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Abstract

Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease primarily 

characterized by myotonia and progressive muscle weakness. The pathogenesis of DM involves 

microsatellite expansions in noncoding regions of transcripts that result in toxic RNA gain-of-

function. Each successive generation of a DM family carries larger repeat expansions, leading to 

an earlier age of onset with increasing disease severity. At present, diagnosis of DM is challenging 

and requires special genetic testing to account for somatic mosaicism and meiotic instability. 

While progress in genetic testing has been made, more rapid, accurate, and cost-effective 

approaches for measuring repeat lengths are needed to establish clear correlations between repeat 

size and disease phenotypes.

1. Introduction

DNA repeat expansions are responsible for more than 20 inherited neurological disorders—

some of these include Huntington’s disease, fragile X syndrome, spinal and bulbar muscular 

atrophy, as well as the most common form of familial amyotrophic lateral sclerosis [1]. In 

multiple repeat diseases, repeat length is correlated to disease severity and age of onset [2], 

yet molecular pathways that go awry due to expanded repeats can differ. Studies of myotonic 

dystrophy (dystrophia myotonica, DM) first demonstrated the concept that microsatellite 

repeats in noncoding regions can be transcribed into pathogenic RNAs [3]. Expansions can 

occur in the germline, leading to genetic anticipation across multiple generations, and can 

also occur somatically during various stages of human development with preferences for 

distinct tissues, ages, genders, and populations [4] [5] [6] [7]. Furthermore, the rate of 

expansion in somatic cells can vary within the same tissue [8].
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2. Overview of Myotonic Dystrophy

Myotonic dystrophy exists in two clinically and molecularly defined forms: myotonic 

dystrophy type 1 (DM1), also known as Steinert’s disease; and myotonic dystrophy type 2 

(DM2), also known as proximal myotonic myopathy, both of which are inherited in an 

autosomal dominant fashion [9]. DM1 is caused by a CTG expansion in the 3′ untranslated 

region of the dystrophia myotonica protein kinase (DMPK) gene on chromosome 19q13 

[10] [11], while DM2 is caused by a CCTG expansion located within intron 1 of the cellular 

nucleic-acid-binding protein (CNBP, formerly ZNF9) gene on chromosome 3q21 [12].

A healthy individual with normal DMPK alleles has 5 to 37 repeats (35 has also commonly 

been used as an upper threshold for normal repeat length [13]) [14]. DM1 patients who have 

repeats between 38 and 50 are said to have a “pre-mutation” allele and can be asymptomatic 

throughout their lifetime. However, they are at increased risk of having children with larger 

repeats [15]. Penetrance tends to grow as repeat length increases, but extreme variability in 

penetrance of specific symptoms exists in the patient population [14]. Somatic mosaicism 

and intergenerational instability are biased towards expansion in DM1 [4], although 

contraction can rarely occur. It is estimated that a decrease in the CTG repeat size during 

transmission from parents to child is about 6.4%, most frequently during paternal 

transmissions [16]. Children of DM1 parents typically inherit repeat lengths considerably 

larger than those present in the transmitting parent, the phenomenon known as 

“anticipation,” where disease severity increases and age of onset decreases in successive 

generations. Up to 5% of DM1 patients have interrupted repeats, in which the CTG repeat 

tract contains GGC, CCG, or CTC repeats [17] [18]. Some of these interruptions have been 

associated with stabilization of the CTG repeat tract length [19].

The repeat expansion of DM2 in intron 1 of CNBP is found within the context of a complex 

(TG)n(TCTG)n(CCTG)n sequence. While non-pathogenic alleles contain up to 26 repeats, 

the range of repeats in patients is extremely broad, with measurements from 75 to 11,000 

units (on average 5,000) [12]. Unlike DM1, the size of the repeat DNA expansion in DM2 

does not correlate with age of onset or disease severity [20]. This is further supported by the 

observation that individuals homozygous for repeat expansions have clinical features 

indistinguishable from that of their heterozygous siblings [21]. Phenotypes and anticipation 

in DM2 are almost always milder than DM1, and DM2 lacks the congenital form [22].

The combined prevalence of DM1 and DM2 is approximately 1 in 8,000 (12.5 per 100,000), 

but this is likely an underestimate because of difficulty in clinical identification of minimally 

affected individuals [7]. Although DM2 is generally rarer than DM1, recent epidemiological 

data in Germany and Finland suggest that DM2 occurs more frequently than previously 

observed [23]. Similarly, the prevalence of DM1 can vary widely: in Taiwan, approximately 

0.5 in 100,000 people are affected; while in the United Kingdom, the number can range from 

7.1 to 10.6 in 100,000 [24]. Different factors could play a role in such variations: for 

instance, a founder effect is assumed to have increased the prevalence of DM1 to 1 in 500 in 

the Saguenay-Lac-Saint-Jean region of Northeastern Quebec [25].
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Despite these key differences, DM1 and DM2 share several hallmark clinical features such 

as myotonia, cataracts, and cardiac conduction defects [26]. The fact that two independent 

mutations cause the similar disease pathology has led to the RNA toxicity hypothesis where 

the expanded repeat-containing RNAs form ribonuclear foci that sequester and disrupt the 

normal activities of RNA binding proteins belonging to the MBNL and CELF families [27] 

(for more details, see Ashizawa’s review on “RNA foci” and Thornton’s review on “DM: 

approaches to therapy” in the same issue, as well as [28]). In this review, we discuss 

mechanisms of repeat expansion, approaches for measuring repeat lengths, and the 

relationships between repeat length and phenotypes in DM.

3. Mechanisms of Repeat Expansion in Mitotic and Post-Mitotic Tissues

Several molecular mechanisms for repeat instability have been proposed, mainly in the 

context of DNA replication, recombination, transcription and/or repair (Box 1). Most of 

these mechanisms involve folding of microsatellite repeats into an unusual secondary 

structure, kinetically trapping the otherwise unstable DNA repeats [29]. In the case of DM, 

(CTG)n(CAG)n and (CCTG)n(CAGG)n repeats form hairpin-like secondary structures, 

which are stabilized by both Watson-Crick (WC) and non-WC base pairs [30] [31].

Box 1

Mechanisms of Repeat Expansion and Contraction

The hairpin-like structures are formed during an out-of-register realignment of the 

complementary repetitive strands during DNA replication, recombination, transcription, 

and/or repair. Flanking DNA is shown in black. Parental repeat and complementary 

strands are shown in red and orange, respectively. The newly synthesized repeat strand is 

shown in blue. (a) A model of repeat instability generated during replication fork stalling 

and restart. Formation of a hairpin in the lagging-strand promotes the stalling of a DNA 

polymerase. To overcome this obstacle, fork reversal promotes unwinding of newly 

synthesized strands (as well as reannealing of parental strands), exposing a structure-

prone 3′ repetitive run. A hairpin structure is formed and retained during leading strand 

synthesis, which leads to expansion. Repeat contraction can occur if the DNA polymerase 

skips the hairpin on the lagging-strand template. (b) Recombination model of repeat 

instability. Cleavage of stable DNA hairpin during replication generates single-stranded 

3′ repetitive fragments. Invasion of these fragments with or without repeats can lead to 

expansion or contraction via recombination. (c) Transcription model of repeat instability. 

Unwinding of repetitive DNA strands during transcription can generate template strand 

(TS) or non-template strand (NTS) slip-outs. RNA Polymerase II (RNAPII) can stall at 

the either slip-out and initiate the transcription-coupled repair (TCR). If RNAPII stalls at 

the NTS hairpin, TCR cuts the portion of TS and copies the slip-out during repair. 

Conversely, RNAPII can stall at the distal end of the TS slip-out where TCR can excise 

near the 5′ end of the NTS slip-out, subsequently removing the repeats by 3′-end 

cleavage. (d) A DNA-repair-dependent repeat expansion model. DNA damage induces a 

small gap in the structure-prone repetitive strand. Hairpin formation prevents FEN1 

endonuclease from loading onto a repetitive flap. The binding of mismatch repair 
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proteins, MSH2 and MSH3, stabilizes the hairpin leading to expansion upon completion 

of repair.

Proof of principle studies from yeast have demonstrated that repeat instability can be based 

on replication fork stalling and restart [32] [33], ruling out the classic model of strand 

slippage for DM [34]. In this model, the formation of a stable secondary structure during 

lagging strand synthesis could stall a DNA polymerase, slowing down the overall replication 

fork progression as the lagging and leading strand syntheses are coordinated. To minimize 

the stalling of replication fork, DNA polymerase can skip an Okazaki fragment to resume 

lagging strand synthesis (contraction pathway) or promote fork reversal (for more details on 

fork reversal mechanism, please see the review by Neelsen and Lopes [•35]) to generate a 

structure-prone single-stranded repeat extension at the 3′ end of the leading strand. If the 3′ 
repetitive hairpin persists when the replication restarts, repeats can expand. Recombination 

can also account for repeat instability in mitotically dividing cells. In bacteria, longer repeats 

increase the rate of recombination [36] [37] while in yeast, CTG repeats cause chromosomal 

breakage [38]. As Mirkin described in his review [39], one possible mechanism for 

recombination-based instability is that repeats promote the double-strand breaks in DNA 

causing the invasion of fragments into sister chromatids.

The transcription and repair models of repeat instability can likewise account for expansion 

in both mitotic and post-mitotic cells. During transcription, the formation of slip-outs on 

either strand can stall RNA polymerase II, facilitating the transcription-coupled repair. 

Depending on the location of the excision, subsequent patch repair could lead to expansion 

or contraction [40]. Similarly, studies on transgenic mouse models of Huntington’s disease 

and DM have demonstrated that loss of MSH2/MSH3 mismatch repair proteins can decrease 

the frequency of repeat expansion [41] [42] [43]. This discovery has led to a theory that the 

MSH2/MSH3 complex can stabilize the secondary structure and prevent the flip removal by 

FEN1, leading to expansion during DNA repair. Although this theory is highly supported in 

a yeast model [44], it is less clear in a mouse model where repeat instability was unaltered in 

Fen1-knockout mice [45].

As disease symptoms in DM are most prominent in post-mitotic tissues such as the heart, 

skeletal muscle, and central nervous system (CNS), it is thought that DNA repair-dependent 

mechanisms, and potentially transcription-coupled nucleotide excision repair, may drive 
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repeat instability in these tissues. For more details on tissue-specific DNA repair 

mechanisms of repeat instability, see the review by Dion [•46].

4. Diagnosis and Laboratory Methods to Measure Repeat Lengths

A wide variety of DM symptoms can bring patients to the clinic, including myotonia, muscle 

weakness, cardiac arrhythmias, hypersomnia, gastrointestinal (GI) tract issues, and cataracts. 

Prior to the discovery of the genetic basis for DM, muscle biopsies were commonly used as 

a diagnostic tool, but typically, a definitive diagnosis is now made via genetic testing (Figure 

1). If clinical features suggest DM1 but DM1 genetic testing is negative, DM2 testing is 

performed.

A number of approaches are taken to measure repeat lengths. A PCR across the DM1 locus 

is usually first conducted to determine whether there are two different short alleles, or a 

short allele and a longer allele of <150 repeats. Extremely long repeats are challenging to 

amplify by PCR. Therefore, the presence of a single short PCR product does not rule out 

DM1 [11]. In such cases, other methods such as triplet-repeat primed PCR (TP-PCR), small-

pool PCR (SP-PCR) and/or Southern blots, on either PCR products or restriction-digested 

genomic DNA, are performed.

Triplet-repeat primed PCR

Warner et al. [47] introduced a robust and reliable method to identify (but not the size of) an 

expanded allele using TP-PCR. This technique is typically cheaper and faster than Southern 

blotting for diagnostic purposes. However, TP-PCR can lead up to 9% false positive results 

due to sequence interruptions between repeats [48] [49]. More recently, an improved bi-

directionally labeled TP-PCR was developed by Radvansky et al. [50], in which TP-PCR is 

performed in a reverse direction with two individual fluorescently-labeled flanking primers. 

This method can detect expansions carrying sequence interruptions both in DM1 and DM2. 

In the context of DM2, quadruplet-repeat primed PCR is also commonly performed to size 

the CCTG repeat tract [20].

Small-pool PCR

Conventional PCR and Southern blot approaches typically show expanded alleles as a smear 

rather than a discrete band on a gel, due to somatic instability [51]. SP-PCR, in which small 

amounts of input DNA up to 2 genomic equivalents are separately PCR-amplified and 

detected by Southern, showed that these smears are indeed CTG tracts of discrete lengths 

from different nuclei [4]. This method allows for assay of the entire repeat length 

distribution, as well as estimation of the progenitor allele length [52].

Finally, an approach combining rolling circle amplification and Southern blotting to identify 

expanded repeats in DM1 and DM2 with low DNA input requirements [53] and a method 

which utilizes a special PCR enzyme mix and machine to screen normal DMPK alleles in 

less than 15 minutes have been described [•54].
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5. Repeat Range, Penetrance, Age of Onset, and Relationship to 

Phenotypes

DM1 patients can be subdivided into several categories, based on clinical features, age of 

onset, and disease severity. As larger patient cohorts are studied and more precise methods 

applied to measure clinical symptoms, the granularity of these categories has increased. 

Traditionally, DM1 has been divided into late-onset, adult, and congenital forms. However, 

in a recent study by De Antonio et al. [••55], separate categories of congenital, infantile, 

juvenile, adult and late-onset forms of DM1 are described, with respective mean repeat 

lengths of ~1000, 800, 600, 400, and 200 according to registry records (Table 1). Across all 

these forms, symptoms span a broad range of tissues, including skeletal muscle, heart, CNS, 

as well as the GI tract, eyes, reproductive tract, endocrine system, and immune system. 

Although in general many symptoms occur earlier when repeats are longer, there is extreme 

variation across individuals. For example, while many adult patients first present myotonia, 

the first symptom affecting other adults with DM1 may be hypersomnolence, subcapsular/

iridescent “Christmas tree” cataracts, or atrial fibrillation.

There has been much discussion regarding whether to draw distinctions between the 

congenital, infantile, and juvenile forms of DM1; each is successively milder, with the 

congenital exhibiting profound developmental defects, including hypotonia, respiratory 

insufficiency, cardiac defects, severe muscle weakness, cognitive challenges, and facial 

dysmorphism. Congenitally affected fetuses are associated with excess amniotic fluid and 

decreased movement [56] [57], and occur almost exclusively from maternal transmissions 

(although there are exceptions [58]). The infantile and juvenile forms of DM1 are less severe 

than congenital, but still exhibit many of the same features, in particular, cognitive 

challenges [59] [60]. Severe myotonia is also much more prominent in the juvenile form 

[55].

Core features of adult and late-onset DM1 are cataracts, myotonia, GI problems, muscle 

weakness, and cardiac arrhythmias. Cardiac conduction defects with arrhythmias contribute 

to the shortened life span of adult DM1 patients [61] [62]. Mild intellectual deficits can be 

found in both of adult and late-onset patients [•63], but clinical depression and personality 

disorders are more common in adult DM1 [64] [65]. Nocturnal apnoeic episodes and 

excessive daytime somnolence also have significant repercussions on the quality of adult 

DM1 patient’s life [66] [67].

Repeat lengths in DM2 have not been observed to correlate with specific phenotypes, such 

as proximal muscle weakness (often the quadriceps), cardiac arrhythmias, and cognitive 

decline, but this is likely in part due to the relative paucity of studies focused on measuring 

these correlations. The repeat length in DM2 can be extremely long, presenting technical 

challenges.

6. Concluding Remarks

As the molecular basis of DM continues to unfold, it is clear that RNA toxicity has a major 

role in disease pathology. Based on this framework, one would expect that repeat length and 
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expression levels correlate with disease severity and age of onset. However, heterogeneity 

across tissues, somatic instability, and the relative technical difficulty of accurately 

measuring repeat length distributions present challenges in establishing these correlations, 

and importantly, identifying additional genetic modifiers that may protect or exacerbate 

particular disease symptoms. New sequencing, such as those that have been applied in the 

other repeat diseases (PacBio single-molecule, real-time sequencing for Fragile X [••68]), 

may allow for more rapid, cost-effective, and accurate measurements of long repeat lengths 

at a single-nucleotide resolution, and enhance our overall understanding of expansion repeat 

diseases.
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Highlights

• Distinct mechanisms for repeat expansion in mitotic and post-mitotic tissues 

of DM patients.

• Overview of the diagnostic methodologies for measuring repeat lengths in 

DM

• Relationship of DM repeat range with penetrance, age of onset, and clinical 

symptoms
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Figure 1. Schematic of genetic testing used to diagnose DM
DM is a multisystemic disorder that primarily affects skeletal muscle, heart, brain, eyes, 

CNS, and GI tract. Electromyography (EMG) is used to assess myotonia in suspected 

individuals. Genetic testing is performed using the patient’s DNA sample, typically from the 

blood. There are two distinct laboratory procedures for genetic testing: SP-PCR and TP-

PCR. SP-PCR requires single-molecule dilutions of extracted DNA, which are individually 

PCR amplified and probed with Southern blot hybridization. This method readily amplifies 

repeats from individual molecules, avoiding the amplification bias for the smaller allele 

commonly observed in conventional PCR. Similarly, TP-PCR is an improved method for 

detecting larger repeats. During the early amplification cycles, 5′ fluorescently labeled 

primer P1 and repeat specific primer P3 with 5′ tail sequence (in yellow) generate multiple 

products. The primer P4, which shares the 5′ tail sequence, subsequently amplifies the 

products from the previous amplification cycles. A 10:1 ratio of P4 to P3 ensures that P3 is 

exhausted in the early amplification cycles. Flanking and repeat DNA are shown in black 

and red, respectively.
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