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ABSTRACT

Objective: To assess the association of the number and anatomic location of cerebral microbleeds
(CMBs), visible indicators of microvascular damage on MRI, with incident cognitive disease in the
general population of older people.

Methods: In the longitudinal population-based Age, Gene/Environment Susceptibility (AGES)–
Reykjavik Study, 2,602 participants 66 to 93 years of age and free of prevalent dementia
underwent brain MRI and cognitive testing of verbal memory, processing speed, and executive
function at baseline and a mean of 5.2 years later. Adjudicated incident dementia cases were
diagnosed according to international guidelines.

Results: In the multiple linear regression models adjusted for demographic, genetic, cardiovascu-
lar risk, and other cerebrovascular MRI markers, the presence of CMBs located in deep or mixed
(deep and lobar) areas was associated with a greater decline in all 3 cognitive domains. Mixed
CMBs were the strongest correlate for decline in memory and speed. Compared to those with
no CMBs, participants with $3 CMBs had a steeper decline in a composite measure of global
cognitive function, memory, and speed. Among those with $3 deep or mixed CMBs, associations
were strongest for memory; the association with speed was strongest in those having $3 strictly
lobar CMBs. People with $3 CMBs, regardless of their locations, had a higher incidence of all-
cause dementia and vascular dementia.

Conclusions:Mixed or a higher load of CMBs, with some specificity for location, is associated with
accelerated cognitive decline in older people. These findings suggest a role for hypertensive vas-
culopathy and the combined effect of hypertensive and cerebral amyloid angiopathy in the path-
ogenesis of cognitive deterioration. Neurology® 2017;88:2089–2097

GLOSSARY
AD 5 Alzheimer disease; AGES 5 Age, Gene/Environment Susceptibility; CAA 5 cerebral amyloid angiopathy; CMB 5
cerebral microbleed; SVD 5 small vessel disease; VaD 5 vascular dementia.

Cognitive impairment and dementia are increasingly recognized as a continuum of overlapping
neurologic syndromes in older people with both cerebrovascular and neurodegenerative pathol-
ogy.1–3 Exactly how the 2 processes interact to confer an increased risk of cognitive dysfunction
is an area of intense investigation. Cerebral microbleeds (CMBs) may provide an intriguing link
between them.4,5 Depending on location, CMBs commonly relate to 2 different small vessel
disease (SVD) pathologies: hypertensive vasculopathy (deep regions) and cerebral amyloid
angiopathy (CAA) (lobar regions).4

The cognitive consequences of CMBs in the general population remain uncertain,5,6 and
previous studies, mostly of cross-sectional design,7–12 have yielded inconsistent results. While
some studies7,9 found an association between the presence of CMBs and worse cognitive perfor-
mance that was strongest for deep CMBs, others8,12 showed an association with a higher number
of CMBs most strongly for lobar CMBs, and still others reported no region-specific associa-
tions.10,11 Longitudinal studies are scant.13,14 In particular, although mixed (deep and lobar)
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CMBs appear to increase the risk of developing
dementia in patients with elevated vascular risk
burden,13 it remains unclear whether older
people ostensibly without dementia with such
preexisting CMBs also experience more cogni-
tive decline over time.

In the population-based Age, Gene/Envi-
ronment Susceptibility (AGES)-Reykjavik
Study, we sought to investigate whether base-
line CMBs by number and location are asso-
ciated with the rate of cognitive decline and
incident dementia over a 5-year period. We
hypothesized that people with a high load
of CMBs or with mixed deep and lobar
CMBs, suggesting more severe and extensive
SVD, are predisposed to progressive cogni-
tive deterioration.

METHODS Participants. The present study was based on

longitudinal data from the AGES-Reykjavik Study, which origi-

nates from the Reykjavik Study (1967–1996), as described fully

elsewhere.15 From 2002 to 2006, 5,764 surviving men and

women of the Reykjavik Study cohort (born 1907–1935)

underwent an extensive physical, cognitive, and brain MRI

examination (AGES I).15 From 2007 to 2011, there was a follow-

up examination of surviving participants (AGES II). Of the 3,316

participants who attended the follow-up examination, we

excluded 644 participants who had missing MRI data on CMBs

at baseline and 70 participants because of a diagnosis of prevalent

dementia at baseline, missing data on either baseline cognitive

status or follow-up cognitive measures. The cohort at risk of

dementia thus comprised 2,602 participants (figure 1 and

appendix e-1 at Neurology.org).

Standard protocol approvals, registrations, and patient
consents. The study was approved by the Icelandic National

Bioethics Committee (VSN 00-063), and by the National Insti-

tute on Aging Intramural Institutional Review Board. All partic-

ipants gave written informed consent.

Brain MRI and rating of CMB. We acquired brain MRI

scans on a single study-dedicated 1.5T General Electric Signa

Twinspeed system (Waukesha, WI).16,17 For CMB detection, we

used a 2-dimensional T2*-weighted gradient echo-type echo

planar sequence (echo time 50 milliseconds, repetition time

3,050 milliseconds, flip angle 908, field of view 220 mm, matrix

256 3 256, slice thickness 3 mm) and a proton density/T2-

weighted fast spin echo sequence (first echo time 22 milli-

seconds, second echo time 90 milliseconds, repetition time 3,220

milliseconds, echo train length 8, flip angle 908, field of view

220 mm, matrix 256 3 256, slice thickness 3 mm).16 Two

trained radiographers evaluated CMBs on the MRI scan in terms

of size and anatomic location with good intrarater and interrater

reliabilities for CMB detection.17 CMBs were defined as a focal

area of signal void within the brain parenchyma that is observable

on T2*-weighted gradient echo-type echo planar sequence scans

and smaller or unobservable on T2-weighted fast spin echo

scans.16 We counted up to 30 CMBs in lobar regions (frontal,

parietal, temporal, and occipital) and in deep (basal ganglia and

thalamus, corpus callosum, and brainstem) or cerebellar regions.17

If there were.30 CMBs, they were coded as 30. People with$1

CMBs confined to lobar regions were regarded as having strictly

lobar CMBs, and those with CMBs in a deep region, with or

without coexisting lobar CMBs, were regarded as having deep or

mixed CMBs.17 CMBs in the cerebellum were classified as

a separate group given that there is no general agreement on their

presumed underlying etiology.18,19

Assessment of cognitive function. Participants underwent

a neuropsychological test battery assessing 3 cognitive domains.20

We constructed composite scores for each cognitive domain

based on a theoretical grouping of tests, as reported previ-

ously.21,22 The memory composite included a modified version

of the California Verbal Learning test consisting of immediate

and delayed recall subtests.20 The processing speed composite

included the Digit Symbol Substitution Test, the

Figure Comparison Test, and the Stroop test parts I and II (word

naming and color naming).20 The executive function composite

included the Digit Backwards Test and the Stroop test part III

(word-color interference).20 We transformed the raw test scores

into standardized z scores and then averaged them across all tests

for the cognitive domain. The composite score for global cogni-

tive function was the average of the z scores for all these domains.

Higher z scores reflect a better cognitive performance. For each

participant, we computed z scores for both baseline and follow-up
using the mean and SD of the baseline test scores. Change in

cognitive functioning was calculated by subtracting the baseline

z scores for memory, processing speed, executive function, and

global cognitive function from the follow-up z scores.

Diagnosis of dementia and subtypes. Incident dementia

cases were identified at follow-up with a 3-step procedure.7 All

participants underwent the Mini-Mental State Examination and

the Digit Symbol Substitution Test. People who were positive at

Figure 1 Study population
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screening on either test underwent additional diagnostic testing

that included the Trail-Making Tests A and B and the Rey

Auditory Verbal Learning tests.20 On the basis of these tests, those

who were then suspected to have dementia went for a final eval-

uation that included a proxy interview and neurologic examina-

tion.20 The diagnosis of dementia and all subtypes was made in

accordance with international criteria23–25 (appendix e-1) and as-

signed at a consensus conference by a panel made up of a geria-

trician, neurologist, neuropsychologist, and neuroradiologist.7

Statistical analysis. Because experimental and empiric evi-

dence7,8 shows that a higher number of CMBs is a strong indi-

cator of underlying pathology and a single lesion is not

uncommon among individuals without pathologic evidence of

SVD,26 we categorized the number of CMBs into 0, 1, 2, and

$3 CMBs per person on the basis of the skewed distribution of

CMBs counts.

We first estimated the association between the CMB count

categories at baseline and subsequent cognitive decline by mul-

tiple linear regression analyses. The change scores for processing

speed and global cognitive function were skewed, so we trans-

formed them with a natural logarithmic transformation. All

analyses were initially adjusted for age and sex (model 1), fol-

lowed by further adjustment for coil type, the time interval

between the 2 waves of neuropsychological tests, primary educa-

tion level, depressive symptomology at follow-up, hypertension,

total cholesterol, use of statin, brain infarcts, white matter hy-

perintensity volume as a percentage of total intracranial volume,

and APOE e4 carriership (model 2). We evaluated the interac-

tions between CMBs and other covariates with respect to effects

on cognitive decline by including cross-product terms of each

covariate with CMBs in the fully adjusted models. Second, we

investigated the association between CMB count categories and

incident dementia. Given that events for dementia, Alzheimer

disease (AD), and vascular dementia (VaD) are relatively rare

(n , 5) within some CMB count categories, we merged 4

categories into 3 categories (0, 1 or 2, and $3 CMBs) and

applied the Fisher exact test to examine the associations with

dementia (there were not enough events to obtain reliable esti-

mates of the odds ratios with logistic regressions). All analyses

were repeated according to CMB location. To test the robust-

ness of the results, we did several sensitivity analyses, details of

which are described in appendix e-1. Analyses were performed

with SAS version 9.3. Associations were considered significant at

the 0.05 level. Given that multiple a priori statistical tests were

performed, the likelihood of type I errors increased. Statistical

adjustment would be overly stringent because cognitive domains

were correlated, and we acknowledge that very small p values

tended to indicate replicable associations.14,27

RESULTS Of the 2,602 total participants, the mean
age at baseline was 74.6 years (SD 4.8 years), and
41% were men. The prevalence of CMBs was
16.8% (n5 437) (median number of CMBs 1 [range
1–21]), of a single CMB was 12.0%, of 2 CMBs was
2.6%, and of $3 CMBs was 2.2% (table 1). Com-
pared to participants with no CMBs, the other 3
CMB groups were older and more likely to be male,
to be APOE e4 allele carriers and hypertensive, to use
statin and antithrombotic medications, to have lower
average total cholesterol level and higher total brain
volume, and to have cardiovascular disease and ische-
mic vascular lesions on brain MRI.

Among participants with CMBs (n 5 437),
71.2% (n 5 311) had CMBs in a strictly lobar loca-
tion, 13.3% (n 5 58) had CMBs in deep or mixed
locations (including those with mixed CMBs in both
deep and lobar locations, n 5 25), and 15.5% (n 5

68) had CMBs in the cerebellum. Among those with
$3 CMBs (n 5 58), 55.2% (n 5 32) had strictly
lobar CMBs, 27.6% (n 5 16) had deep or mixed
CMBs, and 17.2% (n 5 10) had cerebellar CMBs.

Prevalent CMBs at baseline and cognitive decline. In the
fully adjusted models, presence of deep or mixed
CMBs was significantly associated with a steeper
decline in a composite measure of global cognitive
function and specifically in performance on all 3
cognitive domains: memory, information process-
ing speed, and executive function (table 2). Mixed
CMBs were most strongly associated with a decline
in memory and speed (figure 2 and table e-1). Pres-
ence of strictly lobar CMBs was not associated with
cognitive decline. Compared to participants with no
CMBs, those with $3 CMBs had a greater decline
in, separately, global cognition, memory, and speed.
Associations in those with $3 CMBs in deep or
mixed locations were strongest for memory. Partic-
ipants with $3 CMBs in a strictly lobar location
had significantly greater decline in processing speed.
No association was observed for cerebellar CMBs
with respect to CMB count categories or location
(table e-2).

Prevalent CMBs at baseline and incident dementia. Over
a mean follow-up of 5.2 years (SD 0.2 years), 4.5% of
participants (n 5 119) developed all-cause dementia,
of whom 68.9% (n 5 82) had AD, 14.3% (n 5 17)
had VaD, and 3.4% (n 5 4) had both possible AD
and possible VaD. The remaining 16 cases were
attributed to other subtypes such as dementia in
Parkinson disease and Lewy body dementia. The
cumulative incidence of dementia and its subtypes
according to CMBs count and location is shown in
table 3.

The presence of deep or mixed CMBs was associ-
ated with a higher incidence of VaD. Compared to
those with no CMBs, participants with $3 CMBs
had a higher incidence of all-cause dementia and
VaD. Similar association patterns were observed for
those with $3 strictly lobar CMBs or with $3 deep
or mixed CMBs. Cerebellar CMBs revealed no sig-
nificant associations (table e-2).

Sensitivity analyses. The association between mixed
CMBs and cognitive decline persisted for memory
and global cognitive function, while the association
with processing speed lost statistical significance after
further controlling for CMBs count (table e-3). Addi-
tional adjustment for the use of anticoagulants/salicy-
lates, brain atrophy, or prevalent stroke or analyses
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with imputed covariate values generated similar re-
sults with respect to the associations between CMBs
and cognitive decline. When including participants
with baseline prevalent dementia (n 5 37) in the
analysis, we observed similar slopes on cognitive
decline (table e-4).

DISCUSSION In a community-based sample of older
people free of prevalent dementia at baseline, we
found that mixed CMBs or $3 CMBs, with some
specificity for location, are associated with accelerated
cognitive decline. These results were independent of
education level, depression, APOE e4 carriership,
cardiovascular risk factors, and other MRI markers of
cerebrovascular disease, including brain atrophy.
Furthermore, there is suggestive evidence of a higher
rate of incident dementia and VaD in participants
with $3 CMBs.

Previously, 2 small longitudinal studies13,28 among
selected individuals or clinic-based patients have re-
ported an association between multiple or mixed
CMBs and cognitive decline or dementia. Recently,
another large population-based study showed an asso-
ciation of a high number of lobar CMBs with cogni-
tive decline in executive function and processing
speed.14 Those investigators did not find an associa-
tion with deep or mixed CMBs. However, compared
to the AGES-Reykjavik study, the cohort had a lower
mean age and fewer cardiovascular risk factors,
including hypertension and duration of hypertension,
which may moderate the associations we found. The
current results thus add significantly to our under-
standing of the cognitive consequences of CMBs in
a large, well-described community-based sample of
older adults free of dementia. Our findings are con-
sistent with the hypothesis that CMBs, especially

Table 1 Characteristics of the study population (n 5 2,602) according to the count categories of CMBs in AGES I

CMBs count

No CMBs (n 5 2,165) 1 CMB (n 5 311) 2 CMBs (n 5 68) ‡3 CMBs (n 5 58) p for trenda

Age, y 74.5 (4.8) 75.4 (4.7) 75.4 (4.4) 75.4 (4.7) 0.001

Men, % (n) 38.5 (834) 51.8 (161) 55.9 (38) 63.8 (37) ,0.001

Primary education only, % (n) 19.9 (430) 23.3 (72) 11.8 (8) 19.3 (11) 0.555

MMSE score 28.0 (26.0–29.0) 28.0 (26.0–29.0) 27.0 (26.0–29.0) 27.0 (26.0–29.0) 0.619

Depressive symptomology at baseline, % (n) 4.8 (99) 4.5 (13) 6.0 (4) 7.1 (4) 0.423

Depressive symptomology at follow-up, % (n) 6.6 (141) 4.9 (15) 6.1 (4) 10.3 (6) 0.961

APOE e4 allele carriers, % (n) 25.7 (555) 25.1 (78) 38.2 (26) 36.2 (21) 0.014

Cardiovascular risk factors/disease

Body mass index, kg/m2 27.3 (4.2) 27.1 (3.7) 26.3 (3.9) 26.7 (3.3) 0.070

Current smoker, % (n) 10.7 (230) 9.7 (30) 14.7 (10) 10.3 (6) 0.520

Systolic blood pressure, mm Hg 140.5 (19.3) 143.2 (20.9) 143.7 (21.9) 146.7 (21.5) 0.004

Diastolic blood pressure, mm Hg 74.1 (9.2) 74.3 (9.9) 75.9 (8.6) 75.4 (8.9) 0.035

Hypertension, % (n) 76.3 (1,651) 82.3 (256) 86.8 (59) 89.7 (52) 0.001

Type 2 diabetes mellitus, % (n) 9.1 (197) 9.4 (29) 7.4 (5) 17.2 (10) 0.180

Total cholesterol, mmol 5.7 (1.1) 5.4 (1.1) 5.3 (1.1) 5.3 (1.0) ,0.001

History of coronary heart disease, % (n) 15.7 (339) 28.3 (88) 32.4 (22) 36.2 (21) ,0.001

History of stroke, % (n) 2.5 (53) 3.9 (12) 7.4 (5) 8.6 (5) 0.001

Medication use, % (n)

Use of blood pressure–lowering medication 58.5 (1,267) 65.6 (204) 69.1 (47) 77.6 (45) ,0.001

Use of salicylates/anticoagulants 24.3 (469) 32.7 (90) 36.5 (23) 37.5 (21) ,0.001

Statin 21.5 (466) 33.1 (103) 39.7 (27) 36.2 (21) ,0.001

Brain MRI markers

Cerebral infarcts, n (%) 28.8 (623) 38.6 (120) 42.7 (29) 53.5 (31) ,0.001

White matter hyperintensity volume, mL 11.2 (6.4–20.1) 13.9 (7.1–26.5) 17.3 (10.1–38.6) 19.9 (11.1–33.6) ,0.001

Total brain parenchyma volume, mL 1,092.7 (102.7) 1,105.2 (103.9) 1,096.2 (108.6) 1,124.1 (108.6) 0.0006

Abbreviations: AGES 5 Age, Gene/Environment Susceptibility; CMB 5 cerebral microbleed.
Data are presented as mean (SD) or median (interquartile range) when appropriate.
a Age-adjusted.
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Table 2 Association (b regression coefficient [95% confidence interval]) of prevalent CMBs with 5-year cognitive changea (decline in z scores) between baseline and follow-up in those who were free
of prevalent dementia at baseline (n 5 2,561)b

Memory Processing speed Working memory/executive function Global cognitive function

Model 1c Model 2d Model 1c Model 2d Model 1c Model 2d Model 1c Model 2d

CMBs, by number

No CMBs (n 5 2,129) 0 (Reference) 0 (Reference) 0 (Reference) 0 (Reference) 0 (Reference) 0 (Reference) 0 (Reference) 0 (Reference)

1 CMB (n 5 307) 0.09 (20.04 to 0.21) 0.08 (20.05 to 0.21) 0.03 (20.09 to 0.15) 0.02 (20.10 to 0.14) 20.03 (20.16 to 0.09) 20.02 (20.15 to 0.10) 0.03 (20.06 to 0.20) 0.06 (20.07 to 0.19)

2 CMBs (n 5 67) 20.24 (20.49 to 0.01) 20.17 (20.42 to 0.09) 20.22 (20.46 to 0.03) 20.16 (20.41 to 0.08) 20.11 (20.36 to 0.14) 20.08 (20.33 to 0.18) 20.29 (20.55 to
20.04)

20.21 (20.47 to 0.04)

‡3 CMBs (n 5 58) 20.32 (20.59 to
20.05)

20.29 (20.57 to
20.01)

20.37 (20.63 to
20.11)

20.31 (20.57 to
20.05)

20.20 (20.50 to 0.08) 20.18 (20.46 to 0.10) 20.38 (20.66 to
20.09)

20.34 (20.63 to
20.05)

p for trend 0.061 0.136 0.009 0.038 0.104 0.192 0.018 0.047

Overall CMBs
(n 5 432)

20.02 (20.13 to 0.09) 20.008 (20.12 to 0.10) 20.06 (20.17 to 0.04) 20.05 (20.15 to 0.06) 20.07 (20.18 to 0.04) 20.05 (20.16 to 0.06) 20.05 (20.16 to 0.07) 20.03 (20.15 to 0.08)

CMBs, by location and
number

1 Strictly lobar CMB
(n 5 239)

0.09 (20.05 to 0.23) 0.09 (20.06 to 0.23) 0.007 (20.12 to 0.14) 0.00 (20.13 to 0.14) 0.01 (20.13 to 0.15) 0.03 (20.12 to 0.17) 0.09 (20.05 to 0.24) 0.08 (20.07 to 0.23)

2 Strictly lobar CMBs
(n 5 35)

20.20 (20.54 to 0.13) 20.16 (20.49 to 0.17) 20.06 (20.39 to 0.27) 20.03 (20.36 to 0.30) 20.05 (20.40 to 0.29) 20.03 (20.38 to 0.32) 20.20 (20.54 to 0.14) 20.14 (20.48 to 0.20)

‡3 Strictly lobar
CMBs (n 5 32)

20.26 (20.62 to 0.10) 20.25 (20.62 to 0.11) 20.51 (20.84 to
20.17)

20.47 (20.81 to
20.12)

20.12 (20.49 to 0.24) 20.12 (20.50 to 0.25) 20.35 (20.72 to 0.02) 20.34 (20.72 to 0.03)

p for trend 0.414 0.488 0.040 0.069 0.638 0.776 0.278 0.334

Overall strictly lobar
CMBs (n 5 306)

0.01 (20.12 to 0.14) 0.02 (20.11 to 0.15) 20.02 (20.11 to 0.16) 0.03 (20.11 to 0.16) 0.01 (20.13 to 0.16) 0.005 (20.13 to 0.14) 0.006 (20.13 to 0.14) 0.02 (20.11 to 0.15)

1 Deep and/or mixed
CMB (n 5 24)

20.11 (20.53 to 0.31) 20.17 (20.60 to 0.26) 20.13 (20.53 to 0.26) 20.21 (20.61 to 0.20) 20.49 (20.92 to
20.05)

20.52 (20.97 to
2 0.07)

20.23 (20.66 to 0.20) 20.30 (20.74 to 0.14)

2 Deep and/or mixed
CMBs (n 5 18)

20.53 (21.02 to
20.04)

20.35 (20.86 to 0.16) 20.55 (21.01 to
20.10)

20.41 (20.89 to 0.06) 20.40 (20.87 to 0.08) 20.33 (20.83 to 0.16) 20.76 (21.25 to
20.26)

20.59 (21.11 to
20.08)

‡3 Deep and/or mixed
CMBs (n 5 16)

20.77 (21.32 to
20.23)

20.69 (21.24 to
20.14)

20.55 (21.02 to
20.08)

20.44 (20.91 to 0.04) 20.33 (20.85 to 0.19) 20.27 (20.80 to 0.25) 20.66 (21.24 to
20.08)

20.55 (21.13 to 0.03)

p for trend 0.0006 0.0042 0.0012 0.0091 0.012 0.030 0.0002 0.0020

Overall deep or mixed
CMBs (n 5 58)

20.42 (20.71 to
20.13)

20.35 (20.63 to
2 0.07)

20.40 (20.68 to
20.13)

20.30 (20.56 to
20.04)

20.41 (20.70 to
20.11)

20.37 (20.65 to
20.08)

20.52 (20.82 to
20.21)

20.43 (20.72 to
2 0.13)

Abbreviation: CMB 5 cerebral microbleed.
aCognitive change was defined as the difference between composite cognitive z scores at follow-up and those at baseline; a negative change score indicated cognitive decline.
b Forty-one individuals of 2,602 participants who had missing data on all 3 cognitive domain measures in Age, Gene/Environment Susceptibility (AGES) II were excluded from cognitive decline analysis.
cModel 1 was adjusted for age and sex.
dModel 2 was further adjusted for follow-up time interval, coil type, primary education, depression at follow-up, hypertension, total cholesterol, use of lipid-lowering medication, presence of brain infarcts, measure
of white matter hyperintensity volume expressed as percentage of total intracranial volume, and APOE e4 carriership.
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mixed or a high load of CMBs, exert deleterious ef-
fects on cognitive decline, eventually leading to full-
blown dementia.

Although the precise underlying mechanisms of
the observed associations between, on the one hand,
mixed or a higher number ($3) of CMBs and, on

the other, accelerated cognitive decline have not been
established, there are several possible explanations.
CMBs may reflect focal damage of brain tissue and
concomitant microstructural damage of the sur-
rounding tissue (e.g., microinfarcts or gliosis).29 As
a result, they may disrupt connections of functionally

Table 3 Association of prevalent CMBs with incident dementia (n 5 2,601)a

Dementia (n 5 119) AD (n 5 86)b VaD (n 5 21)b

n %
Fisher exact test
2-tailed p value n %

Fisher exact test
2-tailed p value n %

Fisher exact test
2-tailed p value

CMBs, by number

No CMBs (n 5 2,164) 99 4.6 (Reference) 74 3.5 (Reference) 15 0.7 (Reference)

1–2 CMBs (n 5 379) 12 3.2 0.920 9 2.4 0.893 2 0.5 0.751

‡3CMBs (n 5 58) 8 13.8 0.006 3 5.7 0.285 4 7.4 0.001

Overall CMBs (n 5 437) 20 4.6 1.00 12 2.8 0.559 6 1.4 0.149

Strictly lobar CMBs

1–2 Strictly lobar CMB (n 5 279) 8 2.9 0.936 6 2.2 0.912 — — —

‡3 Strictly lobar CMBs (n 5 32) 5 15.6 0.015 3 10.0 0.088 2 6.9 0.022

Overall strictly lobar CMBs (n 5 311) 13 4.2 0.884 9 2.9 0.737 2 0.7 1.00

Deep or mixed CMBs

1–2 Deep and/or mixed CMB (n 5 42) 2 4.8 0.718 2 4.8 0.656 1 2.4 0.269

‡3 Deep and/or mixed CMBs (n 5 16) 3 18.8 0.036 — — — 2 13.3 0.006

Overall deep and/or mixed CMBs (n 5 58) 5 8.6 0.192 2 3.6 0.716 3 5.4 0.010

Abbreviations: AD 5 Alzheimer disease; CMB 5 cerebral microbleed; VaD 5 vascular dementia.
aOne individual of 2,602 participants who had missing dementia status in Age, Gene/Environment Susceptibility (AGES) II was excluded from dementia
analysis.
b The number included 4 cases with both possible AD and possible VaD.

Figure 2 Multivariable-adjusted 5-year change in cognitive domains for CMB locations

Error bars represent 95% confidence intervals. Adjusted for age, sex, follow-up interval, coil type, primary education,
depression at follow-up, hypertension, total cholesterol, use of lipid-lowering medication, presence of brain infarcts, mea-
sure of white matter hyperintensity volume expressed as percentage of total intracranial volume, and APOE e4 carriership.
*p , 0.05.
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important cortical and subcortical tracts that are crit-
ical for cognitive processes, ultimately leading to dam-
age of neural networks and interfering with
cognition.29 Alternatively, CMBs are more likely to
imply more generalized microvascular damage that
disrupts the blood-brain barrier or causes hypoxia.13,29

In this scenario, CMBs are only the tip of the iceberg
of SVD, and mixed or a higher number of CMBs may
thus indicate more extensive and severe subclinical
microvascular damage.

We found that the associations with cognitive
decline differed according to the spatial location of
CMBs and thus possibly differed with underlying vas-
culopathy. Our results suggest that $3 CMBs in
strictly lobar regions, presumably resulting from
CAA, were related to a faster decline in processing
speed. On the other hand, participants with $3
strictly lobar CMBs had the highest prevalence of
cerebral infarcts and largest volume of white matter
hyperintensities at baseline compared to those with
no, 1, or 2 strictly lobar CMBs in the present study.
Thus, this finding of impaired speed associated with
a relatively high load of lobar CMBs, shown previ-
ously,8,12 suggests that the vascular damage and ische-
mia30 caused by (or predisposing to) CAA31 can
reflect overall vascular damage.

Presence of CMBs in deep or mixed regions, re-
sulting primarily from hypertensive arteriopathy,
was associated with more rapid decline in all cogni-
tive domains, and in particular, our results suggest
that $3 CMBs in deep or mixed regions were asso-
ciated with the fastest decline in verbal memory. The
associations with speed and executive function are
consistent with the hypothesis that cerebral micro-
vascular damage preferentially affects white matter
and subcortical gray matter, with disruption of integ-
rity of frontal-subcortical circuits.22,32 Our finding of
deep or mixed CMBs in association with verbal
memory, independently of brain atrophy, might sug-
gest disruption of thalamic nuclei, which are
involved in storage and short-term memory,32 and
is consistent with memory impairment, the hallmark
of AD, also being present in vascular-related cogni-
tive impairment.31

Of note, mixed CMBs were most strongly associ-
ated with a decline in memory and global cognitive
function compared to CMBs either in strictly lobar
or in strictly deep locations. These findings may also
underscore the role of interplay between hypertensive
vasculopathy and CAA in the pathogenesis of cogni-
tive decline. It is possible that vascular b-amyloid
deposition impairs reactivity of cerebral microvascu-
lature and causes functional loss with ischemic and
hemorrhagic lesions.6 In parallel, hypertensive dam-
age to small vessels impairs arterial pulsation and re-
sults in failure of perivascular drainage, which reduces

the clearance of b-amyloid and leads to further depo-
sition of b-amyloid in vessel walls.6,33

Apart from cognitive decline, our findings pointed
in the direction of adverse effects of $3 CMBs on
dementia incidence, particularly for VaD. However,
the relatively small number of subtyped dementia
events limited our ability to conduct in-depth,
adjusted statistical analysis. Further meta-analysis of
individual population-based studies with adequate
statistical power is warranted.

Major strengths of the present study include the
longitudinal design, the large population-based sam-
ple of old people without dementia at baseline who
were followed up for 5 years on average, the use of
a comprehensive cognitive battery and standard
MRI, reliable assessment of baseline CMBs, and
the extensive characterization of participants that
enabled us to control for a series of potential con-
founders, including other MRI markers of cerebro-
vascular disease.

There are several issues, however, that affect the
interpretation of these data. Although we adminis-
tered a wide range of neuropsychological tests to
assess each particular cognitive domain, there is still
a chance to underestimate the complex executive
functions, which is the leading presentation of cogni-
tive decline in vascular disease. Moreover, pure VaD
is relatively rare, and the current diagnostic criteria for
VaD have low sensitivity.25,34 We cannot fully rule
out the possibility that the presence of CMBs may
have provided information that weighed the diagnosis
toward VaD. The categorization of CMBs by location
is presumably suggestive of specific underlying small
vessel pathology. Although in line with current
research and clinical practice, the categorization does
not accurately reflect the multifactorial nature of
CMBs35 and thus may be an oversimplification of
underlying cognition-related pathology of location-
specific CMBs. Furthermore, the relatively lower field
strength and spatial resolution of the MRI scanner we
used may have resulted in underestimation of the
number of CMBs and affected the assessment of
other MRI lesions. Finally, people who were included
in the analysis were younger, were more educated,
and had better vascular health and cognitive profiles
at baseline than those who were excluded. If those
excluded were affected by CMBs similarly to those
included in the analysis, our results may be
underestimated.

Our findings support the hypothesis that CMBs
are important indicators of a microvascular contribu-
tion to cognitive impairment in older people and
highlight the role for hypertensive vasculopathy and
the combined effect of hypertensive angiography
and CAA in cognitive deterioration. Multimodal neu-
roimaging assessments of brain metabolism, fiber
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tract integrity, and amyloid burden may help explain
the underlying pathophysiology and integration of
vascular and neurodegenerative lesions of CMBs
and associated cognitive impairment.
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