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ABSTRACT The notion that transcription factors bind DNA only through specific, consensus binding sites has been recently
questioned. No specific consensus motif for the positioning of the human preinitiation complex (PIC) has been identified. Here,
we reveal that nonconsensus, statistical, DNA triplet code provides specificity for the positioning of the human PIC. In particular,
we reveal a highly nonrandom, statistical pattern of repetitive nucleotide triplets that correlates with the genomewide binding
preferences of PIC measured by Chip-exo. We analyze the triplet enrichment and depletion near the transcription start site
and identify triplets that have the strongest effect on PIC-DNA nonconsensus binding. Using statistical mechanics, a
random-binder model without fitting parameters, with genomic DNA sequence being the only input, we further validate that
the nonconsensus nucleotide triplet code constitutes a key signature providing PIC binding specificity in the human genome.
Our results constitute a proof-of-concept for, to our knowledge, a new design principle for protein-DNA recognition in the human
genome, which can lead to a better mechanistic understanding of transcriptional regulation.
Transcription factors (TFs) are proteins that regulate gene
expression. An established paradigm that TFs specifically
recognize only relatively short (4–20 basepair (bp))
consensus DNA motifs (1–4) has been recently challenged
by different high-throughput methods both in vivo and
in vitro (5–8). Human preinitiation complex (PIC) repre-
sents one of the most striking examples where design prin-
ciples of specific protein-DNA recognition remain unknown
(5). In particular, in a recent study by Pugh and Venters (7)
using the Chip-exo method, no specificity-determining
consensus motifs for the positioning of PIC have been iden-
tified, thus challenging an established paradigm that the
consensus TATA box motif provides the specificity (3,4,7).

Here, we reveal that the enrichment level of certain repet-
itive nucleotide triplets correlate with the genomewide bind-
ing preferences of TFIIB—a key component of PIC (7). The
unprecedented, single-nucleotide resolution of the Chip-exo
method (7) allows us to compare the computed model TF-
DNA binding free energy with the measured TFIIB binding
occupancy at each DNA basepair. Previously, we suggested
a model for yeast PIC positioning based on a statistical, non-
consensus protein-DNA binding mechanism (6–8). The non-
consensus mechanism predicts that enrichment of certain
repetitive DNA sequence elements can lead to an enhanced
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protein-DNA binding (6–8). Here, we show that this mecha-
nism (albeit with entirely different DNA sequence symme-
tries) also describes the positioning of the human PIC,
using a simple random-binder model based on a 64-letter
triplet alphabet, with the human genomic DNA sequence
constituting the only input into the model (see below).

In particular, we analyzed the measured genomewide oc-
cupancy of TFIIB (Fig. 1), and revealed that the peak of this
occupancy (positioned�50 bp downstream of the transcrip-
tion start site (TSS); Fig. 1) is characterized by a highly
nonrandom probability distribution of repetitive nucleotide
triplets (Fig. 2). This finding has led us to develop a minimal
random-binder model based on a 64-letter triplet code as
follows. We consider a model TF forming M contacts with
DNA, sliding along the DNA sliding window with the width
L (Fig. S1). Such sliding window can be positioned at any
genomic position. To assign the nonconsensus free energy
to the middle of the sliding window, we define the partition
function as follows:

Z ¼
XL�Mþ1

i¼ 1

expð � UðiÞ=kBTÞ; (1)

where kB is the Boltzmann constant and T is the tempera-
ture, with the interaction potential U, as follows:

UðiÞ ¼
XiþM�1

j¼ i

X

a

KaSaðjÞ; (2)
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FIGURE 1 Free energy of nonconsensus

triplets based TFIIB-DNA binding negatively

correlates with the TFIIB binding intensity.

Shown here is the computed average free

energy of nonconsensus TFIIB-DNA binding

and the profile of the average TFIIB binding

intensity measured by Pugh and Venters

(7) around the TSSs of 6097 genes. The

average free energy was calculated every

50 bp, within the interval (�450, 450 bp). To

compute the free energy, we used a sliding

window of 100 bp. To compute error bars,

we calculated the mean free energy for

each chromosome and divided the results

into five randomly chosen subgroups and

computed the mean for each subgroup.

The error bars are defined as 1 SD of the

mean of free energy between the subgroups.

(Inset) Given here is the correlation between

the free energy and the TFIIB binding inten-

sity with the Pearson correlation coefficient

and the p value. To see this figure in color,

go online.
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where each sequence position i corresponds to a DNA
triplet, and there are overall 64 possible nucleotide triplets,
a (Fig. S1). Here, Ka is the vector containing 64 random en-
ergy parameters taken from the Gaussian distribution with
A

B

FIGURE 2 Enrichment levels of 64 nucleotide triplets computed for t

intensity, respectively. (A) Shown here is triplet enrichment in the reg

triplet enrichment in the region of low TFIIB binding intensity (�450,

and hnirand represent the computed average number of nucleotide trip

tively. We used 10 randomized DNA replicas to compute hnirand. Sha
ference based on the two-sample Kolmogorov-Smirnov p value (Tab

four randomly chosen subgroups and computed the mean value of

as 2 SD of the mean between the subgroups. To see this figure in c
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the zero mean (for simplicity) and the standard deviation,
s ¼ 2 kBT (the magnitude of s sets the energy scale in the
problem corresponding to a typical energy of one bond be-
tween amino acid and nucleotide basepair (9,10)); and Sa(j)
he genomic regions characterized by high and low TFIIB binding

ion of high TFIIB binding intensity (0, 100 bp). (B) Shown here is

�350 bp). The enrichment is defined as Dn ¼ n � hnirand, where n

lets in the set of actual and randomized DNA sequences, respec-

ded bars represent triplets that did not exhibit a significant dif-

le S1). To compute error bars, we divided DNA sequences into

the enrichment for each subgroup. The error bars are defined

olor, go online.
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is also a vector of length 64 with all but one zero elements.
The only nonzero element (¼ 1) of Sa(j) corresponds to
the nucleotide triplet of type a located at the sequence posi-
tion j. After generating 250 random TFs, and averaging the
resulting free energy, as follows:

F ¼ �kBT ln ðZÞ; (3)

with respect to all TFs, we obtain the average nonconsen-
sus free energy for a given genomic position. Moving
the sliding window along the genome, and repeating the
procedure described above, we obtain the genomewide
average nonconsensus free energy landscape (Fig. 1).
This landscape demonstrates a statistically significant,
negative correlation with the measured TFIIB binding pref-
erences (Fig. 1, inset). The lower the nonconsensus free
energy, the higher the measured TFIIB binding intensity.
We have verified that the obtained results are similar for
all three possible reading frames (Fig. S2). We note that
in the free energy calculation from Eqs. 1 and 2, once
the reading frame is chosen, the energy needs to be
computed with the step size of three nucleotides
(Fig. S1). This is due to the fact that our effective energy
model is defined at the triplet level and is not decompos-
able into, e.g., mononucleotide contributions.

We stress the important fact that our random binder
model does not involve any fitting parameters, and all the
parameters, Ka, in the interaction potential, Eq. 2, are
entirely random (see above). In other words, in the course
of computing the free energy (Fig. 1), our computational
procedure does not utilize training and validation datasets,
respectively.

Highly nonrandom distribution of repetitive nucleotide
triplets along the human genomic DNA provides the reason
for the observed effect (Fig. 2). In particular, we analyzed
the enrichment level for 64 possible nucleotide triplets in
the region of the highest TFIIB binding intensity positioned
in the interval (0, 100), and compared this enrichment
with the one observed in the interval distant from the TSS
(�450, �350) (Fig. 2). The computed triplet enrichment,
Dn ¼ n � hnirand, is normalized by the GC content in
each genomic region separately, and it thus represents a
robust measure characterizing the enrichment of repetitive
nucleotide triplet patterns. Here, n and hnirand represent
the computed average number of nucleotide triplets in the
set of actual and randomized DNA sequences, respectively.
We used 10 randomized DNA replicas to compute hnirand.

To further validate statistical significance of our results,
we computed the Kolmogorov-Smirnov p value for each
nucleotide triplet (Table S1). This p value provides a statis-
tical significance of the difference between the actual and
randomized probability distributions, P(n) and P(nrand),
respectively (Table S1). For the genomic interval (0; 100),
the majority (60 out of 64) of computed p values are highly
significant (Fig. 2 A; Table S1). For example, the enrichment
of GAG triplet and the depletion of GGG triplet, provide the
strongest signature for the enhanced TFIIB binding intensity
(Fig. 2 A). The pattern of nucleotide triplet enrichment is
entirely different for the interval (�350, �450), with 54
out of 64 computed p values being significant (Fig. 2 B;
Table S1).

We note that <30% of the analyzed genes possess
translation start sites within the region (0, 100) (Fig. S3).
We performed a control calculation, removing these se-
quences from our analysis of the triplet enrichment
(Fig. S4). As a result, we obtained highly significant linear
correlation between the original (Fig. 2 A) and control
(Fig. S4) triplet enrichment with the linear correlation coef-
ficient (R ¼ 0.99). Therefore, the dominant effect to the
observed triplet enrichment (depletion) (Fig. 2) does not
originate from codon bias (Figs. S3 and S4).

The obtained pattern of nucleotide triplet enrichment
(Fig. 2) is validated by the computed pair correlation func-
tion, haa(x), representing the probability to find two nucle-
otides of type a separated by the relative distance, x
(Fig. 3). Taken together, our results indicate that the noncon-
sensus mechanism provides the DNA binding specificity for
TFIIB, meaning that the entire distribution of enrichment/
depletion levels for the majority of nucleotide triplets (and
not just one or two specific triplets) influences the TFIIB
binding intensity.

The peaks in the computed pair correlation functions
(Fig. 3, C and D) demonstrate that certain repetitive DNA
triplets represent statistically dominant repetitive sequence
elements in the genomic regions characterized by high
PIC occupancy (Fig. 2 A). To further validate this observa-
tion, we analyzed the enrichment (depletion) of doublets (16
possible nucleotide doublets) and quadruplets (256 possible
nucleotide quadruplets) (Tables S2 and S3). We also
computed the free energy landscape based on doublets
(Fig. S5) and quadruplets (Fig. S6), using a variant of our
simple random-binder model adopted for doublets and qua-
druplets, respectively (Figs. S5 and S6). Strikingly, although
doublets and quadruplets do show statistically significant
enrichment (depletion) (Tables S2 and S3), the computed
free energy landscapes based on doublets and quadruplets,
respectively, do not correlate with the measured binding
preferences of PIC (Figs. S5 and S6). This is in striking
contrast with the free energy landscape computed based
on triplets (Fig. 1).

We emphasize that our simple approach does not take into
account the effect of PIC competition (and its possible syn-
ergetic interactions) with other DNA binding proteins, or the
effect of nucleosome binding preferences (4,11–13). Our
analysis focuses entirely on the nonconsensus effect,
whereas the presence of yet unidentified specific, consensus
motifs might significantly influence the resulting binding
preferences. However, our main prediction that noncon-
sensus PIC-DNA binding dominated by entropy signifi-
cantly influences PIC binding preferences in the human
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A

C D

B FIGURE 3 Normalized pair (binary) correla-

tion functions for the nucleotide spatial dis-

tribution. (A–D) Shown here is the computed

correlation function haa(x) ¼ (Naa(x) � <

Naa(x) > rand)/L0, where Naa(x) represents

the average number of nucleotide pairs of

type a separated by the relative distance x

bp, and L0 is the width of the window. We

used L0 ¼ 100 bp. We used DNA sequences

of 6097 genes for two genomic regions: the

region of high TFIIB binding intensity (0,

100 bp) (red lines); and the region of low

TFIIB binding intensity (�450, �350 bp)

(blue lines). To compute error bars, we

calculated the mean for each chromosome

and divided the results into five randomly

chosen subgroups and computed the mean

for each subgroup. The error bars are

defined as 1 SD of the mean between the

subgroups. The arrows in (C) and (D) empha-

size the peaks of the correlation function.

These peaks represent the enrichment of

repeated DNA triplets. To see this figure in

color, go online.
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genome most likely represents the general rule rather than
the exception.

In summary, using a statistical mechanics model without
any fitting parameters with a genomic DNA sequence
constituting the only input, we reveal that the nonconsensus
nucleotide triplet code constitutes a key signature providing
PIC binding specificity in the human genome. Our results
need to be further validated in the future, using direct
in vitro methods for measuring TFIIB-DNA binding prefer-
ences. Such measurements, using purified proteins and
DNA, will clarify the question of how much indirect
protein-DNA and nucleosome binding influence our model
predictions.
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