phenotype
were associated with good survival and
high M2 macrophage number correlated
with a poor prognosis (Table 2). However,
a more comprehensive analysis of the

clinical impact of TAMs is still needed.
Neutrophils represent a significant portion
of infiltrating inflammatory cells, but little
is known about their role in NSCLC. It has
been suggested that high neutrophil
counts are associated with a higher risk of
relapse but not with survival (Table 2).
Their potentially different, specialized
functional phenotype has never been
taken into account in these analyses. DCs
are major regulators of immune response
and can elicit T-cell responses unlike any
other APCs. In NSCLC, mature DCs are
located exclusively within TLSs and
are associated with a good prognosis
(Table 2). Because the density of mature
DCs and the number of TLSs correlate
with each other, it has been proposed that
the presence of TLSs is associated with
a good prognosis in patients with NSCLC
(18).

Some studies have highlighted that the
positive impact of T cells, DCs, or B cells
might be limited to more advanced stages
of disease (stages II–IV). This interesting
observation could be linked to the good
efficacy of curative surgery at early stages
and the potential beneficial effect of the
immune response in inducing systemic
protection when hematogenous
dissemination occurs at later stages.

In conclusion, the immune infiltrates
are of major importance in the clinical
outcome of patients with NSCLC (Table 2),
and the immune contexture should be
taken into account in the clinical
management of patients with cancer.

Conclusions

During lung cancer progression, tumor
cells interact with their microenvironment,

where local cancer antigen–specific
immune responses shape their eventual
destiny. There is now increasing
evidence that the NSCLC immune
contexture, defined as the nature,
location, density, organization, and
functional orientation of a natural
in situ immune reaction, represents
a major player in the development
and progression of malignant disease.
Some elements of this immune
ecosystem and particularly the
presence of lymphoid-like structures
correlate with survival. Tumors in
compensation develop escape
mechanisms to avoid destruction.
This offers potential targets for
therapies. Blocking antibodies targeting
the checkpoint inhibitors have shown
promising results in several solid tumors.
Their efficacy is being tested actively in
several clinical trials in NSCLC. We are
also actively pursuing strategies to alter
the microenvironment of NSCLC by
injection of Toll-like receptor agonists
at the tumor site, followed by evaluation
of immune contexture from surgical
specimens. We believe that evaluating
the immune contexture represents an
important tool to identify subsets of
patients with high risk of relapse,
and to predict outcome in the
context of treatment. Standardized
immunopathological assessment in
the form of a prognostic and/or
predictive score should now be
validated in large consortium-driven
studies and implemented to help
clinicians to decide which therapeutic
strategy to choose. n

Author disclosures are available with the text
of this article at www.atsjournals.org.

Table 2. (Continued )

Marker Author and Year Patients (n) Stage(s) Conclusions

Carus et al. (2013) (120) 335 I (65%) CD1631 macrophage density was not correlated
with survivalII (20%)

III (15%)
Neutrophils Ilie et al. (2012) (121) 632 I (44%) High CD661 neutrophil densities were associated

with higher risk of relapseII (29%)
III (27%)

Carus et al. (2013) (120) 335 I (65%) CD66b1 neutrophil count was not correlated with
survivalII (20%)

III (15%)

Definition of abbreviations: COX-2 = cyclooxygenase-2; DC-LAMP = dendritic cell lysosome-associated membrane protein; DFS = disease-free survival;
DSS = disease-specific survival; ND = not determined; NK = natural killer; OS = overall survival; RFP = relapse-free period; TAMs = tumor-associated
macrophages; TILs = tumor-infiltrating lymphocytes; Treg = regulatory T cells.
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