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Abstract

Combining information from multiple senses creates robust percepts, speeds up responses, 

enhances learning, and improves detection, discrimination, and recognition. In this review, I 

discuss computational models and principles that provide insight into how this process of 

multisensory integration occurs at the behavioral and neural level. My initial focus is on drift-

diffusion and Bayesian models that can predict behavior in multisensory contexts. I then highlight 

how recent neurophysiological and perturbation experiments provide evidence for a distributed 

redundant network for multisensory integration. I also emphasize studies which show that task-

relevant variables in multisensory contexts are distributed in heterogeneous neural populations. 

Finally, I describe dimensionality reduction methods and recurrent neural network models that 

may help decipher heterogeneous neural populations involved in multisensory integration.

Introduction

At every moment, our brains are combining cues from multiple senses to form robust 

percepts of signals in the world, a process termed multisensory integration [1]. For instance, 

the percept of flavor involves integration of gustatory and olfactory cues [2,3]. Multisensory 

integration also enhances our ability to discriminate between sensory stimuli and guides 

efficient action [1,4]. In noisy auditory environments, visual cues from facial motion are 

combined with the auditory components of speech to improve comprehension [5–7]. 

Similarly, when interacting with the world, the motor system integrates visual and 

proprioceptive feedback to guide limb movements and respond to unexpected perturbations 

[8,9]. Finally, multisensory training is more effective for learning tasks and information than 

unisensory learning [10].

These examples highlight the importance of multisensory integration for everyday life. 

However, the effortless nature of multisensory integration hides the underlying complexity 

of this process [11–17]. Sensory signals vary in intensity, have different noise profiles, are 
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delayed relative to each other [5,8,18], and exist in different reference frames [9,19]. 

Seminal experiments in the anesthetized cat in combination with recent experiments in many 

other species have established several fundamental principles of multisensory integration 

[Box 1, 20]. However, recent studies suggest that we need to go beyond these principles 

[21,22]. The first goal of this review is to highlight new efforts that are facilitating the rapid 

development of newer computational frameworks to understand behavioral and neural 

multisensory integration. Another goal is to suggest that dimensionality reduction techniques 

and recurrent neural network (RNN) models might help us better understand neuronal 

responses in multisensory brain areas and thus facilitate the development of newer 

computational principles underlying multisensory integration.

Bayesian decision theory and the drift-diffusion model can explain 

multisensory behavior

Multiple sensory systems provide independent estimates that can be combined to reduce 

noise and uncertainty thereby improving precision [1]. An improvement in the precision of 

the percept, in turn, improves behavior. For instance, many species, including fish, 

discriminate and recognize multisensory stimuli better than unisensory stimuli [23*,24–27] 

and appear to combine sensory cues in an optimal (or near-optimal) manner [28]. Near-

optimal behavior in this context means that observers consider the variation in cue reliability 

on a trial-by-trial basis to maximize their behavioral accuracy. Bayesian decision theory 

models near-optimal discrimination and other behaviors such as identifying the underlying 

cause of events in the world [29,30**,31] as a statistical inference process performed by the 

brain [32] (Fig. 1A). Bayesian models assume that probability distributions of prior 

knowledge and sensory information (likelihood) are known [1,24,33]. The Bayesian 

framework’s success in explaining behavior has inspired the development of neural network 

models that can represent probability distributions [34] and perform near-optimal Bayesian 

inference as well as other important probabilistic computations [17,35]. Efforts using 

machine learning have also described learning rules and architectures to learn near-optimal 

behaviors [19].

Other computational models aim to describe the multisensory reaction time (RT) benefits 

observed in redundant signal detection paradigms where two (or more) sensory stimuli 

(often from the auditory and visual modalities) are presented simultaneously or with a short 

delay in between them [18,36–40]. Faster multisensory compared to unisensory RTs in these 

tasks can emerge from two candidate mechanisms. The first mechanism, the race model, 

argues that the RT benefits emerge due to “statistical facilitation” and not multisensory 

integration [41–43]. Statistical facilitation refers to the mathematical property that the mean 

of the minimum of two distributions is less than the mean of the individual distributions. 

Concretely, if A and V are two random variables denoting RT distributions, then the mean of 

the distribution formed by min (A, V) is less than the minimum of the means of A and V 

distributions. Thus, even without explicitly combining sensory cues, it is statistically 

possible to obtain faster RTs for multisensory compared to unisensory stimuli. When 

appropriate care is taken to arrange experimental conditions, an inequality based statistical 

test can be used to reject the race model [44,45*].
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Typically, after rejecting the race model, “coactivation” models (Fig. 1B), which assume that 

both components of the redundant signal influence responses on a single trial are used to 

model RT. The simplest coactivation models assume that activation from sensory inputs are 

summed and integrated over time according to a drift-diffusion process to a response 

criterion ([46,47], Fig. 1B). These models explain multisensory RTs in detection tasks across 

a large range of stimulus delays [46,47] and can model behavior in choice and go/no-go 

tasks [39].

One issue with simple coactivation models is that they combine sensory inputs without 

weighting them according to their reliability—a clearly sub-optimal strategy when the 

reliability of sensory inputs varies widely across contexts as well as a function of time. A 

recent study addressed this issue by fusing the coactivation framework and the principles of 

Bayesian cue combination to explain behavior in multisensory RT discrimination tasks 

[48**]. The model weights the input from different sensory cues using their reliability at 

every moment during the integration of sensory evidence (Fig. 1C) and explains both 

accuracy as well as RT of human participants in multisensory heading discrimination tasks. 

Extensions to this model will likely explain discrimination behavior across both a range of 

stimulus difficulties as well as delays between time-varying sensory signals.

A distributed network with multiple redundant pathways mediates 

multisensory integration

The Bayesian framework’s success in explaining behavior has inspired studies to examine 

the relationship between its core principles and neuronal responses in different brain regions 

during multisensory discrimination tasks [12,15]. Monkeys, when trained to report their 

heading direction, also near-optimally combine visual (optic flow), and vestibular cues [27]. 

They are also sensitive to changes in the reliability of these cues on a trial-by-trial basis [49]. 

Consistent with this near-optimal behavior, a subpopulation of medial superior temporal area 

(MSTd) neurons with congruent tuning to visual and vestibular cues also combines these 

cues near-optimally [15]. Association areas such as the frontal eye fields (FEF, [50]) and 

ventral intraparietal area (VIP, [51]) are also likely to be relevant for heading discrimination. 

The strongest signals that correlate with the animal’s behavioral choice are found in VIP 

[51].

The neurophysiological studies discussed thus far suggest a feed forward hierarchical 

process for multisensory integration where sensory cues are processed in unisensory areas 

(visual or auditory areas) and then subsequently processed in high-level association areas 

(e.g., parietal or prefrontal cortex) to result in multisensory behavior [13,52]. This 

feedforward hierarchical view predicts that timing of responses should follow a systematic 

order from unisensory to high-level association areas and inactivation of high-level areas 

such as the parietal cortex should result in profound multisensory behavioral deficits. 

However, simultaneous recordings in several cortical structures reveal that the simple feed 

forward view provides a poor account of the timing of responses across areas even for 

flexible unisensory (visually guided) decision-making [53**]. Inactivating VIP had minimal 

impact on the behavior in the multisensory heading discrimination task [54*]—a result 
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consistent with the mild behavioral consequences of inactivating lateral intraparietal area 

(LIP) of monkeys performing a unisensory motion discrimination task [55*]. These 

perturbation studies suggest that multiple redundant pathways, which involve other areas 

besides the parietal lobe, are likely involved in multisensory integration (and decision-

making). The perturbation results also imply that choice-related activity in an area may not 

always imply a causal role in discrimination behavior and highlight the need for a better 

understanding of the factors that lead to neural responses in an area to covary with choice 

[56–58]. Together, the recent results suggest that the feed forward view is insufficient to 

explain multisensory integration [13].

The feedforward view of multisensory integration (and other behaviors) is also inconsistent 
with connectivity studies and neurophysiological experiments that demonstrate multisensory 

effects in primary sensory areas. Studies show anatomical connections between putatively 

unisensory areas [59,60] and neurophysiological studies demonstrate that sensory inputs 

from other modalities (e.g., visual cues) modulate firing rates (FRs) in classically unisensory 

cortices [61–64] (e.g., auditory cortex). For example, in monkeys performing an audiovisual 

redundant signals detection task, the motion of the mouth reduces the response latency of 

auditory cortical spiking responses to vocalizations [64]. These trial-by-trial changes in 

auditory cortical response latencies modestly covary with RT and thus potentially contribute 

to the RT benefits observed in multisensory detection tasks [18,36–40]. Similarly, using 

multisite electrophysiology and optogenetic inactivation, a recent study showed that 

projections from gustatory cortex modulate neural responses in the primary olfactory cortex, 

even in the absence of a taste stimulus [3]. Finally, a groundbreaking study combining 

electron microscopy, electrophysiology, and behavior demonstrated that a multilevel 

multisensory circuit contributes to the escape response in larval Drosophila [65**]. All of 

these studies bolster the view that multisensory integration involves a distributed network 

with multiple redundant pathways [13,66].

Future neurophysiological studies using multisensory RT detection/discrimination 

paradigms will allow further quantitative tests of behavioral frameworks (such as the drift-

diffusion and Bayesian models) and improve our understanding of this distributed network 

[67]. Promising candidates for mediating RT and accuracy benefits typically observed for 

audiovisual integration (often observed for speech and vocalizations) that need further 

investigation in the monkey temporal lobe include the belt auditory cortex [64,68*] and the 

upper bank of the superior temporal sulcus [69,70]. The ventrolateral prefrontal cortex 

[71,72], and the dorsal premotor cortex [73] are two other association areas that need to be 

further studied. Another important future line of research will be to expand our 

understanding of the role of oscillations in these brain areas and how they relate to 

multisensory effects observed in FRs and behavior [74].

Dimensionality reduction and the dynamical systems approach might help 

achieve a population-level understanding of multisensory processing

The neurophysiological studies describing the activity of single neurons are crucial for 

establishing that an area is multisensory and to perhaps derive fundamental principles of 
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multisensory integration [20]. If we are to advance beyond these coarse descriptions and 

derive more insights into the mechanisms underlying multisensory integration, we need to 

better understand the temporal patterns of neuronal FRs in these multisensory brain areas. 

The problem is that a closer examination of neuronal FRs in multisensory brain regions 

suggests a great deal of response heterogeneity—a phenomenon that is increasingly obseved 

in numerous brain regions and many other tasks [75,76*]. The consensus from several 

experiments is that single neuron responses in both uni- and multisensory brain regions are 

often perplexing, temporally complex and can be counterintuitive to expectations [75,77]. 

For example, neural responses in multisensory brain regions can be additive, sub-additive, or 

super-additive [20,78]. Similarly, neurons in MSTd [27], VIP [51], and FEF [50] can show 

either congruent or opposite tuning to the visual and vestibular cues during the heading 

discrimination task. The role of these opposite tuning neurons is still mysterious.

How can one make sense of this variation and heterogeneity in neural responses and better 

understand the population level computations involved in multisensory integration? One 

recent approach is to be less concerned about single neuron responses and instead, focus on 

a population-level description of neural responses [79]. In this approach, neuronal FRs are 

considered noisy signatures of an underlying dynamical system implemented by the network 

in a brain region. The hallmark of this approach is the use of dimensionality reduction 

techniques (e.g., principal component analysis) to visualize and describe firing rate variance 

in lower dimensional subspaces. The goal of the approach is to understand the “dynamics” 

of this lower dimensional population neural “state,” (how it evolves through time) and the 

relationship of the dynamics to various features of the stimulus and the behavior 

[75,76,80,81,82*].

When carefully applied, the dynamical systems approach has minimal assumptions and also 

involves minimal sorting of neurons into categories. This approach has helped understand 

population responses in the motor cortex during reaching [80], prefrontal cortex (PFC) 

during context-dependent decision-making [75], and medial frontal cortex during value-

based decisions [83]. Dimensionality reduction and decoding techniques also allow the study 

of relationships between neural population activity and behavior on single trials [84,85,86*]. 

Single-trial analysis may help us better understand how principles proposed by the Bayesian 

frameworks are instantiated in neural populations [17,35].

A recent study applied this population-level approach to understand the neuronal responses 

in posterior parietal cortex (PPC) of rats performing an audiovisual discrimination task 

[87**]. Dimensionality reduction showed that PPC neurons are poorly described by 

functional subcategories (e.g. choice selective, modality-selective, and movement selective 

neurons). Instead, task parameters such as choice, modality, and temporal response features 

are distributed in a random, intermixed manner across neurons. Even though these features 

are intermixed, the population response can be used to read out information about different 

task parameters [87]. Dimensionality reduction suggested that different dimensions were 

explored during the decision-formation and movement epochs. This result suggests that the 

PPC network dynamically reorganized to support the evolving demands of decision-making.
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Optimized recurrent neural network models provide a candidate framework 

to model the heterogeneous temporally complex FRs in multisensory brain 

regions

Using dimensionality reduction methods to analyze FRs is only part of the process for 

achieving a deeper understanding of multisensory integration. To derive hypotheses about 

the underlying dynamics in different brain areas, we also need to develop neural networks 

capable of modeling these heterogeneous, temporally complex neuronal responses. This 

need becomes even more pressing as we begin to use novel multisensory tasks and newer 

neural population recording methods that will provide deeper access to the rich FR dynamics 

involved in multisensory integration. In these settings, the standard approach of hand 

building neural network models to incorporate a certain mechanism (say an integration 

operation) and then examining and drawing parallels between the FRs of neurons within the 

network and neurophysiological responses is insufficient. FR dynamics of neurons in hand-

built neural network architectures are often very simple, scaled versions of a prototypical 

time series (e.g., an integrator). Handcrafted neural network architectures are thus 

insufficient to describe the complexity we observe in physiological responses.

To bridge the gap between neural network models and physiological data, we need neural 

network models whose constituent units demonstrate temporally complex responses. The 

networks should also display rich dynamical behavior at the population level, and task 

relevant information should be distributed in the population. The optimized recurrent neural 

network (RNN, Fig. 2A) is one candidate framework that possesses these desired properties. 

Like animals trained to perform a behavioral task, RNNs can be trained through an 

optimization process to transform an input (e.g., a sensory input) into the desired output 

(e.g., a category) [88]. The advantage of the optimized RNN approach is that the network is 

only instructed on what it should do and unlike the standard hand-built network model there 

is no instruction on how the network has to do it. Analyzing the network dynamics, in turn, 

provides a way to generate quantitative hypotheses about the dynamical mechanisms that 

may be implemented in real neural populations to solve the behavioral task. Various 

constraints can then iteratively be built into these networks and then examined to 

systematically match the dynamics of the RNN and the neurophysiological data. RNNs have 

helped demystify neural responses in the PFC during context-dependent decisions [75] and 

the dynamical structure in population FRs in motor cortex during reaching [89].

To illustrate this approach, I recapitulate here a network capable of multisensory integration 

developed as part of a recent methods study aimed at providing a simple, accessible and 

flexible framework to train and test RNNs [90**] (Fig. 2A). The network was provided 

noisy visual and auditory inputs and trained to accomplish the same rate discrimination task 

performed by the rats in [87, Fig. 2B]. If the input rate was higher than the standard, then the 

network produced a high output and vice versa. The network reproduces the behavioral 

improvement shown by the rats for the multisensory compared to the unisensory stimuli 

(Figs. 2C, D). Given that the network solves this task and mimics the behavior of the 

animals, we can examine the types of neuronal responses in the network and compare them 

to the physiological responses observed in [87]. The network contains neurons tuned to 
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choice and modality. One other key feature of this network is that the FRs of some of the 

neurons in the network also show the phenomenon of mixed selectivity observed in FRs of 

the neurons recorded in the PPC of the rat [Fig. 2E, 87]. More work is necessary to 

understand the constraints needed to match the population dynamics in the network to that 

of the network dynamics recorded in the rat PPC [87].

In the future, several other relevant questions can be asked of RNNs developed for 

multisensory tasks. For instance, at the behavioral level, do RNNs also benefit from 

multisensory compared to unisensory learning [10]? At the physiological level, RNNs could 

be trained to perform the heading discrimination task and then examined to see if they also 

naturally find solutions with neuronal populations that show both congruent and opposite 

tuning [27]. These networks can also be examined to see if its constituent neurons also show 

the well-established neurophysiological observations of superadditive, subadditive and 

additive multisensory responses in multisensory brain regions [20]. Creating virtual lesions 

of the opposite tuning neurons or the superadditive neurons in the network may help clarify 

their role in multisensory integration. Finally, combining the dynamical features of these 

RNNs with principles of probabilistic computation [35] could help develop new 

probabilistic, dynamical models for multisensory integration.
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Box 1

Seminal Principles of Multisensory Integration

Our understanding of multisensory integration has largely relied on seminal experiments 

in the anesthetized cat and in recent years from both anesthetized and awake experiments 

in many other species. These experiments established the fundamental principles of 

superadditivity, the principle of inverse effectiveness and the temporal window of 

integration. These principles are “word level” models to understand and coarsely describe 

experimental results. They are not formal computational models that can quantitatively fit 

behavioral or neural data.

Superadditivity, subadditivity, and additivity

These refer to the relationship between responses (usually firing rate of neurons, but can 

be any neural response) to multisensory stimuli and the unisensory responses. As an 

example, assume that the sensory signals are visual and auditory. The response to the 

visual stimulus is V, the response to the auditory stimulus is A, and the audiovisual 

response is AV. If AV > A + V, the response is superadditive. If AV < A + V, then the 

response is subadditive. If AV ~ A + V, then the response is additive. Neuronal responses 

are largely in the additive regime. Only for very strong or very weak stimuli do the 

responses become sub- or superadditive. The observation that neurons largely operate in 

an additive (or linear) regime is consistent with modeling studies, which show that an 

additive mechanism can explain behavior in multisensory tasks [46,48].

The law of inverse effectiveness

The law of inverse effectiveness states that multisensory stimuli are more likely or 

effectively integrated when the best unisensory response is relatively weak. Again let us 

assume A and V are the unisensory responses. The law of inverse effectiveness states that 

the benefit from multisensory integration: AV – (best response for (A, V)) is maximal 

when this best response is weak. Empirically, this manifests most often when the 

intensities of the unisensory stimuli are very weak. This principle was originally 

developed to explain multisensory responses in neurons and was considered to be 

relevant for behavior as well. However, recent studies suggest that behavior may depart 

from this principle [7,36].

Temporal window of integration

The temporal window of integration is a time window over which multisensory stimuli 

are more likely or effectively integrated in behavior (e.g., improvement in accuracy, 

reduction in RT, etc.). The principle suggests that maximal integration occurs when 

sensory stimuli occur approximately simultaneously. The assumption is that this 

behaviorally defined temporal window of integration is a result of the finite time over 

which neurons integrate sensory inputs. However, the size of this temporal window of 

integration varies across studies, task contexts, stimulus type, and stimulus intensities. 

Computational models are attempting to formalize and precisely define this window of 

integration [91].
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Highlights

• Models combining drift-diffusion and optimality can explain multisensory 

discrimination behavior

• A distributed network with multiple redundant pathways is involved in 

multisensory integration

• Dimensionality reduction can help understand heterogeneous multisensory 

neural populations

• Recurrent neural networks may be a new tool to understand multisensory 

circuits
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Fig 1. Bayesian frameworks and coactivation models to understand multisensory behavior
A: Near-optimal cue (or stimulus) combination according to the Bayesian framework to 

improve discrimination behavior is well understood with an example (adapted from [92]). 

Consider a cat seeking a mouse with both visual and auditory cues. The curves in the figure 

show the hypothetical probability distributions of the mouse’s position as estimated by the 

cat’s brain for the three different modalities (Blue-visual, green-auditory, red-audiovisual). 

Assume that it is dark, and the mouse is in an environment with many gray rocks roughly the 

size and shape of a mouse. In this context, the optimal Bayesian cat would use auditory cues 

to estimate the mouse’s location (top). In contrast, when it is sunny, to optimize its 

discrimination behavior the cat would largely rely on visual cues to locate the mouse 

(middle). One can readily imagine many intermediate scenarios where the optimal strategy 

for the cat is to combine both visual and auditory cues to have the best chance of catching 

the mouse (bottom). For the case that the cat’s auditory and visually guided estimates of the 
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mouse’s position are Gaussian, independent and unbiased (means: sa, sv and standard 

deviations σa, σv ), the optimal estimate of the position of the mouse is the weighted average 

of the auditory and visually guided estimates (Sav = WaSa+WvSv). The weights are the 

normalized reliability of each cue ( ). Behavior in multisensory 

discrimination experiments can be tested to see if they are consistent with this prediction 

from the optimal framework.

B: An example of a simple coactivation model used to explain detection behavior. Top panel, 

a cartoon of the linear summation coactivation model typically used to explain multisensory 

detection behavior [46,47]. Auditory and visual inputs are linearly summed to arrive at a 

new drift-rate, and this undergoes the drift-diffusion process to the criterion to trigger a 

response. Bottom panel, simulations from the coactivation model of a few trials of an 

audiovisual stimulus where a visual cue turns on at t=0 and an auditory cue turns on at t=30 

ms. The visual and the auditory stimuli were assumed to be modest in intensity. In this 

hypothetical integrator, the onset of the visual stimulus before the onset of the auditory 

stimulus results in an increase in activity. The auditory stimulus can build on this activity, 

and this results in the criterion being reached faster on average for the audiovisual (44 ms) 

compared to both auditory (~70 ms RT when measured relative to the visual stimulus onset) 

and visual-only stimuli (~69 ms). Blue lines denote the visual cue. The green lines denote 

the auditory cue. Red lines denote the audiovisual cue.

C: A framework that combined the insights from both A and B to develop an optimal 

coactivation drift-diffusion model to explain multisensory discrimination behavior [48]. This 

model was developed in the context of a heading discrimination task using both visual and 

vestibular cues. The key innovation in this model is that it integrates evidence in an optimal 

manner by factoring in the model both the time course of sensory signals as well as the 

reliability of the signals. The visual and vestibular cues are time varying signals, whose 

reliabilities change as a function of time. They also can have different reliabilities depending 

on the context (as in A). Simply adding as in B is suboptimal. For instance, you would just 

be adding noise at the start when the visual signal is low. Xvis(t) = integrated evidence for 

the visual cue (optic flow), Xvest (t) is the integrated evidence for the vestibular cue. kvis is a 

constant that signifies the strength of the visual signal. kvestib is a constant that signifies the 

strength of the vestibular signal. The combined signal Xcomb (t)is the reliability-weighted 

sum of these two signals (weights are shown on top of the arrows). The dashed lines on the 

left-hand side of the figure denote the velocity and acceleration profiles of the signals. The 

velocity profile was Gaussian. Both visual and vestibular cues were presented congruently 

and were temporally synchronized. In this study, momentary evidence for vestibular input is 

assumed to result from acceleration (a(t)). The momentary evidence for visual input is 

thought to result from velocity cues (v(t)).
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Fig. 2. Simulations from the RNN model developed in Song et. al. [90] to solve the multisensory 
integration task reported in Raposo et al. [87]
A: A schematic and dynamical equation for a nonlinear RNN. x(t) is a vector with the ith 

component of this vector describing the summed and filtered synaptic current input for the 

ith neuron (as in a biological neuron). The continuous variable r (t) is a vector and describes 

the FR of neurons in the network and are obtained through a nonlinear transform of x(t), 

typically a saturating nonlinearity or a rectified linear function. The defining feature of these 

RNNs is the recurrent feedback from one neuron in the network to another. The matrix J 

parameterizes the connection strength between the units. The network receives external 

Chandrasekaran Page 17

Curr Opin Neurobiol. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



input through the u(t) term weighted by a vector B; every neuron also receives a bias input 

bi. τis a time constant that sets the time scale of the network. The outputs of the network, 

z(t), are usually obtained by a linear readout operation.

Each node in this network is a neuron that receives external input as well as recurrent 

feedback (through J). Inputs (u(t)) can be sensory signals, rules, or context signals. The 

outputs (z(t)), which are obtained by a weighted readout of the firing rates of the neurons in 

the network can be binary choice [75], continuous decision-variables, probability 

distributions, or behavioral signals such as hand position/eye position[90]/electromyography 

responses [89]. The RNN cartoon is adapted from Fig. 1 of [90].

B: Schematic of the behavioral apparatus for the multisensory rate discrimination task for 

the rats in [87] (redrawn based on Fig. 1A in [87]). The Stimuli were 1s long auditory and/or 

visual streams delivered either through a speaker or from a LED panel. The rats 

discriminated whether the presented rate was lower (move to left port) or higher (move to 

right port) than a decision boundary (12.5 events/sec). The rat cartoon is a recolored version 

of the one in Fig. 1A of [87].

C: Inputs to a model network trained to solve the audiovisual integration task from [87]. The 

network was trained to perform the same task and provided with both positive and negatively 

tuned visual and auditory input ( u(t), positive inputs are shown here). The RNN consisted of 

150 neurons (120 Excitatory and 30 inhibitory) and used a rectified linear current (x(t)) to 

firing rate (r(t)) function. The network was trained to hold a high output value if the input 

was above the decision boundary (12.5 events/sec) and low if the input was below this 

decision-boundary. The results shown were obtained from the code provided in [90] (https://

github.com/frsong/pycog)

D: The RNN solves the task and shows a benefit for multisensory compared to unisensory 

stimuli and thus demonstrates behavior similar to the rats in the original study [87]. The 

psychometric functions show the percentage of high choices made by the network as a 

function of the event rate for the uni- and multisensory trials. The smooth lines are 

cumulative Gaussian fits to the psychometric function.

E: FR (r(t)) of selected simulated neurons in the RNN aligned to the stimulus onset during 

the period of sensory stimulation and decision-formation. In particular, some neuronal FRs 

show the main effect of choice (left panel); FRs of other neurons show a main effect for 

modality (middle panel). Also as in the real data recorded in the posterior parietal cortex 

[87], neurons demonstrate FRs best described by an interaction between choice and modality 

tuning (right panel). High and low denote the choices. Vis-high denotes that the rats chose 

high for the visual input for example and so on.
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