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Abstract

The PSD-95 family of proteins, known as MAGUKs, have long been recognized to be central 

building blocks of the PSD. They are categorized as scaffolding proteins, which link surface-

expressed receptors to the intracellular signaling molecules. Although the four members of the 

PSD-95 family (PSD-95, PSD-93, SAP102, and SAP97) have many shared roles in regulating 

synaptic function, recent studies have begun to delineate specific binding partners and roles in 

plasticity. In the current review, we will highlight the conserved and unique roles of these proteins.

Introduction

Excitatory synapses are most often localized on dendritic spines, which are abundant small 

membrane protrusions that decorate dendrites. Excitatory synapses include the postsynaptic 

density (PSD), a specialized electron dense structure positioned at the distal tip of spine 

heads. Receptors, adhesion molecules and postsynaptic scaffolding proteins accumulate at 

the PSD to allow efficient synaptic responses to glutamate released from the presynaptic 

terminal. Scaffolding proteins serve as a platform to hold together the PSD by binding to 

postsynaptic receptors, adhesion molecules, and cytoplasmic signaling proteins like protein 

kinases, phosphatases, and GTPases [1–3]. Membrane-associated guanylate kinases 

(MAGUKs) are the best studied scaffolding proteins, and findings over the last few years 

demonstrate that PSD-95 and other MAGUKs play diverse roles in regulating synaptic 

expression of receptors, synaptic plasticity, and are essential for the basic structure of the 

PSD itself.
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In this review, we will confine our discussion to the PSD-95 family of MAGUKs, which 

includes PSD-95, PSD-93, SAP102, and SAP97. Structurally, the four members contain 

three PSD-95/Discs large/Zona occludens-1 (PDZ) domains, followed by a Src-homology-3 

(SH3) domain and a catalytically inactive guanylate kinase (GK) domain [Fig. 1]. While 

these domains are highly conserved among the various MAGUKs, there are also divergent 

regions, most notably the distinct N-termini. These multiple protein interaction domains 

allow MAGUKs to act as a bridge between surface-expressed receptors, channels and 

adhesion molecules and intracellular signaling proteins, enzymes and cytoskeletal elements. 

Although some binding partners are conserved among the MAGUKs, others are specific to 

one family member [Fig. 1]. The prototypic MAGUK is PSD-95, named based on its 

enrichment at the PSD. Early biochemical studies identified PSD-95 as a primary constituent 

of the PSD [4] and recent findings show that deleting PSD-95 results in a fragmentation of 

the PSD [5]. Knockdown of PSD-95, PSD-93 and SAP102 family members causes a 

profound disintegration of the PSD, solidifying the critical role of MAGUKs in the 

formation and maintenance of the structure [6*].

Light and electron microscopy data [7, 8] indicate that a significant percentage of synapses 

contain both PSD-93 and PSD-95. Further exploration with super-resolution microscopy has 

found that many synapses contain sub-synaptic nanodomains enriched in PSD-95 [9*–

12**]. Interestingly, these nanodomains are enriched in both PSD-95 and AMPARs. While 

several studies have found PSD-93 and PSD-95 to play equivalent roles in trafficking 

AMPARs [13, 14**], similar PSD-93-enriched nanodomains have not been reported. Given 

the correlation between PSD-95 nanodomains and AMPAR enrichment, it would be 

interesting to explore whether other MAGUKs infiltrate PSD-95 nanodomains, and whether 

similar nanodomains populated by other MAGUKs exist and are enriched in AMPARs.

MAGUKs and synaptic expression of glutamate receptors

A primary function of MAGUKs is to bind to and stabilize proteins at synapses. Many lines 

of evidence show that MAGUKs regulate the synaptic expression of glutamate receptors. All 

family members bind directly to GluN2 subunits of NMDARs thereby stabilizing NMDARs 

at the cell surface [15]. Both GluN2A and GluN2B have a conserved PDZ ligand (−ESDV), 

which regulates direct high affinity binding to MAGUK family members. Deletion of the – 

ESDV motif or mutations in that domain within GluN2B disrupt surface and synaptic 

expression of NMDARs [15, 16]. MAGUKs also regulate the synaptic expression of 

AMPARs; however, unlike NMDAR binding, PSD-95 indirectly interacts with AMPARs 

through the auxiliary subunit stargazin (stg) and its related family members, TARPs 

(Transmembrane AMPA Regulatory Proteins), which are critical for synaptic expression of 

AMPARs [17, 18]. However, another family member, SAP97, binds directly to the GluA1 

AMPAR subunit [19]. Whereas SAP97 can rescue the deficits in AMPAR currents in 

PSD-93/-95 double-knockout neurons, deleting SAP97 has no effect on synaptic 

transmission [20].

Early work demonstrated that the phosphorylation of potassium channels in the PDZ ligand 

[21] disrupted PSD-95 binding. The same is true with the NMDAR/PSD-95 interaction, 

which is inhibited by phosphorylation. Indeed, there is an intricate interplay between 
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phosphorylation and synaptic expression of NMDARs. Synaptic activity results in CaMKII 

binding to GluN2B and recruitment of casein kinase 2 (CK2) into a trimolecular complex 

[22]. CK2 phosphorylation of the PDZ ligand on S1480 of GluN2B disrupts PSD-95 binding 

resulting in dramatic reduction in NMDAR surface and synaptic expression [16]. CK2 

phosphorylation of the PDZ ligand is an important step in the GluN2B to GluN2A synaptic 

switch. A nearby endocytic motif on GluN2B (−YEKL) is a target for tyrosine kinases and 

phosphatases and when phosphorylated, NMDARs are not internalized and surface/synaptic 

expression is increased. The CK2 phosphorylation of the PDZ ligand and the 

phosphorylation of the endocytic motif on GluN2B play opposing roles in modulating 

synaptic NMDARs.

Although MAGUKs are most often thought of as stabilizing synaptic proteins, recent 

findings show that SAP102 can also play an unanticipated role in clearing NMDARs from 

synaptic sites [23*]. It is widely accepted that SAP102 is associated with glutamate receptor 

targeting to synapses during neuronal development [7, 24, 25] and that PSD-95 directly 

binds to the PDZ ligand of GluN2B and stabilizes its surface expression at synapses [16]. 

All MAGUKs bind to the –ESDV motif on GluN2 subunits of NMDARs. However, non-

PDZ interactions have also been reported [Fig. 1; 23*, 26]. SAP102 binds to the GluN2B C-

terminus upstream of the PDZ ligand. This binding event is dependent on the SAP102 

unique N-terminal domain, and is regulated by alternative splicing. When GluN2B 

phosphorylation blocks binding to MAGUKs via its PDZ ligand, it can still bind to SAP102 

via this non-conventional binding site, which facilitates the removal of synaptic NMDARs. 

Because SAP102, unlike PSD-93 and PSD-95, is not palmitoylated [Fig. 1; 27] and has been 

shown to move in and out of spines [28], it is an ideal protein to shuttle NMDARs in and out 

of the synapse.

Role for PSD-95 in sculpting protein content at the PSD

In addition to the many roles that MAGUKs play in receptor trafficking, a recent study 

demonstrates that PSD-95 acts in an unexpected way to regulate the expression of the 

tyrosine phosphatase PTPN5, also known as STEP (STriatal-Enriched protein tyrosine 

Phosphatase), in the PSD [29**]. STEP is known to regulate surface expression of 

NMDARs by dephosphorylating GluN2B Y1472 within the endocytic motif, thereby 

increasing internalization [30]. Recent data show that PSD-95, but not other MAGUKs, 

binds to STEP via its PDZ3 domain [Fig. 1; 29**] in a palmitoylation-dependent manner. 

PSD-95 triggers the degradation of STEP and restricts STEP to a low level in the PSD. 

Furthermore, PSD-95 knock-down results in a marked increase in synaptic STEP and a 

decrease in synaptic GluN2B. Similar findings were observed in vivo in PSD-95 KO mice. 

Therefore, there is a PSD-95 specific effect on synaptic NMDARs that is independent of the 

well-established stabilizing role as a scaffolding protein. It is likely that as we learn more 

about MAGUKs, additional non-scaffolding roles will be identified.

MAGUK involvement in synaptic transmission

What factors influence MAGUK localization of AMPARs to synapses? There is a linear 

relationship between PSD diameter and AMPAR number [31], and genetic deletion of 
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AMPARs does not affect PSD size [32]. This suggests that, on average, the size of the PSD 

is the primary determinant of AMPAR content. There are, however, other factors that 

modulate AMPAR synaptic strength. One factor that can be modulated is the affinity of 

TARPs for MAGUKs. It has been known for some time that TARPs, such as stg, bind 

AMPARs and link them to MAGUKs via an interaction between MAGUK PDZ-domains 

and a TARP cytoplasmic tail (c-tail) PDZ-binding motif [17, 33, 34]. One factor limiting this 

interaction is electrostatic attraction between the TARP c-tail and the lipid membrane, which 

inhibits binding of stg to PSD-95 [35]. Although phosphorylation of the stg c-tail via 

CaMKII and PKC has been shown to increase AMPAR EPSCs [36], the mechanism is not 

fully understood. It has recently been shown that phosphorylation of the stg c-tail disrupts its 

electrostatic interactions with the membrane [35], dissociating it and extending it into the 

cytoplasm. Interestingly, this facilitates binding to MAGUK PDZ domains, specifically PDZ 

domain 3, which had not been thought to play a large role in basal transmission [34]. 

Binding to PDZ domain 3 leads to increases in the percent of AMPARs at synapses, and in 

AMPAR-mediated EPSCs [37*]. Since phosphorylation of the stg c-tail occurs via CaMKII 

and PKC [36], it is tempting to speculate that one component of the AMPAR EPSC increase 

during LTP is CaMKII-mediated phosphorylation of the stg c-tail. However, recent evidence 

shows that kainate receptors, which do not interact with TARPs, are competent to mediate 

LTP [38], indicating that LTP can occur in the absence of this mechanism.

MAGUKs play an established role localizing AMPARs and NMDARs to synapses. RNAi-

mediated knockdown of PSD-93, PSD-95 and SAP102 together reduces the size of AMPAR 

and NMDAR-containing synaptic responses by roughly 75%. Knockdown of PSD-93, 

PSD-95, or SAP102 individually causes similar reductions in baseline synaptic currents in 

each case: ~50% for AMPAR-EPSCs and ~25% for NMDAR EPSCs [14**]. Thus, the 3 

MAGUKs contribute to basal trafficking of AMPARs and NMDARs to a similar degree.

Although glutamatergic EPSCs are greatly reduced after MAGUK knockdown, dendritic 

spine density is unchanged, suggesting MAGUKs are responsible for localizing glutamate 

receptors to synapses, but not for processes involved in spine formation or maintenance 

[14**]. Furthermore, these and other results indicate that compensatory mechanisms do not 

change spine density in response to reduced excitatory activity [32]. Together, these data are 

consistent with a large population of ‘silent’ spines that lack both AMPARs and NMDARs 

that emerge after MAGUK loss. These data, however, do not rule out changes in spine 

stability that could occur, for example if an activity-dependent step stabilizes new spines 

[39]. In particular, smaller-diameter spines, such as those seen after MAGUK loss, have 

previously been shown to be less stable than larger spines [40].

MAGUK loss triggers a homeostatic process

One long-standing curiosity in the field has been that removal of each MAGUK family 

member results in an all-or-none loss of AMPARs at individual synapses [13, 41], meaning 

synapses either lose their entire complement of AMPARs or are unaffected. This manifests 

itself as a reduction in AMPAR-containing synapses without a reduction in AMPAR 

synaptic strength at the remaining synapses. Since MAGUKs are at all synapses, it is 

puzzling how loss of a single family member causes loss of all AMPARs at a subset of 
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synapses. Previously, this result has been variously interpreted to mean that individual 

synapses are reliant on either PSD-95 or PSD-93 but not both [13], or that MAGUKs are 

required for synaptogenesis [41].

Recent research has shown that following MAGUK loss, a compensatory program 

dependent on signaling though L-type calcium channels maintains synaptic strength at 

individual synapses [14**]. This synapse-specific homeostatic program cannibalizes a 

subset of synapses to localize AMPARs to the remaining synapses. Interestingly, AMPARs 

are added to the remaining synapses until they perfectly match the synaptic strength of 

unmanipulated controls, despite the large overall reduction in AMPAR EPSCs. One 

possibility is the shortage of MAGUKs inhibits further increases at individual synapses [8]. 

These results strongly suggest that individual synapses have a program that determines 

‘default’ strength, which is executed at the single-synapse level and complements known 

examples of cell-level homeostasis. Existing examples of cell-level homeostasis have been 

proposed to respond to perturbations in L-type channel calcium influx by scaling overall 

synaptic input while maintaining relative synaptic strengths. These homeostatic programs 

counteract deviations from a cell-wide activity ‘set-point’ caused, for example, by Hebbian 

processes such as LTP. Single-synapse homeostasis, in contrast, acts to maintain a set-point 

at individual synapses, independent of cellular activity levels. Cell-level and single-synapse 

homeostasis use many of the same proteins, such as GluA2 [42] and CaMKK [43, 44], and 

potentially are separate consequences of activation of a common non-Hebbian pathway.

A comparison of MAGUK loss to other forms of homeostasis

Are all non-Hebbian ‘homeostatic’ plasticity programs glimpses of a common pathway that 

regulates synaptic strength? Other homeostatic programs at single synapses have been 

described that oppose changes in presynaptic input by manipulating AMPAR synaptic 

strength [45, 46], and have been found to use components of the cell-level homeostasis 

program [45]. One final process that regulates synaptic strength and is reminiscent of single-

synapse homeostasis is distance-dependent scaling (DDS), a process which, like single-

synapse and cell-level homeostasis, is dependent on the GluA2 subunit [47]. DDS translates 

global signaling cues about relative synaptic location, potentially conveyed at least in part by 

backpropagating action potentials [48], into a synaptic strength gradient to counter the 

electrotonic effect on distant synapses. Thus synapse strength increases as synapses get 

further from the cell body, and precisely counteracts increased electrotonic filtering of 

EPSCs from these distal synapses. Block of DDS results in strong synapses close to the 

soma with synapses growing weaker as distance from the soma increases. Given that DDS 

and single-synapse plasticity share reliance on the same signaling pathways and both serve 

to set synapse strength, it would appear that these phenomena are different facets of the 

same homeostatic process. The GluA2 subunit is essential for DDS, and backpropagating 

action potentials trigger dendritic calcium influx [48–50], through voltage-gated calcium 

channels including L-type channels [51]. Backpropagating action potentials decrease in size 

as they penetrate the dendritic arbor and the decreasing calcium influx could serve to 

indicate increasing distance from the soma and result in stronger synapses. However, further 

experimentation is required to determine the roles that L-type calcium channel signaling and 

CaMKK potentially play in DDS.
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Multiple lines of evidence have established that homeostatic plasticity actively sets baseline 

synaptic strength at individual post-synaptic specializations. Although the pathways 

underlying this set point have been seen in multiple contexts and conceptually split into 

multiple processes, future research into the detailed molecular pathway of homeostatic 

plasticity is required to determine whether these processes are independent, or rely on one 

common pathway that can be initiated in many separate contexts.

Conclusions

The MAGUK family of scaffolding proteins performs a complex array of synaptic functions. 

The developmental differences between PSD-93/PSD-95 and SAP102, with the latter 

uniquely expressed early in development, were first described over 15 years ago [7]. Current 

studies are now elucidating the functional differences between MAGUKs hinted at by this 

differential expression. Examples include SAP102’s unanticipated role in clearing NMDARs 

[23*], PSD-95’s role in triggering STEP degradation [29**], and the divergent roles of 

PSD-93 and PSD-95 in both Hebbian [52] and non-Hebbian plasticity [9]. Ongoing research 

will almost certainly continue to reveal the mechanisms underlying differential roles [53–

55*] of the MAGUKs.

Although there are many examples of heterogeneity within the MAGUK family, all 

MAGUKs play a basic role at the synapse: localization of glutamate receptors. In this role, 

each family member plays an equal part [14**]. Even this fundamental shared property has 

many unresolved questions to explore. What role do MAGUKs play during Hebbian 

plasticity, and what factors influence this role? How do the non-Hebbian pathways that 

control AMPAR localization use MAGUKs to modulate synaptic strength? The MAGUKs’ 

central role in sculpting synaptic strength will continue to provide insight into the underlying 

mechanisms of glutamatergic transmission for years to come.
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Highlights

• PSD-95 and PSD-93 are essential for PSD structure.

• SAP102 plays a role in clearing NMDARs from the synapse.

• PSD-95 sculpts protein content at the PSD.

• PSD-93 and PSD-95 have divergent roles in both Hebbian and non-Hebbian 

plasticity.
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Figure 1. MAGUK family members and their binding proteins
PSD-93 and PSD-95 have two palmitoylation motifs in their N-terminus. L27: Lin2-Lin7; 

PDZ: PSD-95/Discs large/Zona occludens-1; SH3: Src-homology-3; GK: Guanylate Kinase. 

SAP102 has a splice variant without the I1 region in the N-terminus.
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Figure 2. Role of the MAGUKs in Hebbian and non-Hebbian plasticity
The MAGUKs are involved in pathways that set synaptic strength during Hebbian and non-

Hebbian plasticity. (A) Phosphorylation of the stargazin c-tail by PKC and CaMKII allows 

robust binding of the c-tail to the PDZ3 domain of PSD-95. This additional binding site 

increases the number of synaptically localized AMPARs. (B) MAGUKs set default synaptic 

strength during non-Hebbian homeostasis. 1. PSD size (and MAGUK content) set baseline 

‘default’ synaptic strength. 2. Reduction in MAGUK protein fragments and weakens 

synapses. 3. Non-Hebbian processes work to restore synaptic strength to a pre-existing set 

point. These processes include distance-dependent scaling, synapse-level homeostasis, and 

cell-level homeostatic processes.
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