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Abstract

Protein misfolding and aggregation unify several devastating neurodegenerative disorders, 

including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. There are 

no effective therapeutics for these disorders and none that target the reversal of the aberrant protein 

misfolding and aggregation that cause disease. Here, I showcase important advances to define, 

engineer, and apply protein disaggregases to mitigate deleterious protein misfolding and counter 

neurodegeneration. I focus on two exogenous protein disaggregases, Hsp104 from yeast and gene 

3 protein from bacteriophages, as well as endogenous human protein disaggregases, including: (a) 

Hsp110, Hsp70, Hsp40, and small heat-shock proteins; (b) HtrA1; and (c) NMNAT2 and Hsp90. I 

suggest that protein-disaggregase modalities can be channeled to treat numerous fatal and 

presently incurable neurodegenerative diseases.

Introduction

Deleterious protein misfolding and aggregation underpin several invariably fatal and age-

related neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease 

(PD), and amyotrophic lateral sclerosis (ALS) [1]. Typically, in each disease specific 

proteins misfold, aggregate, and wreak havoc on the nervous system [1]. In AD, amyloid-β 
(Aβ) peptides form extracellular, neuritic plaques and tau forms intracellular neurofibrillary 

tangles in afflicted neurons [1]. By contrast, in PD, α-synuclein (α-syn) forms cytoplasmic 

Lewy bodies in degenerating dopaminergic neurons [1]. In most ALS cases, RNA-binding 

proteins with prion-like domains, such as TDP-43 or FUS, mislocalize from the nucleus to 

cytoplasmic aggregates in degenerating motor neurons and glia [1,2]. Current treatments for 

these disorders are palliative and ineffective. No therapeutics exist that reverse the aberrant 

protein misfolding and aggregation that underlie disease. The lack of effective therapies is a 

cause of immense angst as these diseases are increasing in prevalence as our population 

ages.
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Complexity of protein misfolding

Protein misfolding is a complex, multistate process [3,4]. The specific proteins that misfold 

in neurodegenerative disease are often intrinsically disordered, harbor an intrinsically 

disordered domain, or passage through partially unfolded states that enables them to morph 

into an eclectic menagerie of misfolded structures with variable toxicities [1–5]. These 

structures include self-templating amyloid fibrils with cross-β architecture, disordered 

aggregates, and small soluble oligomers [1,3]. For example, in PD, a small intrinsically-

disordered protein, α-syn, forms amyloid fibrils that self-template or ‘seed’ their own 

assembly via recruiting soluble forms of α-syn to their elongating ends where α-syn is 

conformationally converted to the cross-β structure [1,6–8,9•,10•]. α-Syn amyloid can 

spread from cell to cell, thereby propagating pathology [1,6,8,11,12••,13,14]. Indeed, 

amyloid fibrils formed by recombinant α-syn in the test tube can induce a PD-like disease 

when injected into the brain of a mouse [6,11,13]. This transforming principle establishes 

that the self-replicating structure of α-syn amyloid can encode the PD phenotype, which 

develops via the ongoing conversion of endogenous α-syn to the amyloid state as α-syn 

fibrils spread through the brain [1,8,13,15]. Moreover, α-syn can form fibrils with different 

cross-β structures, termed ‘strains’, which encode distinct neurodegenerative phenotypes [9•,

10•,16,17•,18,19]. The lateral face of α-syn amyloid provides a surface where α-syn 

oligomers can nucleate [20]. α-Syn populates diverse soluble, oligomeric species before, 

during, and after α-syn amyloidogenesis, which can be on or off pathway for amyloid 

formation [7,21–25,26•]. α-Syn oligomers are typically more toxic than mature fibrils 

[7,23]. Small soluble oligomers or short, fragmented amyloid fibrils are more toxic than very 

large aggregated species, which due to their low surface-area-to-volume-ratio shield 

damaging surfaces inside the aggregate [7,23,27]. A major challenge for any therapeutic 

aimed at mitigating protein misfolding is the ability to remodel diverse, toxic misfolded 

conformers, including soluble oligomers and amyloid fibrils into benign species [28,29].

Protein disaggregases as potential therapeutics

I have postulated that protein disaggregases could be uniquely suited to meet this challenge 

as they can safely deconstruct self-templating amyloid and toxic soluble oligomers, and 

recover soluble protein with restored functionality from these structures [28,29]. Thus, 

protein disaggregases could mitigate any toxic gain-of-function or toxic loss-of-function 

connected with protein misfolding, and simultaneously could eradicate self-templating 

species that propagate disease [28,29]. Protein disaggregation might also be coupled to 

protein degradation, which could also be beneficial to eliminate toxic and self-templating 

conformers, and subsequent translation of new protein could antagonize any toxic loss-of-

function [29]. However, protein disaggregases remain among the least understood 

components of the proteostasis network, and we are only at the inception of realizing their 

existence and potential [28,29]. Here, I highlight recent advances to define, engineer, and 

apply protein disaggregases to reverse deleterious protein misfolding in neurodegenerative 

disease.
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Hsp104, a protein disaggregase from yeast

Hsp104 is an asymmetric ring-shaped translocase and hexameric AAA+ protein found in 

yeast [30,31••]. Hsp104 couples ATP hydrolysis to the rapid dissolution and reactivation of 

diverse proteins trapped in disordered aggregates, ordered stress-induced assemblies, 

preamyloid oligomers, amyloids, and prions [32–37,38••]. Optimal Hsp104 disaggregase 

activity can require collaboration with the Hsp70 chaperone system [30]. In yeast, Hsp104 

performs critical functions in stress tolerance, prion inheritance, asymmetric partitioning of 

aggregates during cell division, and promoting longevity [30]. Hsp104 rapidly disaggregates 

Sup35 prions within a few minutes [35–37,39]. Moreover, Hsp104 effectively dissolves 

amyloids formed by diverse human degenerative disease proteins, including: Aβ42, tau, 

polyglutamine, α-syn, prion protein (PrP), and amylin [34,40–42]. Hsp104 also rapidly 

remodels amyloid fibrils formed by fragments of prostatic acid phosphatase (PAP248-286 

and PAP85-120) [43••], which are abundant in human seminal fluid and promote HIV 

infection [44]. This rapid and broad-spectrum amyloid-disaggregase activity of Hsp104 is 

unusual and might represent a therapeutic opportunity [28].

Intriguingly, Hsp104 is absent from metazoa, but is found in all non-metazoan eukaryotes, 

all eubacteria, and some archaebacteria [45]. Thus, Hsp104 could be developed into a vital 

disruptive technology that retools proteostasis to combat neurodegenerative disease and HIV 

infection [28,43••,46]. Indeed, we have established Hsp104 as the only factor known to 

dissociate α-syn oligomers and amyloids connected with PD and rescue α-syn-induced 

neurodegeneration in the substantia nigra of a rat PD model [34,40,41]. Moreover, Hsp104 

rescues polyglutamine toxicity and neurodegeneration in C. elegans, fly, mouse, and rat 

[28,47]. Hsp104 even rescues polyglutamine toxicity after degeneration has begun [47]. 

Hsp104 expression is not detrimental in metazoa and can be broadly and safely expressed in 

worm, fly, mouse, and rat, as well as in mammalian cell and neuronal cultures [28,34,47]. 

These findings make it difficult to understand why Hsp104 was lost from metazoa, but also 

emphasize that Hsp104 might be safely introduced and developed as a therapeutic agent 

[28,43••,46].

Despite these encouraging activities, very high Hsp104 concentrations are needed for 

optimal disaggregation of human disease proteins, such as α-syn, which may restrict 

efficacy [34,40,41]. Thus, we have engineered potentiated Hsp104 variants, which rescue 

aggregation and toxicity of proteins associated with neurodegenerative disease such as 

TDP-43, FUS, TAF15, and α-syn, and mitigate neurodegeneration in the metazoan nervous 

system at concentrations where Hsp104 is ineffective [46,48••,49,50,51••,52]. Hsp104 

activity can be potentiated by single missense mutations at specific positions in the middle 

domain or nucleotide-binding domain 1 of Hsp104 [46]. Potentiating mutations reconfigure 

how Hsp104 subunits collaborate, alter substrate discrimination, alleviate any stringent 

requirements for Hsp70, and enhance Hsp104’s ATPase, translocase (rate at which 

substrates are translocated across the central channel of Hsp104), unfoldase, and 

disaggregase activity [48••,49,50]. These combined properties enable potentiated Hsp104 

variants to outperform Hsp104 under conditions where an aggregation-prone protein such as 

TDP-43, FUS, or α-syn has exceeded proteostatic buffers and is undergoing widespread 

misfolding and aggregation [46]. Potentiated Hsp104 variants can have off-target effects 
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[48••,49], and may require further engineering to minimize these via increasing substrate 

selectivity [46]. Importantly, substoichiometric concentrations of potentiated Hsp104 

variants can remodel amyloid [43••]. For example, nanomolar concentrations of an enhanced 

Hsp104 variant, Hsp104A503V, can remodel micromolar concentrations of PAP248-296 

sequestered in SEVI fibrils [43••]. The challenge ahead is to determine whether Hsp104 or 

enhanced variants can confer increased therapeutic benefits in mammalian cells, patient-

derived neurons, and additional animal models of neurodegeneration.

An issue that is often raised about introducing any exogenous protein as a therapeutic is 

whether the patient might mount a deleterious immune response against the therapeutic 

protein. However, it is important to note that the central nervous system (CNS) exhibits 

immune privilege [53]. Thus, immune responses to CNS antigens are very slow to develop 

[53], which could provide a therapeutic window for exogenous agents, such as Hsp104 [29], 

tetanus and botulinum toxin variants [54], or even CRISPR-Cas9 [55] delivered to the CNS. 

Indeed, we observed no deleterious side effects of expressing Hsp104 for 6 weeks in the rat 

substantia nigra when delivered via lentivirus [34]. Transient expression or delivery of an 

exogenous therapeutic protein to the CNS may thus be well tolerated (particularly if 

combined with an immunosuppressant), although significant caution is highly warranted.

Gene 3 protein, a protein disaggregase from bacteriophage M13

Hsp104 must hydrolyze ATP to disaggregate proteins [30], which would limit disaggregase 

activity in ATP-depleted environments such as the extracellular space, where the ATP 

concentration is ~10nM compared to ~3–10mM inside cells [56]. The extracellular space is 

where Aβ deposits accumulate in AD and prions accumulate in Creutzfeldt-Jakob Disease 

[1]. Thus, to antagonize these extracellular protein-misfolding events Hsp104 would need to 

be engineered to operate effectively at limiting ATP concentrations. An alternative strategy 

is to define ATP-independent protein disaggregases, which may couple binding energy to 

disaggregation and are operational outside cells. Select small molecules, including CLR01, a 

lysine- and arginine-specific molecular tweezer, and the green tea polyphenol, EGCG, can 

safely disaggregate or remodel diverse amyloids [57,58,59••,60]. A human Aβ oligomer- 

and fibril-specific monoclonal antibody, aducanumab, promotes clearance of Aβ plaques and 

may retard clinical decline in AD patients and is now in phase 3 trials [61••]. However, 

whether this Aβ-plaque clearance is due to fibril disaggregation (as with select anti-Aβ 
antibodies that bind the N-terminal region of Aβ [62,63]), phagocytic clearance by 

microglia, or both is uncertain [61••]. Several other ATP-independent protein disaggregases 

have emerged including a subunit of the chloroplast signal recognition particle [64–66], 

cyclophilin [67–69], HtrA1 [70••], and gene 3 protein (g3p) [71••].

G3p is a minor capsid protein from filamentous bacteriophage M13, which enables viral 

entry into the bacterial host [72]. Remarkably, g3p enables M13 bacteriophages to slowly 

remodel diverse amyloids, including those formed by Aβ42, α-syn, tau, and NM (the prion 

domain of Sup35) [71••,73]. This amyloid-remodeling activity may enable phages to infect 

bacteria by penetrating protective amyloid-based biofilms [74]. The amyloid-binding activity 

of g3p was mapped to its two N-terminal domains, which are separated by a glycine-rich 

hinge [71••]. A recombinant soluble g3p fragment, termed G3P, which comprises the two N-

Shorter Page 4

Curr Opin Genet Dev. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



terminal domains and the hinge could bind diverse amyloids but could not disaggregate them 

[71••]. However, 3–5 copies of g3p form an oligomer at the tip of the filamentous phage 

capsid [72]. Thus, g3p multivalency may enable amyloid remodeling [71••]. Indeed, 

amyloid-disaggregation activity was restored by engineering G3P to be dimeric via an 

immunoglobulin (Ig) Fc-G3P fusion protein (Ig-G3P) [71••]. Importantly, Ig-G3P selectively 

bound and disaggregated diverse amyloids, including Aβ42 and tau fibrils, and did not 

interact with various disordered aggregates or monomeric Aβ42 [71••]. It is not yet clear 

whether Ig-G3P remodels soluble toxic oligomers. Although the mechanism by which Ig-

G3P dissociates diverse amyloids is uncertain, multiple binding events to different regions of 

assembled fibrils seems likely to be important [71••]. Importantly, weekly intraperitoneal 

injection of Ig-G3P reduced both Aβ and tau pathologies and improved cognition in mouse 

models [75•]. Thus, Ig-G3P is an interesting therapeutic candidate for AD that targets Aβ 
and tau misfolding, and is now in Phase 1B clinical trials [75•].

Hsp110, Hsp70, and Hsp40 disaggregases in humans

Bafflingly, Hsp104 is absent from metazoa [28,45], and whether metazoa even possess a 

protein disaggregation and reactivation machinery had endured as a long-standing enigma 

[41,52]. It is now clear that human Hsp110, Hsp70, and Hsp40 synergize to dissolve and 

reactivate model proteins trapped in disordered aggregates and depolymerize amyloid fibrils 

formed by α-syn [41,52,76–80]. Small heat-shock proteins can further enhance the 

disaggregase activity of this system [76]. Proteins disaggregated by Hsp110, Hsp70, and 

Hsp40 can be refolded [41,80] or passed to the proteasome to be degraded [81••]. This latter 

pathway is mediated by Ubiquilin 2, which recognizes client-bound Hsp70 and enables 

transfer of client to the proteasome [81••]. Interestingly, ALS-linked mutations in Ubiquilin 

2 impair this activity, which may contribute to disease [81••].

Hsp110, Hsp70, and Hsp40 drive disaggregation by exerting pulling forces on aggregated 

polypeptides, which are forcibly extracted from the aggregate [52,82,83]. This system might 

also remodel toxic soluble oligomers formed by various proteins [37,84]. Hsp70 must 

engage substrate and Hsp110, and hydrolyze ATP to drive protein disaggregation [41,52]. 

Hsp40 must harbor a functional J domain (which stimulates Hsp110 and Hsp70 ATPase 

activity) to promote protein disaggregation, but the J domain alone is insufficient [41,52]. 

Whether Hsp110 acts simply as a nucleotide exchange factor (NEF) for Hsp70 or whether it 

must also bind substrate, hydrolyze ATP, or both as part of the disaggregation reaction is 

debated [52,82,83]. Likewise, whether Hsp70 must act as a NEF for Hsp110 to drive protein 

disaggregation is debated [52,78,83]. I suspect there is plasticity in disaggregase mechanism 

with respect to the exact role of Hsp110, which may depend on aggregate structure as with 

Hsp104 [40,52]. Indeed, Hsp70 (and likely Hsp110) exhibits functional plasticity via 

alternative modes of client engagement, which can promote protein folding or unfolding 

[85•]. Regardless, humans express a variety of Hsp110, Hsp70, and Hsp40 chaperones, and 

the precise combination and ratio of components can enhance or inhibit disaggregase 

activity against different substrates [41,77–80].

The Hsp110, Hsp70, and Hsp40 disaggregase machinery must become overwhelmed in 

neurodegenerative disease. Indeed, Hsp110 knockout mice develop age-dependent tau 
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hyperphosphorylation, early accumulation of insoluble Aβ, and neurodegeneration [86]. 

Moreover, Hsp110 (or another Hsp70 NEF, Bag3), Hsp70, Hsp40, and small heat-shock 

proteins collaborate to dissolve stress granules [87,88,89••,90], dynamic RNP assemblies 

that accumulate upon stress (and incorporate TDP-43 and FUS), and are connected to ALS 

and formation of pathological aggregates [2,4]. Upregulation or stimulation of Hsp110, 

Hsp70, and Hsp40 disaggregase activity, perhaps with small-molecule drugs [91], could 

have key therapeutic applications [29]. Importantly, Hsp104 can greatly enhance the 

disaggregase activity of Hsp110, Hsp70, and Hsp40 [41,76]. Co-expression of Hsp110 and 

Hsp40 in Drosophila suppresses polyglutamine toxicity [92]. Moreover, increased 

expression of Hsp110 extends lifespan of ALS-linked SOD1 transgenic mice [93••].

Engineering Hsp110, Hsp70, and Hsp40 to have enhanced disaggregase activity may enable 

robust neuroprotection [94]. Hsp70 variants with enhanced chaperone or disaggregase 

activity against specific model substrates have been uncovered [94–97], but whether these 

can be translated into neuroprotective agents in vivo is unknown. Engineering a secreted 

form of Hsp70 rescued a Drosophila model of AD, although in this case Hsp70 promoted 

clustering of Aβ42 into larger aggregates with reduced neurotoxicity [98•]. This clustering 

activity appears to be a general feature of molecular chaperones that must operate under 

ATP-limited conditions such as the extracellular space, and can be protective by minimizing 

exposure of reactive surfaces by confining them within the aggregate interior [43••,99].

HtrA1, an ATP-independent human protein disaggregase

HtrA1 is a ubiquitously expressed chaperone and homo-oligomeric PDZ serine protease 

abundant in human brain [100,101], which is also an ATP-independent protein disaggregase 

[70••]. HtrA1 is localized to the cytoplasm and extracellular space, and selectively degrades 

misfolded substrates while leaving their folded counterparts alone [29,70••,100,101]. HtrA1 

disassembles and degrades tau and Aβ42 fibrils connected to AD [70••]. An engineered 

protease-defective HtrA1 variant dissolves tau and Aβ42 fibrils without degrading them 

[70••]. Thus, HtrA1 could be tailored to dissolve inclusions in AD or tauopathies, which 

could be important to rapidly restore tau loss-of-function [29]. A significant inverse 

correlation exists between HtrA1 and tau levels in AD patient brains [101]. These data 

suggest that HtrA1 functions as a tau disaggregase and protease in vivo [70••,101]. Whether 

HtrA1 can dissociate and degrade toxic soluble oligomers is uncertain. Nonetheless, HtrA1 

could be a valuable ATP-independent protein disaggregase against AD, and like Ig-G3P 

targets both tau and Aβ42 [70••,71••]. It will be important to test whether elevating HtrA1 

activity is protective in animal models of AD and tauopathy. Intriguingly, defects in the 

mitochondrial isoform, HtrA2, have been connected to PD [102].

NMNAT2 and Hsp90 combine to refold aggregated proteins

Nicotinamide mononucleotide adenylyl transferases (NMNATs) synthesize nicotinamide 

adenine dinucleotide (NAD+) [103], a critical co-enzyme that performs key electron-transfer 

events in metabolism and is an essential substrate for sirtuins and poly(adenosine 

diphosphate-ribose) polymerases [104]. Humans express three NMNATs, with NMNAT2 

being abundant in the brain, whereas Drosophila express a single NMNAT [103]. 
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Remarkably, NMNATs can be neuroprotective in several models of neurodegenerative 

disease, and can function as chaperones that prevent aggregation of disease proteins, 

including polyglutamine-expanded ataxin 1 and tau [103,105,106]. NMNAT2 collaborates 

with Hsp90 to disaggregate and refold previously aggregated proteins [107••]. NMNAT2 

disaggregase activity is independent from NAD+ biosynthesis, but requires a unique C-

terminal ATP-binding site that may be activated by Hsp90 [107••]. Thus, NMNAT2 

chaperone and disaggregase activity may reduce proteotoxicity, whereas its NAD+ 

biosynthetic activity may protect neurons from excitotoxicity [107••]. Indeed, NAD+ 

replenishment strategies may confer neuroprotection in prion diseases [108]. In the absence 

of NMNAT2, Hsp90 can depolymerize TDP-43 fibrils in vitro [109]. The precise mechanism 

by which NMNAT2 and Hsp90 combine to promote protein disaggregation and reactivation 

remains unclear. Nonetheless, methods to stimulate the disaggregase activity or upregulate 

expression of NMNAT2, Hsp90, or both, perhaps with small-molecule drugs, could be 

important to combat neurodegenerative disease.

Conclusions and Future Directions

Endogenous human protein disaggregases fail to counter neurodegenerative disease, perhaps 

due to reduced expression or activity in selectively vulnerable neurons [93••,101,107••,110]. 

Thus, augmenting or stimulating their activity could have therapeutic utility [29]. Here, I 

have highlighted several natural and engineered protein-disaggregase modalities that could 

be appropriated for therapeutic purposes. Excitingly, Ig-G3P is now in clinical trials for AD, 

and Hsp104 [34,37,47,48••], Hsp110, Hsp70, and Hsp40 [92,93••], and NMNAT2 plus 

Hsp90 [106,107••] have shown efficacy in animal models of neurodegenerative disease. 

Additional fine tuning of disaggregase activity for specific substrates may help optimize 

each system for specific disorders [29]. There is also great interest in defining small-

molecule drugs that increase expression or directly enhance the activity of endogenous 

human protein disaggregases [29]. It will also be important to determine whether natural 

polymorphisms in endogenous human molecular chaperones or protein disaggregases [111] 

enhance their activity and render individuals more resistant to developing a 

neurodegenerative disease. We are still only beginning to realize the existence and 

therapeutic potential of protein disaggregases and many challenges lie ahead in translation to 

therapeutics [29]. Nonetheless, protein disaggregases represent a valuable opportunity to 

develop treatments for several devastating neurodegenerative diseases.
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Highlights

• Showcases advances to define, engineer, and apply protein disaggregases to 

mitigate neurodegenerative disease associated with protein misfolding.

• Highlights therapeutic disaggregase activity of Hsp104 and directed 

engineered variants with robust activity against clients linked to 

neurodegeneration.

• Highlights therapeutic disaggregase activity of gene 3 protein and engineered 

variants with robust activity against clients linked to neurodegeneration.

• Detailed discussion of the disaggregase activities of human Hsp110, Hsp70 

and Hsp40; human HtrA1; and human NMNAT2 with Hsp90.

• Emphasis on how engineered variants of powerful chaperones with newly 

identified disaggregase activity can be harnessed against clients linked to 

neurodegeneration.
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