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Abstract

Polycomb Repressive Complex 2 (PRC2) is a multiprotein complex that catalyzes the methylation 

of lysine 27 on histone H3 (H3K27me). This histone modification is a feature of facultative 

heterochromatin in many eukaryotes and maintains transcriptional repression established during 

early development. Understanding how PRC2 targets regions of the genome to be methylated 

remains poorly understood. Different cell types can show disparate patterns of H3K27me, and 

chromatin perturbations, such as loss of marks of constitutive heterochromatin, can cause 

redistribution of H3K27me, implying that DNA sequence, per se, is not sufficient to define the 

distribution of this mark. Emerging information supports the idea that the chromatin context – 

including histone modifications, DNA methylation, transcription, chromatin structure and 

organization within the nucleus – informs PRC2 target selection.

Introduction

Methylation of lysine 27 on histone H3 (H3K27me) by Polycomb Repressive Complex 2 

(PRC2) is a hallmark of facultative heterochromatin in numerous organisms but, despite 

decades of research, it is not yet completely clear how this chromatin mark functions in gene 

repression and how it is controlled. Work in Drosophila first identified and characterized the 

Polycomb group (PcG) protein complexes as writers and readers of H3K27me and 

demonstrated that it maintains repression established early in development [1–3]. The SET 

domain of the PRC2 component EZH2 catalyzes H3K27 di-methylation and tri-methylation 

(H3K27me2/3) and requires both EED and SUZ12 to perform this function; these proteins 

are the core components of PRC2. H3K27me3 can be recognized by a chromodomain 

protein in the canonical Polycomb Repressive Complex 1 (PRC1) [4–6]. PRC1 is thought to 

help mediate transcriptional repression via H2AK119 monoubiquitylation (H2Aub1) and 

chromatin compaction [7–9].

PRC2 exists in some single celled eukaryotes, many fungi (although neither S. cerevisae nor 

S. pombe), plants and metazoans [10]. While plants contain a PRC1-like complex [11], true 

PRC1 homologs appear to be limited to metazoans [10]. The high degree of evolutionary 

conservation speaks to a critical role for PcG complexes; however, differences among 
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species provide clues to general mechanisms of control and function of H3K27me. One 

major difference among organisms is the role of PRC1 in repression.

That H3K27me serves as a repressive mark even in organisms lacking PRC1 [12], implicates 

alternative repressive mechanisms downstream of H3K27me. This idea is also supported by 

findings showing that PRC1 does not localize to all H3K27me marked repressed targets [13] 

and that its enzymatic activity is not required for all repression [14]. Another intriguing 

difference among species is in the role of PRC2 in development. In some fungi such as 

Neurospora crassa and Cryptococcus neoformans, PRC2 and H3K27me are dispensable for 

normal growth and development [12,15]. Drosophila and higher eukaryotes are sensitive to 

disruption of PRC2 function, perhaps because lineage specification programs depend on the 

Polycomb system [16–20].

PcG proteins maintain gene silencing that is established during early development and is 

required for appropriate cell fate specification. The significance of H3K27me in maintaining 

appropriate long-term gene expression patterns is demonstrated by the range of mutations in 

PRC2 complex members, and its substrate (H3K27), in cancers. Both loss of function and 

change of function mutations in PRC2 have been reported in cancers, but a common 

outcome is an altered distribution of H3K27me, which perturbs differentiation [21]. 

Similarly, a heterozygous histone H3K27M mutation in only one of multiple genes encoding 

the histone H3 protein leads to glioblastoma [22]. H3K27M acts as a partially dominant 

negative mutation by binding to PRC2 with 22-fold higher affinity than to H3K27 [23]. This 

results in an overall reduction, but not complete absence, of H3K27me.

Despite the critical role of PRC2 in development and disease, some fundamental questions 

remain. The mechanisms controlling placement of H3K27me by PRC2, which will be the 

focus of this review, remain unclear. Direct targeting mechanisms have been proposed but 

likely only account for PRC2 recruitment in certain organisms or to certain loci. Partially 

defined DNA sequences called Polycomb Response Elements (PREs) recruit PRC2 in 

Drosophila but equivalent elements do not seem to target PRC2 in other organisms that have 

been examined [24]. Furthermore, even in Drosophila, PREs may not be directly required 

for transcriptional repression as deletion of four well-characterized strong Drosophila PREs 

had no effect on H3K27me-mediated silencing [25]. Sequence-specific transcription factors 

and noncoding RNAs can direct PRC2 to specific loci in mouse embryonic stem cells 

[26,27] and human cell lines [28,29], respectively, but again these do not seem to be 

prominent targeting strategies genome-wide. We favor a model similar to that proposed 

previously by others [30–33] suggesting that the local chromatin environment dictates 

H3K27me deposition. Our model considers the chromatin environment broadly and 

accounts for organisms that do not require PRC1 for PRC2 recruitment.

Features of constitutive heterochromatin prevent H3K27me deposition

In principle, the distribution of a histone mark, such as H3K27me, could be directly dictated 

by the sequence of associated DNA. In the case of this mark, however, this simple model is 

not highly compatible with recent findings. H3K27me regions greatly vary among different 

developmental stages, cell types, and in healthy versus diseased states of the same organism, 
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even in cases in which the primary sequence of the genome is invariant. This raises the 

possibility that changes in chromatin environment may be responsible for the observed 

plasticity. Some candidate variables include histone modifications, DNA methylation, 

transcriptional state and nucleosome occupancy. While outside the scope of this review, sub-

nuclear location and higher-order chromatin structure which are known to be influenced by 

H3K27me [34–36], may also impact placement of H3K27me. Striking examples of the 

plasticity of H3K27me, and indications that 'chromatin environment' is important for the 

distribution of the mark were provided by recent observations of redistribution of H3K27me 

when features of constitutive heterochromatin were disrupted [15,37–39] (see Table 1).

The first indication that perturbation of constitutive heterochromatin impacts the distribution 

of H3K27me came over a decade ago in work with mouse embryonic stem cells (ESCs). 

Cytological observations showed that loss of H3K9me3 in pericentric heterochromatin in 

Suv39h double null cells was associated with new domains of H3K27me3 in patterns 

resembling those typical of H3K9me3 [37]. More recent studies with fungi revealed similar 

redistribution of H3K27me to centromeric regions. In C. neoformans, a chromodomain 

protein, associated with PRC2 in this organism, is required for appropriate H3K27me3 

localization. When the chromodomain of this protein was mutated, H3K27me3 was lost 

from its normal location near the telomeres, and ectopic H3K27me3 appeared at the 

centromeres. The authors proposed that the chromodomain protein normally binds 

H3K27me3 to restrict this histone modification to its normal location, while in its absence 

the EED subunit of PRC2 binds to H3K9me2 at the centromere leading to methylation of 

H3K27 at that region [15]. Chromodomain proteins are not typically found in PRC2 

complexes, but redistribution of H3K27me2/3 was also observed in N. crassa, which has a 

canonical PRC2 complex [12,38] and this was confirmed in another study [40]. When 

H3K9me3 was eliminated, H3K27me2/3 was reduced or lost at most of its normal locations 

and redistributed to constitutive heterochromatin, including centromeres. Moreover, 

elimination of HP1, normally bound to H3K9me3, caused equivalent redistribution of 

H3K27me2/3, without affecting H3K9me3, providing a rare example of cohabitation of 

these two marks on the same molecule [38]. These findings are consistent with the results 

with ESCs but contrast the situation in C. neoformans, where redistribution apparently 

depends on H3K9me. The findings with N. crassa are also consistent with experiments in 

mouse zygotes, where Hp1β prevents ectopic accumulation of H3K27me3 on maternal 

pericentric heterochromatin [39].

There are indications that another repressive mark, DNA methylation, can also, directly or 

indirectly, antagonize H3K27me. In a variety of cell types, loss of DNA methylation, caused 

by disruption of DNA methyltransferase genes or treatment with the demethylating agent 5-

azacytidine, results in accumulation of H3K27me at regions previously marked by 5-

methylcytosine [41–46]. These studies are consistent with data demonstrating that 

unmethylated CpG islands inserted at ectopic genomic locations can efficiently recruit 

H3K27me [47,48]. Neither H3K9me nor DNA methylation directly inhibits PRC2 activity in 
vitro as measured by histone methyltransferase assays [49,50] suggesting that these 

modifications, or proteins that recognize and bind to them, may prevent PRC2 recruitment or 

productive association with chromatin. Supporting this idea, DNA methylation prevents 

binding of factors, such as KDM2B and BEND3, that may be required for PcG recruitment 
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[51–54]. It is noteworthy that DNA methylation is not universally important for the normal 

distribution of H3K27me as elimination of DNA methylation in N. crassa has no effect on 

the distribution of H3K27me [38] and both D. melanogaster and C. elegans lack DNA 

methylation [55]. The impact of perturbing DNA methylation in higher organisms may 

reflect recognized effects of DNA methylation on H3K9me3 in these systems [38, 56,57].

Active histone marks antagonize H3K27me

Actively transcribed regions of the genome marked by H3K4me3 and H3K36me2/3 are 

generally distinct from those marked by H3K27me3. H3K4me3 and H3K27me3 are 

mutually exclusive at HOX genes in Drosophila embryos [58] and differentiated mammalian 

cells, but these modifications can coexist in “bivalent” domains in ESCs [59]. In C. elegans 
embryos and murine mesenchymal progenitor cells, loss of H3K36 methyltransferases 

results in methylation of H3K27 at previously H3K36me regions [60,61]. A mutation found 

in human chondroblastomas, H3.3K36M, which causes global loss of H3K36me2/3, also 

induces gains of H3K27me3 in regions that have lost H3K36me [61]. More broadly, 

quantitative mass spectrometry experiments demonstrated that H3K4me3 and 

H3K27me3[62] or H3K36me3 and H3K27me3 [63,64] rarely co-exist on the same H3 

molecule in mouse or human cell lines. A mechanistic basis for this was demonstrated by 

finding that PRC2 catalytic activity is inhibited by H3K4me3 and H3K36me2/3 in vitro 
[50].

Histone acetylation is also associated with gene expression [65]. Because acetylation of 

H3K27 (H3K27ac) is not compatible with methylation of this residue, histone deacetylation 

is required to create a chromatin context permissive for PRC2 activity [66–69]. Together 

these findings support the idea that active chromatin regions are refractory to PRC2 activity, 

preventing H3K27me3-mediated repression of transcriptionally active genes.

H2Aub1 deposited by PRC1 recruits H3K27me

Histone modifications can render a chromatin environment permissive for H3K27me. The 

recent observation that H2Aub1, a mark catalyzed by a RING protein in PRC1, can recruit 

PRC2 and cause H3K27me3 has challenged the classical view of PcG recruitment in which 

H3K27me3 deposited by PRC2 serves as a binding platform for chromodomain proteins in 

the canonical PRC1 complex [49,70,71]. Tethering a variant PRC1 complex to a bacterial 

artificial chromosome containing human DNA provided evidence in mouse ESCs that 

H2Aub1 catalyzed by the tethered protein can recruit PRC2 and H3K27me3. A 

complementary study demonstrated that variant PRC1 can also recruit PRC2 and 

H3K27me3 to pericentric heterochromatin in mouse ESCs [49]. In addition to promoting 

PRC2 recruitment, H2Aub1 apparently stimulates its enzymatic activity [72].

Transcription inhibits H3K27me

In addition to responding, directly or indirectly, to histone modifications and DNA 

methylation, PRC2 can respond directly to transcription. The complex can bind RNA and 

there are indications that PRC2 is sensitive to the transcriptional state of promoters. Given 
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the role of PRC2 in transcriptional repression, it was surprising that RIP-seq studies, which 

detect RNAs associated with a protein of interest, suggested that PRC2 binds promiscuously 

to nascent RNAs at active promoters genome-wide [73,74]. This observation was reconciled 

by data demonstrating that RNA binding inhibits the catalytic activity of PRC2, perhaps 

accounting for the absence of H3K27me in regions producing RNA bound by PRC2. ChIP-

seq experiments with human cell lines revealed chromatin-associated PRC2 enriched at 

promoters of repressed genes, the majority of which were marked by H3K27me3 [74]. 

Additional support for the idea that PRC2 responds to the transcriptional status of chromatin 

comes from studies demonstrating that chemical inhibition of RNA pol II-dependent 

transcription in mESCs is sufficient to recruit PRC2 and H3K27me3 to thousands of genes. 

Importantly, nearly all of the genes that gained H3K27me3 upon transcriptional repression 

are bona fide PRC2 target genes in differentiated tissues, although not in mESCs [32]. This 

observation was reiterated by finding that deletion of the genomic region containing the 

transcription start site led to loss of transcription, histone deacetylation and accumulation of 

H3K27me3 [75]. Taken together these data support a model in which PRC2 takes cues from 

the chromatin environment where it can sense transcription by interacting with nascent 

transcripts, which then prevent productive interaction with chromatin and modification of 

H3K27.

Conclusions

The findings summarized above are consistent with the idea that H3K27me catalyzed by 

PRC2 is directed by various inputs from the chromatin environment (Figure 1). There are at 

least three layers of regulation that contribute to PRC2 target selection: 1. Recruitment 2. 

Loading onto chromatin and 3. Regulation of catalytic activity. Some loci may utilize 

sequence-specific PcG targeting mechanisms using lncRNAs or transcription factor binding 

motifs, but many loci appear to lack any direct recruitment strategy. H3K27me targeting to 

these loci may rely on the ability of PRC2 to sense the chromatin environment. Once PRC2 

is recruited to a given genomic location, it must productively associate with chromatin. This 

step likely requires the chromatin to be “accessible”, which might in part be dictated by lack 

of transcription and associated chromatin marks, as well as the absence of repressive 

epigenetic marks and proteins that recognize and bind to these modifications. Both high [76] 

and low nucleosome density [32] have been reported to promote H3K27me. Other factors 

such as chromosomal conformation and spatial location within the nucleus may also 

facilitate PRC2 access to chromatin. The final layer of regulation is the catalytic activity of 

PRC2. Signs of active transcription, in the form of RNA, H3K4me3, H3K36me2/3, and 

histone acetylation may prevent methylation of H3K27. While repressive marks, such as 

DNA methylation and H3K9me, do not directly inhibit PRC2 enzymatic activity, the effects 

of proteins that bind to these modifications have not been directly tested. Conversely the 

chromatin environment, specifically marks associated with PcG, H3K27me and H2Aub1, 

can stimulate PRC2 activity.

The ability of PRC2 to respond to a variety of local signals in chromatin is striking. 

Available information suggests PRC2 does not have reciprocal effects on other chromatin 

modifiers. For example, PRC2 has little effect on the distribution of DNA-me or H3K9me 

[38,45]. Similarly, while H3K36me2/3 inhibits PRC2 activity, H3K27me does not inhibit the 
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H3K36 methyltransferases HYBP [63] or NSD2 [50]. While the adaptability of PRC2 to 

different chromatin environments may preclude a unifying model for control of H3K27me, 

this remarkable plasticity may be crucial to its ability to maintain silencing of specific genes 

in different cell lineages.
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Figure 1. Model in which PRC2 responds to the chromatin environment to establish H3K27me 
domains
Repressive features of constitutive heterochromatin including DNA methylation (5mC), 

H3K9me (K9me), and HP1 binding influence methylation of H3K27 by PRC2. Conversely, 

histone modifications associated with transcription such as H3K4me (K4me), H3K36me 

(K36me), and H3K27ac (K27ac), as well as RNA can directly inhibit PRC2 catalytic activity 

to prevent H3K27me at regions of active gene expression. Genomic regions that do not 

contain features of active or repressed chromatin may be targeted by PRC2. Other properties 

of the chromatin environment such as nucleosome occupancy, chromosome conformation 

and location within the nucleus (not pictured) may also contribute to PRC2 target selection.
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Table 1

Examples of alterations to chromatin that cause redistribution of H3K27me

Organism Normal H3K27me distribution Perturbation H3K27me redistribution

A. thaliana Promoters and gene bodies[77] Loss of MET1 (DNA 
methyltransferase)

• Some normal H3K27me 
regions lost and replaced by 
H3K9me and DNA-me

• H3K27me gained at 
constitutive heterochromatin 
and CG hypomethylated 
transposons [42]

C. neoformans Sub-telomeres Loss of Ccc1 (chromodomain protein 
in PRC2 complex)

• H3K27me3 lost at 
telomeres

• H3K27me3 gained at 
centromeres [15]

N. crassa Sub-telomeres and interspersed 
genic regions

1 Loss of DIM-2 (DNA 
methyltransferase)

2 Loss of DIM-5 (H3K9 
methyltransferase) or 
HP1

1 Normal H3K27me2/3

2 H3K27me lost or reduced at 
normal regions and gained 
at centromeres and other 
regions normally bound by 
HP1 [38,40]

C. elegans Alternating H3K27me3 and 
H3K36me3 domains on autosomes

Loss of MES-4 (H3K36 
methyltransferase)

• H3K27me3 reduced at some 
normally methylated genes

• H3K27me3 gained at genes 
that lost H3K36me3 [60]

M. musculus 
(mesenchymal 
progenitor cells)

Promoters and gene bodies H3.3K36M or depletion of Nsd1/2 
and Setd2 (H3K36 
methyltransferases)

• H3K27me3 retained at 
normal target genes

• H3K27me3 gained at 
intergenic regions that lost 
H3K36me2/3 [61]

M. musculus 
(neural stem 
cells)

Promoters and gene bodies DNMT3a KO (DNA 
methyltransferase)

• H3K27me3 retained at 
normal targets

• H3K27me3 gained at genes 
that are DNA-me depleted 
and down- regulated [46]

M. musculus 
(embryonic 
fibroblasts)

Promoters and gene bodies DNMT1n/n (DNA methyltransferase 
hypomorph)

• H3K27me lost from 
normally methylated 
promoters

• H3K27me gained at CpGs 
that normally have high 
levels of DNA-me [44]
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