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Abstract

More than 30 incurable neurological and neuromuscular diseases are caused by simple 

microsatellite expansions consisted of 3–6 nucleotides. These repeats can occur in non-coding 

regions and often result in a dominantly inherited disease phenotype that is characteristic of a toxic 

RNA gain-of-function. The expanded RNA adopts unusual secondary structures, sequesters 

various RNA binding proteins to form insoluble nuclear foci, and causes cellular defects at a 

multisystem level. Nuclear foci are dynamic in size, shape and colocalization of RNA binding 

proteins in different expansion diseases and tissue types. This review sets to provide new insights 

into the disease mechanisms of RNA toxicity and foci modulation, in light of recent advancement 

on bi-directional transcription, antisense RNA, repeat-associated non-ATG translation and beyond.

Overview of microsatellite expansion diseases

Simple microsatellite expansions that cause neurodegenerative diseases can occur in coding 

regions [1–24], 5′-untranslated regions (5′-UTRs, [25–32]), intronic regions [33–51] and 

3′-UTRs [24,50,52–62] (Table 1 and Fig. 1). In affected individuals, large repeat expansions 

show somatic and intergenerational instabilities and lead to disease phenotype. Several 

factors can contribute to repeat instability: sequence composition, convergent transcription, 

gene conversion, sister chromatid exchange, and errors in DNA replication, repair and 

mitotic recombination [63–66].

Repeat expansion in non-coding (and, perhaps, coding) regions often results in a toxic RNA 

gain-of-function (Table 1 and Fig. 1). In these disorders, the expanded RNA aggregates to 

form nuclear ribonucleoprotein foci which sequester RNA binding proteins (RBPs) or other 

essential cellular factors [67,68]. The depletion of key splicing regulatory RBPs from the 

cellular pool can lead to spliceopathy. Evidence to support such notion has been observed in 

Myotonic dystrophy type 1 (DM1), Spinocerebellar ataxia type 8 or 10 (SCA8/10), C9orf72-
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amyotrophic lateral sclerosis/frontotemporal dementia (C9orf72-ALS/FTD) and Fuchs 

endothelial corneal dystrophy (FECD) [37,51,69–71]. RBPs also participate in cellular 

processes such as DNA repair, transcription regulation, RNA processing/transport/

localization, microRNA (miRNA) processing, protein quality control and apoptosis [72–74]. 

Disruption of such processes by foci sequestration may further exacerbate neuronal toxicity. 

As bidirectional translation occurs at most non-coding expansion regions, mechanisms such 

as antisense foci formation, RNA-induced silencing complex (RISC)-dependent RNA 

degradation, siRNA-dependent epigenetic modification and repeat-associated non-ATG 

(RAN) translation may also occur [34,75–78]. Theoretically, nuclear RNA foci could 

provide neuroprotection by acting as a toxic RNA sink, so that the generation of RAN-

translated toxic polypeptides within the cytoplasm is reduced [79]. RNA Foci may also 

function as a ‘triage’ site – reminiscent to the role of stress granules – to determine the 

destination of the expanded RNA. In this review, we will focus on RNA toxicity and foci 

formation.

RNA toxicity and foci in DM

DM1 and DM2 (Myotonic dystrophy type 2) are multisystem diseases that target tissues 

including skeletal, cardiac and smooth muscles, the central nervous system (CNS) and eyes. 

DM2 has a milder clinical course than DM1. The genetic origin of DM stems from a CTG 

repeat expansion in the 3′-UTR of the DMPK gene for DM1 and a CCTG expansion in 

intron 1 of the CNBP/ZNF9 gene for DM2.

A hallmark of DM pathology is the formation of toxic nuclear RNA foci. In DM1, the CUG-

expanded RNA forms hairpins that sequester a class of splicing regulatory RBPs – 

Muscleblind 1-3 (MBNL1-3) – at the periphery of the nuclear splicing speckles [80,81]. 

MBNL1 participates in foci formation by binding to distorted GC bases or unpaired UU 

bases [82–85]. Its depletion has recently been linked to mRNA mislocalization and miRNA 

misprocessing [86,87]. In DM1, stabilization of another splicing regulator CUG-binding 

protein 1 (CUGBP1 or CELF1) also occurs [88]. Changes of MBNL1 and CUGBP1/CELF1 

in DM1 drive splicing of a variety of transcripts towards fetal isoforms. Many of the 

misspliced genes are components of the sodium/calcium current regulation, intra-/inter-

cellular transport, and sarcomere/cytoskeleton structure and function [89,90]. They are thus 

unable to fulfill their normal cellular functions.

Recently, antisense CAG-expanded foci have been reported in adult and congenital DM1 

patients and mice [91,92]. These foci do not appear to colocalize with sense foci in the same 

nucleus nor sequester any MBNL (Fig. 2). As antisense foci exist at much lower numbers 

than sense foci, therapies using antisense oligonucleotides that target sense foci may change 

the relative amount of sense vs. antisense foci. In DM2, CCUG foci appear much larger than 

DM1 foci and contain only intronic repeats. Several foci modifiers exist in DM. For 

instance, two DM1 RNA toxic foci enhancers (str-67 and ocrl-1) have been identified in 

Caenorhabditis elegans [93]. Nonsense-mediated decay, Staufen and DEAD-box helicase 5 

(DDX5) all have an impact on toxic RNA transport and degradation [94–96]. In addition, a 

large ribonucleoprotein complex may transiently regulate the sense foci (Fig. 2, [97]).
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DM foci are incredibly dynamic during cell proliferation [39,62]. Hence, caution should be 

taken when foci counts are used as a biomarker in non-synchronized cells. DM foci are most 

prominent at early prophase. The majority of foci disappear during nuclear membrane 

breakdown. When cells exit mitotic division, foci progressively accumulate in the nucleus.

RNA toxicity and foci in C9orf72-ALS/FTD

ALS and FTD are neurodegenerative diseases that share clinical and pathological overlap. A 

subset of these diseases have been linked to a common causal GGGGCC repeat expansion in 

intron 1 of C9orf72. An RNA toxic role has been implicated in C9orf72-ALS/FTD, because 

the expanded RNA binds to a variety of RBPs [78], and the expanded sense RNA alone is 

sufficient to recapitulate neurodegeneration in Drosophila and BAC mice [98,99]. Both 

sense and antisense nuclear foci have been found in patient tissues, induced pluripotent stem 

cells (iPS cells) and iPS-derived neurons, Drosophila and BAC mice [24,35,98,100–103]. 

Sense foci contain GGGGCC repeat sequences [100], and can induce apoptosis in SH-SY5Y 

cells and zebra fish embryos [104]. Antisense foci preferentially accumulate in vulnerable 

cell types [98], and correlate with a nuclear loss of TAR DNA-binding protein 43 (TDP-43) 

in motor neurons [35]. The above observations suggest that antisense foci play a significant 

role in C9orf72 pathophysiology. In contrast to DM1 foci, both sense and antisense C9orf72 
foci can colocalize within the same nucleus [105].

Various interactomes containing C9orf72 RNA and RBPs have been proposed. It has been 

confirmed that both sense and antisense foci or RNA bind to Serine and Arginine-rich 

splicing factor 2 (SRSF2), AlY/REF export factor (ALYREF), Heterogeneous nuclear 

ribonucleoprotein F (hnRNP F) and hnRNP A1 [35,106]. It is unclear as to whether RNA 

secondary structure is a determinant in RBP recognition in vivo, because only the sense 

C9orf72 RNA has been verified to form G-quadruplexes in vitro [48], and one cannot rule 

out a shared secondary structure between sense and antisense C9orf72 RNA foci in vivo. 

Sense foci also colocalize with Purine-rich element binding protein-alpha (Purα), Ran 

GTPase activating protein 1 (RanGAP1) and Adenosine deaminase B2 (ADARB2) 

[100,107,108]. Purα may recognize partially denatured RNA in a similar way as MBNL1 

[83,109]. ADARB2 may participate in foci formation or maintenance, and its sequestration 

leads to hypersensitivity to excitotoxicity [100]. Recently, a comparative analysis has been 

done on RBPs that bind to C9orf72 RNA in five studies [78]. hnRNP H shows most overlap 

across studies, followed by Splicing factor proline and glutamine-rich (SFPQ), Interleukin 

enhancer binding factor 2 (ILF2) and Myelin basic protein (MBP). Interestingly, SFPQ 

regulates ADARB2 expression and is essential for paraspeckle formation [110].

RNA toxicity and foci in Fragile X-associated tremor/ataxia syndrome 

(FXTAS)

FXTAS is an adult-onset neurodegenerative disease with clinical manifestations of tremor, 

gait ataxia, parkinsonism and cognitive impairment caused by a CGG intermediate 

expansion at the 5′-UTR of FMR1.
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Several lines of evidence point to an RNA gain-of-function in FXTAS. First, expression of 

the expanded CGG irrespective of its genetic context is sufficient to cause neurodegeneration 

in mice and Drosophila [111,112]. Second, transcription efficiency of FMR1 is significantly 

elevated in FXTAS patients and mice, while the FMR protein (FMRP) level remains largely 

unchanged [113–115]. Third, co-expression of both CCG and CGG-containing RNA 

suppresses their independent toxicity [116]. Fourth, large ubiquitin-positive nuclear 

inclusions have been found in FXTAS tissues. These nuclear inclusions contain CGG 

expanded transcripts in post-mortem FXTAS brains but not in Drosophila [117–119]. 

However, the number of inclusions correlates positively with CGG repeat length in 

Drosophila [120].

Nuclear CGG foci/inclusions contain a number of constituents in FXTAS Drosophila, mice 

and patients (Fig. 2, [28,117,121–123]). Amongst these RBPs, overexpression of DGCR8, 

Purα or hnRNP A2/B1 has been linked to suppression of neurodegeneration or RNA toxicity 

[28,122,123]. Additionally, a ‘sequential recruitment’ model has been proposed via DGCR8/

DROSHA and Sam68 (Fig. 2). However, the pathogenic role of DGCR8/DROSHA remains 

controversial [124–127]. It has recently been shown that TDP-43 suppresses the CGG 

repeat-induced RNA toxicity through hnRNP A2/B1 but not through direct RNA 

interactions [128].

RNA toxicity and foci in SCA8

SCA8 is caused by a CTG expansion in the 3′-UTR of ATXN8OS (Table 1). Clinical 

manifestations of SCA8 include gait and limb ataxia and cerebellar atrophy on MRI 

imaging. In contrast with most other non-coding expansion diseases, little evidence has 

linked repeat length to disease severity and progression in SCA8 [129].

RNA gain-of-function plays a significant role in SCA8. It has been shown that a 

(CUG)400–1000 expansion forms nuclear RNA foci in human SCA8 brains. These foci vary 

greatly in size, distribution and number: While multiple small CUG foci were found in 

Purkinje cells, single CUG foci were found in the nuclei of molecular layer interneurons and 

the Bergmann glia in the granule cell layer [70]. In both human and mice, MBNL1 

colocalizes with CUG foci in molecular layer interneurons but not in Purkinje cells. The 

pathogenic significance of such tissue-specific sequestration pattern is unknown. Mutations 

in MBNL1 and other expansion modifiers have been shown to enhance SCA8-induced 

neurodegeneration synergistically in Drosophila [130]. CUG expansion also increases the 

expression of CUGBP1/MBNL1-regulated Gabt4, leading to a loss of GABAergic inhibition 

[70].

RNA toxicity and foci in SCA10

SCA10 is prevalent in Latin America and primarily impairs cerebellar Purkinje cells 

[131,132]. The disease-causing mutation is an ATTCT repeat expansion in intron 9 of 

ATXN10, which is likely to have originated in the Han Chinese population [133]. The 

expanded AUUCU repeats form RNA hairpins with UCU internal loops closed by AU pairs 

[134]. In a subset of SCA10 patients, the presence of interruption motifs within repeat 
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expansions correlates strongly with epileptic seizures [135–137]. A similar correlation 

between repeat interruption and disease phenotype has been observed in DM1 [138]. In 

contrast, the presence of interruptions reduces pathogenicity in CAG-expanded SCA 1/17 

and penetrance in SCA8 [139].

The spliced AUUCU repeat expansion is the principle pathogenic molecule that triggers 

neuronal death in SCA10 [51]. Both (AUUCU)1000–2000 and ectopically expressed 

(AUUCU)500 form nuclear and cytoplasmic foci in human cells and transgenic mouse 

brains. Nuclear AUUCU foci have been shown to colocalize with hnRNP K (Fig. 2). 

Sequestration of hnRNP K not only alters splicing regulation, but also releases Protein 

kinase C-delta (PKCδ) [51]. Translocation of PKCδ to mitochondria causes cytochrome c 

release and activation of caspase-3, leading to apoptosis [140].

RNA toxicity and foci in SCA31 and SCA36

SCA31 is caused by a TGGAA repeat expansion in the bidirectionally transcribed BEAN 
gene. The reverse complementary sequence of the SCA31 repeat (TTCCA.TTCCAn) 

matches a tandem interruption motif at the 3′-end of SCA10 subtype B [136]. The 

GGCCTG expansion in SCA36 matches a hexanucleotide interruption motif as seen in DM1 

and differs by 1 base from the C9orf72 GGGGCC repeat (SCA36: GGCCTG.GGCCTGn) 

[141]. Given the above information, it is possible that the pathogenic pathways and target 

RBPs are shared between SCA10 and SCA31, and between C9orf72-ALS/FTD and SCA36.

Conclusions and future perspectives

In conclusion, RBPs play key roles in toxic RNA gain-of-function in non-coding expansion 

diseases. However, several factors warrant further investigation. (1) RAN translation has 

been implicated in non-coding expansion disorders including DM1, SCA8, C9orf72-

ALSFTD and FXTAS (Table 1, [77]). (2) RNA foci bear extensive structural similarities to 

RNA transport granules, stress granules, nuclear bodies, and P bodies, as these structures all 

contain a large population of localized mRNA and associated RBPs [142,143]. Can RNA 

toxicity be extended to RNA transport, sorting and degradation pathways? (3) RBPs (such as 

MBNL, Staufen and FMRP) and alternative last exons near 3′-UTRs are important for 

guiding mRNA to neurites [87,143,144]. Disruption of mRNA localization patterns by RBP 

sequestration and 3′-UTR repeat expansion may contribute to disease phenotype [145]. (4) 

Several mechanisms may actively facilitate RNA nuclear retention. For instance, hnRNP H 

inhibits nuclear export of the expanded RNA in DM1 [146]. Bulged stem-loop structures 

that resemble repeat expansions at 5′- or 3′-UTRs have been predicted to guide mRNA 

nuclear localization [125]. (5) G-rich repeat expansions, such as GGGGCC, may be taken up 

by lysosomes via LAMP2C receptors [147], leading to over-capacitated autophagy and non-

degraded toxic products. (6) Deleterious R-loops may form at CTG, CCG, CAG, CGG, 

GAA and GGGGCC repeat sites. When not resolved by RNase H, R-loops can affect 

chromosome stability, Ig class switching, mitochondrial DNA replication and telomeric 

transcription [148,149]. (7) The expanded antisense RNA may facilitate sense foci 

degradation via nuclear and cytoplasmic RISC complexes [150]. It may alternatively form 

antisense foci that correlate with disease severity [35,98]. The abovementioned factors may 

Zhang and Ashizawa Page 5

Curr Opin Genet Dev. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



serve as additional drug targets, depending on their relative contribution to the overall 

pathologic mechanisms of microsatellite expansion diseases. A comprehensive analysis of 

these factors will also help us better understand the complexity and development of 

microsatellite expansion diseases and identify the linkage between toxic RNA and disease 

etiology at a molecular level.
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Fig. 1. 
Schematic illustration of repeat expansion diseases. Repeats associated with an RNA gain-

of-function are located in: (1) the 5′-UTRs, such as spinocerebellar ataxia (SCA) type 12 

and Fragile X-associated tremor/ataxia syndrome (FXTAS), (2) intronic regions, such as 

myotonic dystrophy type 2 (DM2), Fuchs endothelial corneal dystrophy (FECD), 

SCA10/31/36 and C9orf72-amyotrophic lateral sclerosis/frontotemporal dementia (C9orf72-

ALS/FTD), and (3) the 3′-UTRs, such as myotonic dystrophy type 1 (DM1), SCA8 and 

Huntington disease-like 2 (HDL2). In HDL2, the CTG repeat occurs in an alternatively 

spliced exon 2A, generating either a 3′-UTR CTG expansion (as shown in this figure) or 

homopolymers. Fragile X mental retardation syndrome (FXS), Fragile XE syndrome 

(FRAXE) and Friedreich ataxia (FRDA) are exceptions where an RNA loss-of-function 

occurs due to transcription silencing by CGG, CCG and GAA expansions respectively. The 

polyGlutamine (polyQ)-coding CAG expansions occur in exons and may involve RNA-

mediated toxicity. These disorders include spinal and bulbar muscular atrophy (SBMA), 

Huntington’s disease (HD), SCA1/2/3/6/7/17 and dentatorubral-pallidoluysian atrophy 

(DRPLA). CAG repeat RNA-based toxicity has been suggested in some of these disorders 

[151,152]. The repeat length in affected individuals correlates approximately with the height 

of the triangle.
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Fig. 2. 
Schematic illustration of RNA foci and associated RBPs in DM1, C9orf72-ALF/FTD, 

FXTAS, SCA8 and SCA10. This diagram only included RBPs that had been verified by in 
vivo colocalization experiments. Repeat expansions present in sense and antisense RNA are 

highlighted in red and green respectively. Hyperphosphorylated (P) CUGBP1 may bind to 

the base of DMPK hairpins in DM1. The expanded C9orf72 sense RNA assumes an unusual 

G-quadruplex structure. In FXTAS, the miRNA processing complex DGCR8/DROSHA is 

among the first proteins to be recruited [28]. The DGCR8/DROSHA heterodimer is partially 

sequestered because it can still process miRNA to some extent. Sam68 binds to DGCR8/

DROSHA and recruits other RBPs [29,117].
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