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Abstract

The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole body energy 

homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is 

depleted. Over the last two decades, it has become apparent that AMPK regulates a number of 

other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac 

metabolism and contractile function as well as promoting anti-contractile, anti-inflammatory and 

anti-atherogenic actions in blood vessels. In this review, we will discuss the role of AMPK in the 

cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac 

physiology and the proposed mechanisms by which AMPK regulates vascular function under 

physiological and pathophysiological conditions.
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The AMP-activated protein kinase (AMPK) is the central component of a signalling 

pathway that regulates the switch between anabolism and catabolism, as well as many other 

aspects of cell function1–3. In this review we focus on the physiological roles of AMPK 

within the cardiovascular system, although we will start by discussing general features that 

apply in all mammalian cell types. Readers are also referred to two other recent reviews of 

the role of AMPK in cardiovascular disease 4, 5.

Structure and Regulation of AMPK

Occurrence of subunit isoforms

AMPK exists universally as heterotrimeric complexes containing catalytic α subunits and 

regulatory β and γ subunits, which occur as multiple isoforms (α1/α2; β1/β2; γ1/γ2/γ3) 

encoded by distinct genes. These could give rise in principle to twelve heterotrimeric 

combinations, although specific combinations appear to be favoured in specific cell types. 

For example, although skeletal muscle expresses mRNAs encoding all seven subunit 

isoforms, assays of immunoprecipitated isoforms suggest that AMPK activity in human 
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skeletal muscle is accounted for by just three combinations: α1β2γ1, α2β2γ1 and 

α2β2γ36.

The domain organization of the seven AMPK subunit isoforms are shown in Fig. 1, and a 

representation of a crystal structure for the human α1β2γ1 heterotrimer7 is shown in Fig. 2. 

Similar structures of the α2β1γ18 and α1β1γ19 complexes are available.

The α subunits

The α subunits contain a kinase domain (α-KD) at their N-termini, with the small N-lobe 

(yellow in Figs.1 and 2) and larger C-lobe (green) typical of all protein kinases. The 

substrate Mg.ATP2- binds in a deep cleft between these lobes, occupied in the structure in 

Fig. 2 by the non-specific kinase inhibitor staurosporine. Isolated α-KDs are only 

significantly active after phosphorylation by upstream kinases at a conserved threonine, 

usually referred to as Thr172. Thr172 phosphorylation is a good marker for AMPK activity, 

and Western blotting using phosphospecific antibodies against this site is often used as a 

semi-quantitative measure of AMPK activity. However, this ignores the effects of allosteric 

activation of AMPK, a problem that can be overcome by also addressing the 

phosphorylation state of a downstream target such as acetyl-CoA carboxylase (ACC).

The α-KD is followed by a small globular domain termed the autoinhibitory domain (AID, 

orange) that, when AMP is not bound to the γ subunit, binds to both the N- and C-lobes of 

the KD and thus causes inhibition7. The AID is connected to the C-terminal domain (α-

CTD, red) by the α-linker (blue), a region of extended polypeptide that interacts with the γ 
subunit when AMP is bound at site 3 (as is the case in Fig. 2), thus pulling the AID away 

from this inhibitory position.

The β subunits

Two well-conserved regions within the β subunits are the C-terminal domain (β-CTD, silver-

grey), which forms the “core” of the heterotrimeric complex, and the central carbohydrate-

binding module (β-CBM, silver-blue). The β-CBM is related to carbohydrate-binding 

domains usually occurring in enzymes that metabolize starch or glycogen, which localize 

those enzymes on their polysaccharide substrate. Consistent with this, the β-CBM causes a 

proportion of AMPK in cells to bind to the surface of glycogen particles10–12. In all three 

structures of mammalian heterotrimers, the β-CBM interacts with the N-lobe of the α 
subunit KD, with its glycogen-binding site (defined by binding of the oligosaccharide β-

cyclodextrin) at the top in the view of Fig. 2.

What is the function of glycogen binding by AMPK? The muscle and liver isoforms of 

glycogen synthase, which are also bound to glycogen particles, are physiological targets for 

AMPK13, 14, and one function may be to co-localize AMPK with them. The β-CBM is also 

of interest because the cleft between it and the N-lobe of the α subunit forms the binding site 

for activators such as A769662 and 9918. This site has been termed the Allosteric Drug and 

Metabolite (ADaM) site15, and is discussed further below.
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The γ subunits

All γ subunits contain four tandem repeats of a sequence motif known as a CBS motif. In 

other proteins, pairs of CBS motifs often form binding sites for regulatory ligands containing 

adenosine16; in the AMPK-γ subunits they bind the regulatory nucleotides AMP, ADP or 

and ATP17. Two views of a structure for the γ1 subunit, containing three molecules of 

bound AMP18, are shown in Fig. 3. The two pairs of repeats (CBS1:CBS2 and 

CBS3:CBS4) assemble in a pseudosymmetrical “head-to-head” manner. The γ subunit thus 

forms a structure like a flattened disc (seen from different faces in Fig. 3) with one CBS 

repeat in each quadrant, generating four potential ligand-binding clefts in the centre. 

However, one of these appears to be unused, perhaps because conserved aspartate residues in 

CBS1, CBS3 and CBS4 that bind the ribose ring of adenine nucleotides in sites 1, 3 and 4 

are absent from CBS218. Interestingly, mutation of any of these three aspartate residues 

interferes with multiple effects of AMP on kinase activity19, suggesting that occupancy of 

all three sites may be required for full activation.

Identity of upstream kinases

Identifying the upstream kinases that phosphorylate Thr172 was a difficult challenge, 

eventually solved by genome-wide biochemical screens that identified three upstream 

kinases in budding yeast 20, 21. The mammalian kinases with catalytic domains most 

closely related to these were LKB1 and the Ca2+/calmodulin-dependent kinase CaMKK2 

(CaMKKβ), and evidence was soon obtained that both could act as physiological upstream 

kinases in mammalian cells22–27. The discovery that LKB1 was an upstream kinase for 

AMPK was particularly interesting, because LKB1 had previously been identified to be a 

tumor suppressor28. Phosphorylation of Thr172 by CaMKK225–27 represents a mechanism 

by which hormones that increase cytosolic Ca2+ can activate AMPK in the absence of 

energy stress.

General Features of AMPK Regulation

Regulation by the canonical energy stress mechanism

It might be expected that a system that monitors cellular energy status would sense ATP and 

ADP but, interestingly, all metabolic enzymes known to directly monitor cellular energy 

charge (glycogen phosphorylase, 6-phosphofructo-1-kinase, fructose-1,6-bisphosphatase) 

primarily sense AMP and ATP, as does AMPK. The principal source of AMP in cells is 

thought to be the adenylate kinase reaction (2ADP ↔ ATP + AMP), which appears to 

operate close to equilibrium in most cells so that the AMP:ATP ratio will vary as the square 

of the ADP:ATP ratio29. The former is therefore a more sensitive indicator of falling energy 

status than the latter.

Binding of AMP activates AMPK by three complementary mechanisms, of which the first 

two are mimicked by ADP at higher concentration, while all three are antagonized by ATP: 

(i) inhibition of Thr172 dephosphorylation by protein phosphatases; (ii) promotion of 

Thr172 phosphorylation by LKB1; and (iii) allosteric activation30, 31. The structural model 

shown in Fig. 2 suggests a mechanism, for which there is now supporting evidence7, to 

explain mechanisms (i) and (iii). When AMP is bound at site 3, the α-linker interacts with 
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the surface of the γ subunit containing that site (Fig. 2)7, 32. AMPK heterotrimers contain 

two rather distinct regions, the “catalytic module” (β-CBM, KD, AID, top/front section in 

Fig. 2) and the “nucleotide-binding module” (γ subunit, β-CTD, α-CTD, bottom/rear 

section in Fig. 2). The “hinge” connecting them is the α-linker, and release of the α-linker 

on binding of ATP rather than AMP at site 3 is envisaged to allow the two modules to move 

apart, causing the AID to rotate back into its inhibitory position behind the α-KD. This 

conformational change would also increase accessibility of Thr172 to protein phosphatases, 

which in the AMP-bound conformation of Fig. 2 is around the back, located in a deep cleft 

between the two modules. This model therefore explains not only how AMP binding at site 

3 causes allosteric activation, but also why it protects against Thr172 dephosphorylation, 

with binding of ATP antagonizing both effects.

Multiple mechanisms of pharmacological activation of AMPK

A selection of compounds commonly used to activate AMPK experimentally are listed in 

Table 1. Those in Class 1, including the antidiabetic drug metformin and berberine (derived 

from traditional Chinese medicine) inhibit Complex I of the mitochondrial respiratory chain, 

while those in class 2, including 2-deoxyglucose, inhibit glycolysis. Both classes activate 

AMPK indirectly by increasing cellular AMP:ATP ratios33. These compounds are 

frequently used to activate AMPK experimentally, and studies utilizing them are described 

later in this review. However, because they work by depleting cellular ATP, they should not 

be regarded as specific AMPK activators and any results obtained with them should ideally 

be followed up using genetic approaches, such as the use of AMPK knockouts.

The third class of activator includes the widely used compound 5-aminoimidazole-4-

carboxamide ribonucleoside (AICAR), a nucleoside that is taken up into cells and converted 

to the equivalent nucleotide, ZMP. An important caveat here is that although ZMP is an 

AMP analog that mimics the effects of AMP to activate AMPK, it is about 50-fold less 

potent than AMP itself34. Because ZMP accumulates to millimolar concentrations inside 

cells AICAR does cause AMPK activation, but ZMP also has off-target effects. For example, 

it is known to mimic the effects of AMP on phosphorylase35 and fructose-1,6-

bisphosphatase36 as well as AMPK. Another problem with AICAR is that it is an adenosine 

analogue and, while it does not appear to bind directly to adenosine receptors, in incubated 

cell systems it competes with endogenous adenosine for reuptake into cells by adenosine 

transporters, so can have adenosine-like effects 37.

A more specific activator that works via a related mechanism (class 4) is C13, which is taken 

up by cells and converted by cellular esterases to the AMP analog C2, a very potent AMPK 

activator38 although only for α1- and not α2-containing complexes39. Despite its selectivity 

for the α1 isoform, C2 binds to the γ subunit. Although the AMP and C2 binding sites 

overlap, they are not identical40.

The other molecules of choice for selective activation of AMPK are those binding at the 

ADaM site located between the β-CBM and the N-lobe on the α subunit, such as A769662 

and 991 (class 5)8. All compounds binding this site are more potent activators of complexes 

containing AMPK-β1 rather than β2, and most are essentially β1-selective (Table 1). Using 

AMPK phosphorylated on Thr172, these activators cause a modest degree of allosteric 
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activation (up to 4-fold) and, by inhibiting dephosphorylation, also promote net Thr172 

phosphorylation41, 42. More remarkably, they cause a much larger allosteric activation (up 

to 65-fold) of AMPK that is not phosphorylated on Thr172, and this effect is synergistic 

with AMP43. At present, almost all of the activators known to bind at this site are synthetic 

compounds derived from high-throughput screens, although there is much speculation in the 

field that there is a naturally occurring ligand, hence the appearance of “metabolite” in its 

name15. However, no natural ligands occurring in animal cells that bind the ADaM site have 

yet been found. Salicylate, the natural plant product from which acetyl salicylic acid (ASA, 

aspirin) was derived, does activate AMPK by binding this site9, 44.

It should also be noted that there are currently no specific pharmacological inhibitors of 

AMPK; compound C (dorsomorphin) is sometimes claimed to be a specific inhibitor, but 

this is not the case45.

Targets and Pathways Downstream of AMPK

Catabolic effects switched on by AMPK

Once activated by energy stress, AMPK switches on catabolic pathways generating ATP, 

while switching off anabolic pathways and other processes consuming ATP, thus acting to 

restore energy homeostasis. This topic has been discussed in more detail in previous 

reviews1–3. Examples of catabolic processes acutely switched on include cellular glucose 

uptake mediated by GLUT1 and GLUT4. Activation of GLUT1 may occur via 

phosphorylation of the thioredoxin interacting protein TXNIP46, while enhanced GLUT4 

translocation to the plasma membrane in muscle appears to occur, at least in part, by 

phosphorylation of TBC1D1, which modulates trafficking of GLUT4-containing vesicles47. 

AMPK activation also enhances GLUT4 expression48, in part via phosphorylation of the 

histone deacetylase HDAC5, promoting binding of 14-3-3 proteins and consequent retention 

of HDAC5, a transcriptional inhibitor, in the cytoplasm49, 50. AMPK can also cause a short-

term activation of glycolysis via phosphorylation of PFKFB251 and PFKFB352, isoforms of 

the bifunctional enzyme that synthesizes and breaks down fructose-2,6-bisphosphate, a key 

allosteric activator of 6-phosphofructo-1-kinase and hence glycolysis. PFKFB2 is expressed 

in the heart, while PFKFB3 occurs as an “inducible” form whose expression in monocytes 

and macrophages is induced by inflammatory mediators such as lipopolysaccharide53. 

Phosphorylation of PFKFB2 or PFKFB3 at equivalent sites near their C-termini increases 

the synthesis of fructose-2,6-bisphosphate and hence promotes glycolysis during hypoxia in 

heart and in activated monocytes/macrophages, respectively. This may enhance survival of 

these cells during periods of hypoxia or ischemia.

Although AMPK can therefore activate glucose uptake and glycolysis in specific cell types, 

in the longer term it tends to promote instead the more glucose-sparing and energy-efficient 

oxidative metabolism. In skeletal muscle54, 55 and liver56, AMPK activates fatty acid 

oxidation by inhibiting the ACC1/ACC2 isoforms of acetyl-CoA carboxylase to reduce 

malonyl-CoA, an inhibitor of the uptake of fatty acids into mitochondria. AMPK promotes 

the expression of TCA cycle enzymes57, as well as mitochondrial biogenesis, which it 

achieves by increasing the expression/activity of the transcriptional co-activator PGC-1α, 

either by direct phosphorylation triggering a positive feedback effect on its own 
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expression58, or by enhancing its deacetylation by SIRT159. PGC-1α acts as a co-activator 

for several transcription factors involved in mitochondrial biogenesis and oxidative 

metabolism, including myocyte enhancer factor-2 (MEF2), nuclear respiratory factors-1/-2 

(NRF1/2), and PPAR-α and –δ60. Despite this evidence that AMPK promotes oxidative 

metabolism, in mice with a skeletal/cardiac muscle-specific knockout of both AMPK-β 
subunits, although the mice displayed evidence of dilated cardiomyopathy the rate of 

glucose and fatty acid oxidation in hearts perfused under normoxic conditions ex vivo was 

normal61.

A final catabolic pathway switched on by AMPK is autophagy, brought about via direct 

phosphorylation of the protein kinase that triggers that process, ULK162. By triggering 

digestion of cellular contents, autophagy may be critical in enhancing cell survival during 

periods of acute nutrient starvation, such as during ischemia in cardiac muscle. However, it 

has also been suggested that excessive autophagy might also contribute to cell damage 

during ischemia/reperfusion63.

Anabolic pathways switched off by AMPK

As well as its classical roles in inhibiting fatty acid and sterol synthesis34, AMPK 

inactivates key enzymes and regulatory proteins involved in triglyceride/phospholipid 

synthesis64, glycogen synthesis13, 14, rRNA synthesis65, and protein synthesis. The latter 

is inhibited both at the elongation step by phosphorylation and activation of elongation 

factor-2 (EF2) kinase66, and at the initiation step by inactivation of the mechanistic target-

of-rapamycin complex-1 (mTORC1) by multiple mechanisms67, 68. By inhibiting 

mTORC1, AMPK would also be expected to oppose hypertrophy in organs such as the heart, 

which in most cases is considered to be a deleterious process.

Role of AMPK in the Heart

Role in the response to cardiac ischemia

It was reported in 1995 that AMPK was activated by no-flow ischemia in perfused rat hearts, 

an effect associated with high rates of fatty acid oxidation during reperfusion69. AMPK is 

also activated in the heart by increased workload70. The role of AMPK in cardiac ischemia 

has subsequently been addressed using mouse models where AMPK is down-regulated or 

absent. The first was a transgenic model where an inactive AMPK-α2 subunit was expressed 

in both skeletal and cardiac muscle. By competing with endogenous α subunits for available 

β and γ subunits, the over-expressed inactive α2 subunit down-regulates endogenous α1 and 

α2, and thus acts as a dominant negative mutant. There was no major phenotype under 

unstressed conditions, but during low-flow ischemia there was a failure to enhance glucose 

uptake and glycolysis, while during subsequent reperfusion there was less fatty acid 

oxidation, lower ATP levels and poorer recovery of contractile function71. The degree of 

damage to the myocardium was also greater, suggesting that AMPK exerts a 

cardioprotective effect overall, even though stimulation of fatty acid oxidation during 

reperfusion may be deleterious69. Using the same model, evidence was obtained that AMPK 

was required for increased autophagy during ischemia72.
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Next to be studied were conditional knockouts of the upstream kinase LKB1 in both skeletal 

and cardiac muscle. The basal activity of AMPK-α2 complexes in the heart was completely 

abolished, and did not increase in response to no-flow ischemia or anoxia, correlating with a 

complete lack of ACC phosphorylation at the AMPK site. The AMP:ATP and ADP:ATP 

ratios were also elevated to a greater extent during no-flow ischemia than in control hearts, 

confirming that AMPK was protecting the cells against energetic stress. Surprisingly, the 

activity of AMPK-α1 complexes was almost unaffected by LKB1 knockout, and still 

increased in response to ischemia or anoxia73. Broadly similar results were obtained in 

studies of perfused hearts from mice with a whole body knockout of AMPK-α274. 

Interestingly, left ventricular hypertrophy induced by phenylephrine was greatly accentuated 

in the hearts from AMPK-α2 knockout mice; this may have been due to less restraint on the 

mTORC1 pathway, because the basal phosphorylation of p70S6K at the mTORC1 site was 

elevated, although it did not increase further upon phenylephrine treatment as in the 

controls75.

Mutations in γ2 and γ3 subunits causing heart disease and altered glycogen content

The only mutations in any of the seven genes encoding AMPK subunits clearly shown to 

cause human pathology are those in PRKAG2, encoding AMPK-γ2. These are associated 

with multiple cardiac disorders, specifically: (i) ventricular pre-excitation; (ii) excessive 

glycogen storage in cardiomyocytes; (iii) cardiac hypertrophy. Although rare, the PRKAG2 
mutations are autosomal dominant in effect and therefore occur frequently in affected 

families. They are invariably missense mutations causing amino acid replacements, of which 

at least 14 have now been reported (Table 2). The affected residues are perfectly conserved 

between human γ1, γ2 and γ3, and occur in all four CBS repeats. The location of the 

residues affected in γ2, and of the three bound molecules of AMP, are mapped in Fig. 3 onto 

a structure for γ118. Interestingly, six of the mutations (R302Q, H383R, R384T, H530R, 

R531G and R531Q) affect basic residues whose side chains directly interact with the 

phosphate groups of one or more molecules of AMP or ATP, while two others also interact 

either directly (S548) or indirectly (T400) with AMP18. Other affected residues lie in more 

peripheral regions of the γ subunit, and it is less obvious why their replacement should 

affect function. In the context of bacterially expressed CBS repeats from AMPK-γ2, the 

R302Q, H383R, T400N, and R531G mutations all reduced the affinity for ATP as well as 

AMP, with the severity of the effects increasing in the order 

R302Q<H383R<T400N<R531G16. When expressed in mammalian cells as α1β1γ2 

heterotrimers, these mutations also reduced allosteric activation by AMP, with the R531G 

mutation abolishing AMPK activation completely16, 76. The R384T and R531Q mutations 

were shown later to cause severe effects on AMPK function, similar to or even greater than 

R531G77, 78. In a comparison of the R531G and R531Q mutations expressed as α1β1γ2 

heterotrimers in HEK-293 cells, these mutations not only abolished allosteric activation by 

AMP, but also caused significant increases in basal Thr172 phosphorylation and activity78. 

This was particularly clear in cells stably expressing the R531G mutant, when clones could 

be selected in which the level of expression of the WT and mutant was identical; the R531G 

mutant consistently had a 2-fold higher basal Thr172 phosphorylation and activity although, 

unlike the wild type, it was completely insensitive to further activation by agents that 

increase cellular AMP/ADP33.
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Some of the mutations, such as R302Q, can cause relatively mild symptoms so that the 

patients may not present in the clinic until early adulthood79. By contrast, patients with the 

R531G mutation develop quite severe symptoms during childhood80, while the R384T77 

and R531Q78 mutations were only detected post mortem in neonates who had died within 

weeks of birth, and appeared to be de novo mutations because neither parent was affected. 

Consistent with the idea that R531G, R531Q and R384T cause particularly severe forms of 

the disease, these were the mutations with the largest effects on binding of AMP and ATP to 

the γ subunit16, 77, 78. It is also interesting that R531 and R384 are involved in the binding 

of AMP and/or ATP at the critical site, site 3.

What causes the cardiac sequelae of the PRKAG2 mutations? The reduction of AMP 

binding to the γ subunit causes reduced activation by AMP and is a loss-of-function effect, 

whereas the reduction of ATP binding may be responsible for the increased basal activity of 

the R531G and R531Q mutants and is a gain-of-function effect. Since these mutations are 

dominant, it seems likely that it is the gain-of-function effect, increased basal activity, that 

causes most of the pathology; the loss-of-function effect may be compensated for by γ1, 

which is the major isoform expressed in heart, at least in rodents81. This is an important 

conclusion because pharmaceutical companies are developing AMPK activators to combat 

Type 2 diabetes, and it suggests that activation of γ2-containing complexes in the heart 

might have deleterious effects, as seen with these mutations.

Why does increased basal activity of γ2-containing complexes cause these cardiac 

phenotypes? AMPK is known to promote glucose uptake in cardiac muscle71, so increased 

basal activity would be expected to cause a high basal uptake, even in the absence of a real 

demand for glucose. There is good evidence for this scenario from studies of transgenic 

mice over-expressing the N488I mutation in the heart, which develop ventricular pre-

excitation and cardiac hypertrophy similar to the human disorder82. By 50 days of age, they 

have a 20-fold increase in cardiac glycogen compared with controls, accompanied by higher 

rates of glucose uptake and glycogen synthesis but lower rates of lactate production, 

suggesting that increased glucose uptake is being directed into glycogen synthesis rather 

than glycolysis. Glycogen synthase was also much more highly phosphorylated in the 

transgenic mice (presumably due to the high basal AMPK activity), but cellular glucose-6-

phosphate (G6P, an allosteric activator of glycogen synthase that over-rides the effects of 

phosphorylation) was also elevated >3-fold. Satisfying confirmation of this interpretation 

came when the N488I mice were crossed with knock-in mice carrying a mutation that 

renders glycogen synthase insensitive to G6P. The presence of the G6P-insensitive glycogen 

synthase reversed the high glycogen phenotype of the N488I mice and rescued the 

ventricular pre-excitation but not the cardiac hypertrophy, suggesting that the former but not 

the latter is secondary to increased glycogen content83. Supporting the idea that hyper-

activation of the mTORC1 pathway was the cause of hypertrophy, mTORC1 targets such as 

p70S6K and 4EBP1 were more highly phosphorylated in the N488I mice, while treatment 

with rapamycin reduced, without completely preventing, the hypertrophy. Increased 

mTORC1 in the N488I mice is actually rather counter-intuitive, because AMPK is normally 

thought to inhibit that pathway67, 68. However, a recent study has suggested that AMPK 

can activate mTORC1 under certain circumstances by sustaining the supply of amino acids 

via autophagy84.

Salt and Hardie Page 8

Circ Res. Author manuscript; available in PMC 2017 November 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Why does abnormally high glycogen content lead to ventricular pre-excitation? During 

foetal development, the atria and the ventricles become separated by the growth of a fibrous 

layer called the annulus fibrosis, which ensures that the only electrical connection between 

the two chambers is via the atrioventricular node. In N488I mice the annulus fibrosis 

appeared to be thin and disrupted in places, and it was suggested that the presence of 

glycogen-containing vacuoles in myocytes disrupts its formation during fetal development, 

causing abnormal electrical connections between the atria and ventricles85.

Most mouse studies of γ2 mutations have involved transgenic mice over-expressing the 

mutations in human γ2. Although these mice do display the key clinical features of the 

human syndrome, and mice expressing wild type γ2 from the same promoters were used as 

controls, they are not perfect models because γ2 is being over-expressed. Recently, three 

knock-in mouse models, in which mutations in the mouse gene equivalent to human R302Q, 

N488I or R531G are expressed globally, were studied86, 87. There was evidence for 

increased basal AMPK activity in liver and/or muscle of all three strains. The N488I and 

R531G mice displayed ventricular pre-excitation and modest increases in heart weight, 

which was associated with large increases in glycogen content in hearts of R531G but not 

the N488I mice. Both N488I and R531G mice displayed resistance to obesity and hepatic 

steatosis induced by high-fat diet, but, unlike the N488I mice, the R531G mice also 

displayed impaired renal function associated with glycogen accumulation, cyst formation, 

and inflammation and apoptosis in the kidney, particularly when on a high-fat diet87, By 

contrast, in the R302Q mice there was no obvious cardiac phenotype, but the homozygotes 

developed marked obesity as they aged, with smaller effects in heterozygotes. Obesity 

appeared to be due mainly to increased food intake through enhanced action of ghrelin, 

whose effects are mediated by AMPK activation via the CaMKK2 pathway in the 

hypothalamus88, 89. The homozygotes were also hypoinsulemic, apparently due to reduced 

glucose-stimulated insulin secretion from the pancreas. Overall, the phenotypes of these 

mice with knock-in mutations in the PRKAG2 gene showed surprising variability. 

Interestingly, heterozygous human carriers of the R302Q mutation, who have a relatively 

mild cardiac phenotype, also display some evidence of increased obesity, as well as higher 

fasting glucose and glycated haemoglobin (HbA1c) and lower insulin levels than unaffected 

siblings86. These non-cardiac features of the R302Q mutation only became evident 

following studies of the mouse model.

Finally, all of the residues mutated in AMPK-γ2 are also conserved in γ1 and γ3 (Table 2). 

It is interesting that none of them have yet been reported to be mutated in the human γ1 

gene. However, mutations equivalent to R302Q have been found in both pigs and humans in 

the γ3 isoform, which is predominantly expressed in skeletal muscle81. In human muscle, 

γ3 appears to be present exclusively as the α2β2γ3 complex, which is the only form of 

AMPK that is activated during exercise6. An R200Q mutation (equivalent to R302Q in 

human γ2) was found to be a relatively common dominantly acting genetic variant in 

Hampshire pigs, and was associated with a high glycogen content in skeletal muscle; 

although adversely affecting meat quality, it did not cause obvious clinical problems90. 

Interestingly, in a screen of around 1500 humans, an R225W mutation (R225 being the 

human equivalent of R302) was found in two apparently unrelated individuals, once again 

not associated with any obvious clinical defects; muscles from humans with this mutation 
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had a higher basal AMPK activity, 2-fold higher glycogen content and lower triglyceride 

content91. In an in vitro study of myotubes from R225W carriers, they had 3-fold higher 

mitochondrial content and oxidative capacity, and 2-fold higher basal glucose uptake and 

glycogen synthesis rates than matched controls. The R225W subjects also had a remarkable 

resistance to fatigue during isometric contractions of the quadriceps92, suggesting that this 

mutation might confer an advantage during endurance exercise because of the high glycogen 

content.

Role of AMPK in the Vasculature

In addition to the heart, it has become clear that AMPK has an important role in regulating 

vascular function, with distinct roles in the functions of vascular endothelial cells (ECs), 

smooth muscle cells (VSMCs), adventitial cells and vascular immune cells.

Regulation of AMPK in endothelial and vascular smooth muscle cells

AMPK-α1 accounts for the majority of total AMPK activity in ECs93–95, yet specific 

down-regulation of AMPK-α2 still has marked effects96, 97. A wide variety of 

physiological stimuli have been reported to activate endothelial AMPK, including hypoxia, 

low glucose and shear stress98–100, adiponectin101, angiotensin II and ghrelin102, 103. In 

addition, CaMKK2 mediates AMPK activation by vasoactive molecules including thrombin, 

VEGF, sphingosine-1-phosphate, bradykinin and estrogen104–108, suggesting that any 

stimulus that increases Ca2+ in ECs will activate AMPK. Finally, a number of widely used 

hypoglycemic (metformin, thiazolidinediones, salicylate, DPP4 inhibitors and 

liraglutide)109–112 and hypocholesterolemic (statins and fenofibrate)113, 114 drugs 

activate AMPK in cultured ECs.

Physiological signals that inhibit AMPK in ECs include high nutrient concentrations115–

117, yet the mechanisms by which this inhibition of AMPK in ECs occurs are unclear, 

although increased PP2A-mediated dephosphorylation of AMPK has been proposed115. 

Endothelial AMPK may therefore be suppressed by the high levels of nutrients associated 

with obesity and insulin resistance. As protein kinase C (PKC) activation is associated with 

over-nutrition, it is interesting that PKC-mediated inhibitory phosphorylation of Ser487 on 

AMPK-α1 has been recently reported in ECs118. Conversely, the very first study of AMPK 

function in ECs demonstrated that AICAR stimulated fatty acid oxidation119 and AMPK 

activation was subsequently found to normalise impaired fatty acid oxidation and insulin 

signaling due to high glucose120. Stimulation of fat oxidation may partly underlie the effect 

of AMPK to antagonize palmitate-mediated endothelial dysfunction, thus protecting against 

lipotoxicity.

As with ECs, AMPK-α1 accounts for the majority of AMPK activity in murine and human 

VSMCs121, 122, and low glucose, adiponectin, estradiol and metformin all activate 

AMPK123–126. Angiotensin II has also been reported to acutely activate AMPK127, 

although prolonged activation had no effect128. Similar to ECs, high glucose inhibits 

AMPK in VSMCs, and IGF-1 also inhibits AMPK, most likely via inhibitory 

phosphorylation of AMPK-α1 by Akt129. Several studies have demonstrated that culture in 
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phosphate/β-glycerophosphate, used to examine VSMC calcification as described later, also 

inhibits AMPK130, 131.

AMPK and endothelial NO synthesis

Endothelium-derived NO is a key regulator of vascular function, stimulating VSMC 

relaxation whilst inhibiting pro-inflammatory signaling, leukocyte adhesion, platelet 

aggregation, VSMC proliferation and migration associated with pathological vascular 

remodelling and atherosclerosis132. The first indication of a specific vascular role for 

AMPK came when AMPK was shown to phosphorylate at Ser1177 and activate endothelial 

NO synthase (eNOS), both in cell-free assays and in ECs93, 133. Multiple mechanisms 

regulate eNOS activity, including Ca2+/calmodulin binding, allosteric and protein:protein 

interactions, co-factor and substrate availability, phosphorylation, and subcellular 

localisation132. In addition to Ser1177, AMPK phosphorylates eNOS at Ser633, required 

for AICAR-stimulated NO synthesis in HEK293 cells134. NO synthesis requires 

dimerization of eNOS and sufficient tetrahydrobiopterin (BH4), in whose absence eNOS 

generates superoxide instead132. Another mechanism by which AMPK improves NO 

synthesis may be by enhancing BH4 levels, as AMPK prevents degradation of GTP 

cyclohydrolase I, which is the rate-limiting enzyme in BH4 synthesis135. AMPK can 

therefore act by multiple mechanisms to stimulate NO production (Fig. 4), although 

endothelial AMPK activation is not always associated with eNOS phosphorylation or NO 

synthesis94, 136. AMPK may also mediate some of the endothelial effects of NO, because 

NO donors activate AMPK in ECs96.

Endothelial AMPK and reactive oxygen species

Inappropriate levels of reactive oxygen species (ROS), in particular superoxide anions 

generated in response to high concentrations of glucose, lipids and proinflammatory 

cytokines by NAD(P)H oxidase (Nox), uncoupled eNOS or mitochondrial respiratory chain 

complexes, have been implicated in vascular disease97, 135, 137, 138. Superoxide reacts 

with NO to form peroxynitrite, reducing NO bioavailability132. AMPK activation in ECs 

has been widely demonstrated to inhibit ROS formation, increase antioxidant defences and 

promote mitochondrial biogenesis. Down-regulation of AMPK in ECs increased activity and 

expression of Nox97, whereas AMPK-dependent inhibition of Nox1/2 translocation to the 

plasma membrane has also been reported109. The mechanism by which AMPK inhibits Nox 

remains unclear, but may be secondary to reduced PKC-mediated Nox activation, or NFκB-

mediated Nox transcription97, 109. AMPK-dependent inhibition of mitochondrial ROS 

formation has also been reported in ECs maintained in high glucose 137, whereas AMPK-

mediated stimulation of BH4 synthesis, as described above, prevents uncoupling of eNOS 

and superoxide formation135. Several groups have reported that AMPK-mediated inhibition 

of ROS in ECs is associated with increased levels of the antioxidant enzymes superoxide 

dismutase-2 (SOD2), catalase and thioredoxin 137, 139, 140. In ECs, AMPK activation 

reduces ER stress141, which is tightly linked to oxidative stress and inflammation, whereas 

silencing of AMPK increases markers of ER stress95. Taken together, AMPK activation acts 

via multiple mechanisms to suppress chronic ROS synthesis in ECs, limiting their damaging 

actions as well as the sequestration of NO (Fig 4).
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AMPK and vascular cell inflammation

The development of endothelial dysfunction and cardiovascular diseases is associated with 

elevated TNFα, IL-1β and IL-6142. TNFα and IL-1β stimulate activation of NFκB and the 

Jun N-terminal kinase (JNK) pathway, while IL-6 signals via Janus kinases (JAKs) leading 

to phosphorylation of signal transducer and activation of transcription (STAT) proteins143. 

The anti-inflammatory actions of AMPK in ECs were first described when AMPK activation 

was shown to suppress palmitate- or TNFα-stimulated NFκB activity117. Under basal 

conditions, NFκB is in an inactive form in the cytoplasm due to binding to IκB whereas, 

after cytokine stimulation, IκB phosphorylation by IκB kinase (IKK) targets it for 

degradation, allowing NFκB-mediated transcription of proinflammatory cytokines, adhesion 

molecules and chemokines143, 144. NO inhibits endothelial NFκB activity145, suggesting 

that AMPK-stimulated NO synthesis would inhibit NFκB, although NO donors do not 

effectively suppress NFκB in ECs with reduced AMPK activity96. AMPK-α2 has been 

reported to phosphorylate IKKβ in vitro, inhibiting IκB phosphorylation and NFκB 

activation, with reduced IL-1β-stimulated IKK phosphorylation observed in ECs lacking 

AMPK-α2 but not -α196. Alternatively, AMPK-mediated phosphorylation of the 

transcriptional co-activator p300 has been proposed to block acetylation and DNA binding 

by the p65 subunit of NFκB146. The idea that AMPK inhibits NFκB signalling is reinforced 

by functional studies demonstrating AMPK-dependent inhibition of NFκB-regulated 

expression of adhesion molecules and MCP-196, 144. Fewer studies have investigated the 

effect of AMPK on proinflammatory JNK and IL-6 signaling, although AICAR and 

metformin reduce JNK activity in ECs147, and increased JNK phosphorylation has been 

reported in ECs lacking AMPK-α295. The mechanism of JNK inhibition is uncertain, 

although AMPK-dependent inhibition of the upstream kinase MKK4 has been reported in 

other cells148. Recently, AMPK-dependent inhibition of IL-6-stimulated JAK-STAT 

signaling has been demonstrated in ECs, potentially via direct inhibitory phosphorylation of 

JAK1 by AMPK110. AMPK activation therefore appears to rapidly suppress multiple 

proinflammatory signaling pathways in ECs, by diverse mechanisms.

AMPK activation in VSMCs inhibits TNFα-stimulated NFκB activity and angiotensin II-

stimulated STAT1 activity, as well as reducing expression of inducible NOS and 

cyclooxygenase-2, and secretion of IL-6 and MCP-1149, 150. Thus, AMPK has anti-

inflammatory effects in VSMCs as well as ECs.

AMPK and angiogenesis

Hypoxia, VEGF and adiponectin all stimulate AMPK-dependent EC migration, although 

there are conflicting reports as to whether this is mediated by NO94, 98, 101, 105, 108. 

Conversely, down-regulation of AMPK attenuates angiogenesis caused by hypoxia, 

adiponectin, VEGF or statins, in either tube formation or matrigel plug assays94, 98, 101, 

113. Mechanistically, increased UCP2 or SOD2 have been reported to increase angiogenesis 

in AMPK-deficient ECs151, 152, indicating that down-regulation of ROS may be critical. 

AMPK activation also stimulates VEGF expression, indicating that AMPK positively 

influences angiogenesis both by increasing VEGF levels and by increasing VEGF 

signaling153. As angiogenesis would also consume significant amounts of ATP, AMPK 
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activation might also serve a permissive role, ensuring adequate generation of ATP to permit 

EC migration and proliferation.

AMPK and VSMC contraction

AMPK has direct anti-contractile effects on VSMCs, because AICAR relaxes aortic rings in 

an NO- and endothelium-independent manner, an effect lost in AMPK-α1 knockouts121. 

Furthermore, AMPK activation has been reported to affect VSMC contractile signalling, 

including dephosphorylation of myosin light chain (MLC) and/or myosin phosphatase 

targeting subunit 1 (MYPT1)125, 154. Mechanistically, MLC/MYPT1 dephosphorylation 

may be a consequence of AMPK-mediated inhibition and phosphorylation of RhoA at 

Ser188, causing subsequent inhibition of ROCK125. A769662 has also been reported to 

reduce intracellular Ca2+ in VSMCs by increasing sarco/endoplasmic Ca2+ ATPase 

(SERCA) activity, associated with increased phosphorylation of phospholamban on Thr17, 

which disinhibits SERCA and thereby may underlie SERCA activation and vessel 

relaxation155.

AMPK and proliferation, differentiation and migration of VSMCs

Unlike ECs, where AMPK up-regulates proliferation and migration thus supporting 

angiogenesis, in VSMCs AMPK inhibits proliferation in response to angiotensin II, PDGF 

and FCS, associated with stimulation of p53 Ser15 phosphorylation and reduced Rb 

phosphorylation128, 156. VSMCs from mice lacking AMPK-α2 exhibit increased 

proliferation, an effect mediated by increased degradation of the cyclin-dependent kinase 

inhibitor p27Kip1 triggered by the ubiquitin E3-ligase Skp2157. VSMCs retain significant 

plasticity in vivo and can exhibit a synthetic, proliferative phenotype rather than the 

quiescent, contractile phenotype during atherogenesis. AMPK not only suppresses VSMC 

proliferation, but also inhibits migration and maintains a pro-contractile phenotype158, 159. 

Inhibition of migration and proliferation are likely to be linked, because increased migration 

of VSMCs lacking AMPK-α2 is reported to be Skp2-dependent159. Furthermore, AICAR 

limits neointima formation after wire injury of rat femoral arteries, which is likely to reflect 

the anti-proliferative, anti-migratory actions of AMPK on VSMCs127.

AMPK and VSMC calcification

As mentioned above, culture in high phosphate/β-glycerophosphate concentrations is used 

experimentally to stimulate calcium deposition in VSMCs. In vivo, such vascular 

calcification is frequently associated with ageing, atherosclerosis and diabetes mellitus. 

AICAR, adiponectin and metformin all inhibit VSMC calcification in vitro130, 131, 160. In 

recent studies of atherosclerosis-prone ApoE-/- mice, deletion of AMPK-α1 but not AMPK-

α2 caused greater calcification of atherogenic plaques, and levels of the osteogenic 

transcription factor Runx2160. Furthermore, metformin reduced atherosclerotic calcification 

and Runx2 expression in the mice, an effect that was absent in ApoE-/-mice lacking AMPK-

α1. The authors of that study further demonstrated that VSMC-specific AMPK-α1 deletion 

in ApoE-/- mice phenocopied the increased calcification and Runx2 expression, whereas 

macrophage-specific AMPK-α1 deletion had no effect. The mechanism underlying the 

AMPK-mediated inhibition of Runx2 levels was further proposed to be mediated by 
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phosphorylation of PIAS1 (protein inhibitor of activated STAT-1) at Ser510, which acts as a 

SUMO E3-ligase to trigger Runx2 SUMOylation and degradation160.

Role of AMPK in the Vasculature in vivo

As many of the actions of AMPK in ECs and VSMCs should have beneficial effects on 

vascular function (Fig 5), considerable efforts have been made to examine whether AMPK 

influences vascular tone, remodelling and atherogenesis in vivo. Under physiological 

conditions, vascular AMPK has been reported to be activated in vivo by exercise161 and 

estradiol125, and is suppressed by high fat and fructose diets in rodents162, 163. 

Furthermore, exercise stimulates aortic AMPK phosphorylation in both ECs and VSMCs as 

assessed by immunohistochemistry161.

AMPK and vascular tone

As described above, AMPK can stimulate NO synthesis by ECs and independently inhibit 

contractile protein function in VSMCs in vitro. In intact arterial vessels, AICAR stimulates 

vasodilation in a diverse range of vascular beds from several species121, 164–167, an effect 

greatly attenuated in mice lacking AMPK-α1121. The mechanism of AICAR-stimulated 

vasodilation remains uncertain, and has been variously reported to be endothelium- and NO-

dependent164, 167, partially NO- and endothelium-dependent165, 166 or NO- and 

endothelium-independent121. Using endothelium-specific knockouts it has been proposed 

that AMPK-α1 is important for endothelium-dependent hyperpolarisation-mediated 

relaxation of resistance arteries168. Interestingly, resistance arteries exhibited endothelium-

independent dilation in response to A769662155, suggesting a VSMC-mediated effect. It is 

possible that ECs and VSMCs exhibit differential sensitivities to AICAR and A769662, or 

that some of these may be AMPK-independent effects. Despite studies indicating that 

AMPK-α2 has a less important role in regulation of vascular tone121, 168, AMPK-α2 

knockout mice are hypertensive and exhibit increased contractile responses to phenylephrine 

in aortic rings169. Furthermore, impaired bradykinin-dependent vasodilation has been 

described in EC-specific AMPK-α2 knockout mice, thought to be due to increased 

bradykinin degradation by angiotensin-converting enzyme activity170. AICAR rapidly 

reduced blood pressure in spontaneously hypertensive rats, but was without effect in 

normotensive controls165, while prolonged administration of AICAR reduced systolic blood 

pressure in obese Zucker rats171. These data support a role for AMPK in the regulation of 

vascular tone in disease models, but cannot exclude systemic actions on the heart, kidney or 

other tissues. Surprisingly, whether systemic administration of more selective AMPK 

activators, such as A769662, 991 or C13, alters vascular tone has yet to be reported. More 

recently it has become clear that perivascular adipose tissue (PVAT), which is removed in 

most myography protocols, has a paracrine anti-contractile effect on the underlying vessel. 

AMPK activity in resistance arteries has been shown to alter the influence of PVAT-derived 

mediators172 and the anti-contractile action of PVAT is absent in mice lacking AMPK-α1, 

perhaps due to reduced adiponectin secretion173. AMPK in ECs, VSMCs and adventitial 

PVAT may therefore all contribute to the maintenance of vascular tone, but the cell type that 

mediates actions of AMPK on vascular tone may change, depending on the location of the 

vessel.
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AMPK and atherosclerosis

The potential anti-atherogenic actions of AMPK have been investigated in vascular injury 

models and atherosclerosis-prone hypercholesterolemic mice. AICAR attenuates post-

ischaemic leukocyte rolling and adhesion to the endothelium in vivo, an effect lost in 

AMPK-α1 or AMPK-α2 knockout mice174, and systemic administration of AICAR or 

metformin reduces atherosclerotic lesion size, macrophage accumulation and 

inflammation175–177. Similarly, berberine reduced the severity of atherosclerotic lesions in 

atherosclerosis-prone mice, an effect attenuated in AMPK-α2 knockouts178. AMPKα2-

deficient mice also exhibited increased atherosclerosis95, although the global deficiency 

makes it difficult to assess whether this was due to a direct effect on vascular tissues. With 

respect to plaque stability and progression, recent studies have yielded exciting results. 

Metformin reduced plaque calcification, and mice with a SMC-specific knockout of AMPK-

α1 had exacerbated calcification of atherosclerotic plaques in brachiocephalic arteries, 

phenocopying the increased calcification observed in global AMPK-α1 but not AMPK-α2 

knockouts160. As the clinical use of metformin is associated with reduced macrovascular 

morbidity and mortality independently of glycemia179, these results may help to define the 

pathways involved. Using a ligation model for studying injury-induced neointima stability in 

brachiocephalic arteries, mice with deletion of AMPK-α1 but not AMPK-α2 exhibited more 

occlusive lesions, with lower collagen and higher macrophage content, indicative of plaque 

instability180. Similarly, in a high fat diet model, SMC-specific AMPK-α2 knockouts 

exhibited features of unstable plaques, including phenotype switching of VSMCs158. These 

data therefore indicate that AMPK activation may not only inhibit atherogenesis, but also 

inhibit the generation of vulnerable, calcified plaques. Repair of damaged endothelium is 

also considered important to prevent endothelial dysfunction after injury, and EC-specific 

expression of constitutively active AMPK has also been reported to promote re-

endothelialization in a wire injury model, attributable in part to increased mobilization and 

incorporation of endothelial progenitor cells181.

Immune cells are involved in all stages of atherosclerosis, and AMPK suppresses 

inflammatory signalling, monocyte-to-macrophage differentiation and foam cell 

formation175, 177, 182. Indeed, myeloid-specific AMPK-α1 knockout mice fed an 

atherogenic diet on a LDL receptor knockout background have recently been shown to 

exhibit exacerbated atherosclerosis, with increased plaque macrophage content and 

inflammatory gene expression182. All of these studies suggest that AMPK activation limits 

atherosclerosis, although all of the results are from rodent models, rather than humans. One 

intriguing question is how, despite only contributing a small fraction of total AMPK activity 

in vascular cells, specific down-regulation of AMPK-α2 has such marked effects on 

atheroma development in mice 95, 158, 174, 178, similar to the specific effects noted with 

respect to vascular tone169, 170. It remains to be determined whether there are isoform-

specific substrates or specific subcellular localisations that contribute to the vascular 

function of AMPK-α2.

AMPK and pulmonary vascular remodelling

Several studies have identified a critical role for AMPK in the pulmonary vascular 

remodelling and perivascular inflammation that characterizes pulmonary arterial 
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hypertension (PAH). Metformin reduces pulmonary artery VSMC proliferation in an 

AMPK-dependent manner183, and inhibits the vascular remodelling of pulmonary arteries 

in rodent models of PAH184, 185 . Mice with an EC-specific lack of AMPK also exhibit 

accelerated pulmonary remodeling185. Whether the beneficial action of metformin in PAH 

is mediated by AMPK remains to be determined. By contrast, AMPK activation by hypoxia 

may contribute to the development of PAH by promoting pulmonary VSMC survival186, 

while AMPK-mediated inhibition of the voltage-gated K+ channel Kv1.5 may underlie the 

acute detrimental effects of hypoxia on PAH187.

Conclusions and Perspectives

AMPK exists as heterotrimeric complexes consisting of catalytic α subunits and regulatory 

β and γ subunits. AMPK complexes sense the energy status of cells by sensing increases in 

the cellular AMP:ATP and/or ADP:ATP ratios. AMP, ADP and ATP bind at up to three sites 

on the γ subunits; binding of AMP and/or ADP causes activation by promoting net 

phosphorylation at Thr172 within the activation loop on the α subunit, while binding of 

AMP only causes further allosteric activation. Once activated by energy stress, AMPK 

switches on catabolic pathways that generate ATP, while switching off cell growth and 

proliferation and other processes that consume ATP.

AMPK appears to exert a protective effect in rodent heart during ischemic episodes. 

Inherited and/or de novo mutations in the PRKAG2 gene (encoding AMPK-γ2) in humans 

cause heart disease of varying severity characterized by ventricular pre-excitation, excessive 

cardiac glycogen content, and hypertrophy. The mutations cause an increase in basal AMPK 

activity, leading to increased glucose uptake that accounts for the first two abnormalities. 

They also cause a failure of γ2-containing complexes to be further activated by AMP, which 

might explain the hypertrophy through unrestrained activity of the mTORC1 pathway.

In blood vessels, AMPK inactivation is associated with anti-contractile, anti-inflammatory 

and anti-atherogenic actions on both the vascular endothelium and smooth muscle. Exciting 

recent studies link AMPK activation to increased stability and reduced calcification of 

atherosclerotic plaques as well as highlighting a potential role for AMPK in pulmonary 

arterial hypertension. Given the critical role of AMPK in the regulation of nutrient 

metabolism, therapies that activate AMPK may not only normalise metabolic dysfunction 

but also reduce the burden of cardiovascular complications in obesity and type 2 diabetes. 

Recent studies using vascular tissue-specific deletion of AMPK-α isoforms are beginning to 

elucidate specific roles for AMPK-α isoforms, yet despite the wealth of research 

demonstrating the functional cardiovascular consequences of AMPK activation, the AMPK 

substrates involved and underlying mechanisms in several cases remain poorly defined. 

Emerging technologies such as phosphoproteomics may prove beneficial in understanding 

such mechanisms after AMPK up- or down-regulation in cardiovascular tissues in different 

disease settings and disease models.
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Figure 1. Domain layouts of AMPK subunits and their isoforms.
The linear layout of domains is shown, approximately to scale and with similar color coding 

as in Fig. 2. Note that both β subunits are N-myristoylated, and that the γ2 and γ3 subunit 

isoforms have unrelated N-terminal extensions of unknown function, although both are also 

reported to exist as shorter, N-terminally truncated versions due to alternate start sites and/or 

splicing188.
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Figure 2. Structure of human AMPK (α1β2γ1 complex)7.
The model was created in spacefilling mode using PyMol v1.7.4.2 with the co-ordinates in 

PDB file 4RER, and with color coding similar to Fig. 1. The heterotrimer was crystallized in 

the presence of β-cyclodextrin, which occupies the glycogen-binding site, staurosporine, 

which occupies the active site, and AMP, which occupies sites 1, 3 and 4 on the γ subunit 

(sites 1 and 4 are round the back in this view). Although Thr172 was phosphorylated, it is 

not visible in this view but lies in the cleft between the α subunit C lobe and the β-CTD, just 

over the right-hand “shoulder” of the C-lobe.
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Figure 3. Two views of the structure of the four CBS repeats of the γ1 subunit.
The model used the co-ordinates in PDB file 2V8Q18, and was rendered in PyMol v1.7.4.2 

with the γ1 subunit in cartoon view. The two views are rotated 180° around the x axis 

(dashed line) with respect to each other, with the orientation of the top view being similar to 

that in Fig. 2. Note the pseudosymmetrical layout of the four CBS repeats, which are colored 

differently (and differently to Figs. 1 and 2). Residues equivalent to those mutated in γ2 are 

highlighted using the “dots” version of space-filling representation, and are numbered using 

Salt and Hardie Page 32

Circ Res. Author manuscript; available in PMC 2017 November 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the human γ2 numbering. The three molecules of bound AMP are labelled and are shown in 

standard space-filling view, with C atoms green, O red and N blue.
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Figure 4. Regulation of endothelial NO and superoxide synthesis by AMPK.
AMPK activation stimulates NO synthesis via multiple mechanisms: (i) phosphorylation of 

eNOS at Ser633 and Ser1177; (ii) increasing Hsp90 association with eNOS; (iii) increasing 

BH4 concentrations via GTP cyclohydrolase I (GTPCH1); (iv) reducing superoxide 

synthesis via inhibition of Nox and increasing antioxidant protein (superoxide dismutase 

(SOD), thioredoxin and catalase) levels. NO itself is also reported to activate AMPK.
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Figure 5. Actions of AMPK in vascular cells.
Physiological activators of AMPK in ECs include hypoxia/ischemia, shear stress, 

adiponectin, thrombin, bradykinin and VEGF (synthesis of which is stimulated by AMPK in 

other tissues). AMPK is reported to stimulate VSMC relaxation through: (i) increased NO 

synthesis and possibly endothelium-dependent hypopolarising factor (EDHF); (ii) inhibition 

of MYPT1/MLC phosphorylation and Ca2+ levels in VSMCs, reported to be mediated by 

reduced RhoA activity and increased sarco/endoplasmic Ca2+ ATPase (SERCA) activity 

respectively. AMPK activation in ECs stimulates proliferation and migration, whereas in 

VSMCs, proliferation and migration are inhibited, associated with p53 phosphorylation, Rb 

dephosphorylation and p27(Kip1) stabilisation. AMPK also inhibits VSMC calcification by 

reducing Runx2 and pro-inflammatory signalling pathways leading to leukocyte adhesion 

and cytokine/chemokine synthesis.
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Table 1
List of pharmacological agents commonly used to activate AMPK in intact cells or in vivo, 
and their mechanisms of action.

Class Agent Mechanism Binding site used Isoform-selective? Ref.

1 metformin mitochondrial inhibitor, AMP ↑ γ subunit (binds AMP) No 33

1 phenformin mitochondrial inhibitor, AMP ↑ γ subunit (binds AMP) No 33

1 berberine mitochondrial inhibitor, AMP ↑ γ subunit (binds AMP) No 33

2 2-deoxyglucose glycolytic inhibitor, AMP ↑ γ subunit (binds AMP) No 33

3 AICAR pro-drug, converted to ZMP γ subunit (binds ZMP) No 33, 34

4 C13 pro-drug, converted to C2 γ subunit (binds C2) α1-selective 38, 40

5 A769662 direct activator ADaM site β1-selective 189

5 991 direct activator ADaM site β1>β2 8

5 MT 63-78 direct activator ADaM site β1-selective 190

5 PF-06409577 direct activator ADaM site β1-selective 191

5 PF-249 direct activator ADaM site β1-selective 191

5 salicylate direct activator ADaM site β1-selective 9, 44
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Table 2
Amino acid replacements, generated by mutations in PRKAG2, that are associated with 
heart disorders.

Equivalent residues in the sequences of human γ1 and γ3 are shown in the second and third column and the 

CBS repeat affected in the fourth. V336 and R350 are located in the linker between CBS1 and CBS2.

γ2 mutation γ1 equivalent γ3 equivalent CBS repeat affected Reference

R302Q R70 R225 CBS1 192–194

S333P S101 S333 CBS1 79

V336A V104 V259 linker 79

L insert (after R350) after R118 after R273 linker 195

H383R H151 H306 CBS2 195

R384T R152 R307 CBS2 77

T400N T168 T323 CBS2 193

Y487H Y255 Y410 CBS3 196

N488I N256 N411 CBS3 193

E506K E274 E429 CBS4 79, 197

H530R H298 H453 CBS4 198

R531G R299 R454 CBS4 80

R531Q R299 R454 CBS4 78

S548P S316 S471 CBS4 199
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