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Abstract This review aimed to investigate the role of

Helicobacter pylori flagella on the pathogenicity of this

bacterium in humans. Helicobacter pylori is a flagellated

pathogen that colonizes the human gastroduodenal mucosa

and produces inflammation, and is responsible for gas-

trointestinal disease. Its pathogenesis is attributed to colo-

nization and virulence factors. The primary function of H.

pylori flagella is to provide motility. We believe that H.

pylori flagella play an important role in the colonization of

the gastrointestinal mucosa. Therefore, we reviewed pre-

vious studies on flagellar morphology and motility in order

to explore the relationship between H. pylori flagella and

pathogenicity. Further investigation is required to confirm

the association between flagella and pathogenicity in H.

pylori.

Introduction

Helicobacter pylori is a flagellated microaerophilic gram-

negative bacillus that is known to colonize the gastroin-

testinal mucosa of almost half the global human population

with varying prevalence rates across different geographical

regions [13]. Helicobacter pylori is perhaps the most

infectious of all known bacteria. Although some believe

that H. pylori is a type of ‘‘commensal bacterium’’ [52], it

cannot be classified as normal flora because all patients

with gastroduodenal H. pylori colonization show histo-

logical gastroenteritis [39], which can develop into a

number of gastric diseases such as chronic gastritis, duo-

denitis, peptic ulcers (gastric and duodenal), mucosa-as-

sociated lymphoid tissue (MALT), atrophic gastritis, and

gastric adenocarcinoma. This bacterium exhibits allelic

diversity and genetic variability. Thus, infection might

appear as a high rate of mixed infections, indicating that

one person might be infected with multiple strains of H.

pylori. The mixed infection rate is high in epidemic areas

with a high incidence [35]. The pathogenesis of H. pylori

infection is partly dependent on colonization and virulence

factors [39], and flagella play an important role in the

colonization of the gastrointestinal mucosa [24]. The dif-

ference (heterogeneity) in the motilities of colonizing

strains was first reported by [17], but failed to attract much

attention. The role of heterogeneity in the motility of

H. pylori has not been sufficiently explored.

Morphology and Structure of H. pylori Flagella

The bacterial flagellum is a complex motility organ com-

posed of multiple types of protein subunits [46]. Each

flagellum consists of three components [44, 53]: the basal

body, hook, and filament. Electron microscopic observa-

tion of the H. pylori flagellum reveals the presence of a

sheath and a terminal bulb [68]. The function of the

membrane-like flagellar sheath of H. pylori is hitherto

unknown, and little is known of its composition [47].

Helicobacter pylori has 4–8 unipolar flagella [42]; how-

ever, it remains controversial whether the flagella are uni-

or bipolar [25]. Table 1 presents the structural composition

and functions of H. pylori flagellar structures.
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Functions and Pathogenicity of H. pylori Flagella

Helicobacter pylori flagella produce different types of

motility [24], including ‘‘swimming motility,’’ ‘‘spreading

motility,’’ and ‘‘swarming motility,’’ which are defined as

movement in liquid media, movement in soft agar (0.3%

agar concentration), and movement on the surface of semi-

solid or solid media, respectively. Helicobacter pylori

flagella may influence their colonization in bacteria,

inflammation, and immune evasion.

Colonization and Colonization sites

Colonization

The viability of H. pylori on the surface of the gastroin-

testinal mucosa depends on its colonization factors such as

urease, motility, chemotaxis, outer membrane proteins, and

the special helix morphology of the bacterium [15, 44, 53,

78, 85]. The optimal pH ofH. pylori is neutral [28, 76], while

the optimal pH of H. pylori in liquid media is 8.5 (slightly

alkaline) [4]. Thus, the acidic environment of the stomach is

not suitable for its growth. It is generally believed that

urease plays a protective role in H. pylori [74], facilitating

colonization of the mucosa of the stomach by hydrolyzing

urea into NH3 and CO2 [69]. The NH3 produced by the

action of urease neutralizes stomach acid and increases the

pH of the surrounding cells [15]. In addition, urease par-

ticipates in the inflammatory reaction and facilitates adhe-

sion by interacting with the CD74 receptor on gastric

epithelial cells [48, 50] isolated urease-negative H. pylori

mutants from patients with peptic ulcers, and found that this

strain successfully colonized the stomach of Mongolian

gerbils and caused ulcers; therefore, the role of urease as a

colonization factor is uncertain. The importance of motility

as a colonization factor in H. pylori was first demonstrated

in the study by [17], who demonstrated that germ-free

piglets exhibited a higher infection rate when infected with

motile H. pylori than when infected with the non-motile

strain; moreover, the motile strain also colonized the

stomachs for a longer duration in the stomach of germ-free

piglets. Similarly, many animal studies using motility-de-

ficient mutants, including the H. pylori motB mutant [62],

fliD mutant [37], putA mutant [56], and a chemotaxis

mutant strain [49, 56], have shown similar findings. The

spreading motility of these mutant strains is weak and their

colonization in the stomach of the animals was reduced. The

most convincing evidence for the role of motility in H.

pylori colonization came from the study by [5, 60] found

that changes in flagellin glycosylation affected strain

motility. When the glycosylation level of the FlaA protein

was increased, the strain motility and colonization load both

increased. These studies have convincingly indicated that

flagellar motility is an important factor influencing colo-

nization. The colonization of H. pylori is expressed as

colonization density or load. The number of colonies per

gram of gastric mucosa (CFU/g) [6, 49] is determined by

quantitative culture. Helicobacter pylori DNA can be

quantitatively measured by polymerase chain reaction

(PCR) [20].

Motility is measured by three different methods. First,

swimming motility can be directly determined by the

average swimming velocity of bacteria in the gastric

mucosal layer using phase-contrast microscopy [8]. Sec-

ond, spreading motility can be determined by assessing the

growth ring diameter in semi-solid agar using puncture

inoculation [49, 60, 62]. Third, swarming motility can be

determined by examining the growth ring diameter on the

surface of semi-solid medium [51, 56] using quantitative

inoculation. These studies showed that the H. pylori

Table 1 Composition and functions of H. pylori flagellar structures

Structure Composition Function References

Flagellar basal body C ring (FliM, FliN, FliY, FliG) Transfers proteins, regulates motor rotation and conversion, and

coordinates protein secretion

[9, 46, 82]

MS ring (FliF) Involved in the synthesis of FlaA, FlaB, and FlgE [3]

Type III secretion system (FlhA,

FliO, FlhB, FliP, FliQ, FliR)

Transports the majority of the flagellar proteins to the end of the

flagellar structure

[31, 38, 77]

Motor (MotA, MotB) Fixes and rotates the flagellum [16, 59]

Flagellar hook Flagellum export chaperone

(FliS)

Prevents premature polymerization of flagellin, and participates in

flagellum assembly

[3, 41]

Flagellar hook protein (FlgE) Connects the basal body and the flagellar filament, and is closely

related to the powerful driving force in a viscous environment

[14, 61, 71]

FlgK Controls the length of the flagellar hook during flagellum assembly [14]

Flagellar filament FlaA, FlaB Plays an important role in bacterial motility [3, 32]

FliD As a filament-capping protein in flagellar assembly [36, 37]

Flagellar sheath HpaA, FaaA Protect against depolymerization of the flagellin subunits at low pH [10, 21, 68]
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colonization load in gastric mucosa was positively corre-

lated with motility in animal infection models.

Colonization Site

Colonization by H. pylori is not evenly distributed. Colo-

nization in the stomach is usually observed at the gastric

antrum [51]. However, H. pylori colonies can also be found

in other sites. For example, H. pylori has been known to

colonize the duodenum and is recognized as the primary

cause of idiopathic duodenal ulcers [65, 66]. Although the

incidence is low (6.9%), it can be assumed that the strains

colonizing different gastrointestinal sites might have dif-

ferent origins, because H. pylori infection in the stomach

has been demonstrated to be heterogeneous [35]. Heli-

cobacter pylori may also colonize the colon [57, 58, 81],

but its origin remains unclear.

Immune Inflammation and Evasion

The motility and colonization load of H. pylori are posi-

tively correlated with neutrophilin filtration [1, 34, 49].

Colonization is the basis of the inflammatory reaction

induced by H. pylori, and motility is a critical colonization

determinant that affects the infection outcome. Further-

more, the flagellum also influences inflammation and

immune evasion.

Immune Inflammation

The main structural proteins of the H. pylori flagellum

include HpaA, FlaA, FlaB, FliD, and FlgK. Of these,

HpaA, FlaA, and FlaB have been found to be expressed in

H. pylori strains isolated from biopsy specimens of patients

with stomach disease. These flagellins are the primary

targets of the humoral immunity after infection, and induce

antibody responses [79]. In contrast, an important study

showed that FlaA was antigenic but not immunogenic [72].

The role of H. pylori flagellins in immune inflammation is

yet unknown.

Immune Evasion

Helicobacter pylori infections usually occur during child-

hood and last for a lifetime if left untreated with antibiotics

[45]. The human immune system cannot eliminate these

bacteria primarily because of the bacterial ability of

immune evasion. Although H. pylori flagellin can induce

anti-flagellin antibodies in infected patients, it is not rec-

ognized by toll-like receptor 5 (TLR5), a member of the

toll-like receptor family, which is activated by most bac-

terial flagellins [1, 54]. One possible reason may be that the

flagellins, especially FlaA, are not exposed, and thus

cannot be detected in the infected gastric epithelial cells

[22]. Other bacterial flagella induce interleukin 8 (IL-8)

secretion, leading to an inflammatory reaction. However,

H. pylori flagellin does not typically induce IL-8 secretion

in gastric epithelial cells. Although highly motile strains of

H. pylori have been shown to elicit a higher level of IL-8

production [42], the flagellar sheath HpaA probably shields

the flagellin from recognition by TLR5 [10].

Relationship Between H. pylori Flagellar
Structure, Motility, Chemotaxis, and Colonization

In the flagellar structure, the C ring complex is composed

of FliM, FliN, FliY, and FliG. Typically, fliM, fliY, and fliG

mutant H. pylori strains cannot produce flagella. Although

the fliN mutant strain can produce flagella, they are ‘‘par-

alyzed’’ and unable to move [46], resulting in a non-motile

bacterium. In the flagellar structure, the ‘‘motor’’ is

important for bacterial motility. motB-deficient H. pylori

have been reported to exhibit normal flagellar structure but

no motility, and the colonization load of this strain is sig-

nificantly lower than controls containing motB in infected

mice [62]. fliF, fliS, flhB, fliQ, fliG, or fliI mutant strains did

not produce any flagella and were non-motile, while the

flhA mutant strain produced short flagella [3]. FlgE is the

main protein of the flagellar hook, and strains lacking the

flgE gene expectedly showed no motility [61]. FlaA and

FlaB are the components of the flagellar filament and are

important for motility. Strains lacking the flaA and flaB

genes exhibit reduced irregular flagella and lower motility.

The flaA and flaB double-mutant strain is completely non-

motile. The flaA and flaB mutant strains have reduced

colonizing ability [18, 32], and cannot colonize even with a

longer period of incubation in animal models [18]. Muta-

tion of the flagellar filament fliD gene results in non-motile

bacteria with short flagella, and this strain is unable to

colonize the gastric mucosa of mice [37]. The FaaA protein

is required for flagellar and proper flagellar localization as

well as for optimal flagellar function. This protein is

exported to the outer membrane and subsequently becomes

a component of the flagellar sheath. Helicobacter pylori

mutant strains deficient in faaA exhibited decreased

motility and less efficient colonization of the stomach in

mice compared to the wild-type H. pylori strain at the early

stages of infection [10, 68].

Flagellar hook substructure reaches its optimal length

sensed by the ‘checkpoint control’ protein FliK, export of

the anti-sigma factor FlgM is triggered releasing r28 from

a r28-FlgM complex which in turn allows the subsequent

expression of r28 dependent genes. In fliK, mutants hook to

filament transition do not occur and long hooks of unreg-

ulated length termed polyhooks are formed [55]. It is
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demonstrated that FliK is necessary for upregulation of

cagA. Expression and flagellar regulatory system of H.

pylori is directly required for upregulation of the major

virulence gene cagA in gastric cell associated H. pylori.

The direction of flagellar rotation is cooperatively con-

trolled by the chemotaxis-signaling protein CheY and the

flagellar rotor protein FliN [44]. Strains with mutant

chemotaxis genes cheW, cheV [67], cheY, cheA [8], and

tlpB [49] have less motility and reduced colonization load

[49, 80]. In contrast, a study by Williams et al. demon-

strated that chemotaxis gene mutants (DcheY, DcheW)

displayed an adequate colonization load but a reduced

inflammatory response [83]. Reference [30] investigated a

new protein, ChePep, located in the flagellar pole, which

regulates flagellar rotation and controls H. pylori chemo-

taxis. Strains with the ChePep gene mutation exhibited

reduced flagellar motility.

The only known phosphatase in H. pylori is CheZ,

called CheZHP in this system. It is reported that CheZHP

localization depends on the ChePep chemotaxis protein

[29] and conversely ChePep localization depends on

CheZHP, which raises the intriguing possibility that some

phosphatases, including CheZHP and ChePep, exist in a

complex that is distinct from the core chemotaxis signaling

and flagellar complexes [43].

Reference [70] demonstrated that the colonization of a

TlpD-controlled chemotaxis gene mutant strain in the

gastric antrum was significantly reduced. Similarly, it was

found that the colonization of strains with chemotaxis gene

mutants (DcheY) and especially the motility gene mutants

(DmotB) was reduced [1]. Future studies should clarify the

relationship between chemotaxis and colonization.

All members of the Epsilonproteobacteria have their

flagella located at either one or both cellular poles

[2, 27, 40, 64, 73, 75, 84]. Campylobacter jejuni and

Helicobacter pylori are the most studied epsilonpro-

teobacteria because they are important human pathogens.

In addition to their unique structural features revealed by

cryoelectron tomography [11], Campylobacter and Heli-

cobacter flagella exhibit unique aspects in the regulation of

the expression of their flagellar genes and in the assembly

of their flagellar structure [23, 44]. Regulation of flagellar

gene expression in Campylobacter and Helicobacter is also

unique, involving a two-component system (FlgRS), the

FlhF GTPase, and the transcription factors r54 and r28

[7, 33, 63].

Discussion

Although many components of the H. pylori lagella have

been characterized and data regarding flagellar function

and regulation are rapidly increasing, certain aspects of the

H. pylori system, in particular those that differ from the

well-studied model systems, are still poorly understood and

require further investigation. These regulatory mechanisms

appear to act at the bottom of the putative transcriptional

hierarchy that governs flagellar biosynthesis in H. pylori. In

contrast, the mechanisms at the top of the hierarchy that

actually trigger the initiation of flagellar gene transcription

are completely unknown.

Previous studies have explored the spreading and

swarming motilities; however, whether these two types of

motility are equivalent remains unclear.

Adhesion is an important factor that mediates the

pathogenic role of bacterial flagellum [19, 26]. However,

unlike other bacteria, H. pylori adhesion on gastric

epithelial cells is not dependent on flagellin [12] and is not

influenced by reduction in bacterial flagella. Moreover, it is

related to mutations of flagellar genes. For example, the

adhesion ability of a flaA::cat/flab::km mutant strain

without flagella is adequate while that of the flbA mutant

strain is significantly reduced.

Exploring the relationship between H. pylori flagellar

motility and gastrointestinal mucosa colonization can

facilitate the understanding of H. pylori pathogenesis,

especially the heterogeneity of motility in mixed infec-

tions, and needs to be further investigated.
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