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Abstract

Metabolomics is undergoing tremendous growth and is being employed to solve a diversity of 

biological problems from environmental issues to the identification of biomarkers for human 

diseases. Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the analytical tools 

that are routinely, but separately, used to obtain metabolomics data sets due to their versatility, 

accessibility, and unique strengths. NMR requires minimal sample handling without the need for 

chromatography, is easily quantitative, and provides multiple means of metabolite identification, 

but is limited to detecting the most abundant metabolites (≥ 1 μM). Conversely, mass spectrometry 

has the ability to measure metabolites at very low concentrations (femtomolar to attomolar) and 

has a higher resolution (∼103-104) and dynamic range (∼103-104), but quantitation is a challenge 

and sample complexity may limit metabolite detection because of ion suppression. Consequently, 

liquid chromatography (LC) or gas chromatography (GC) is commonly employed in conjunction 

with MS, but this may lead to other sources of error. As a result, NMR and mass spectrometry are 

highly complementary, and combining the two techniques is likely to improve the overall quality 

of a study and enhance the coverage of the metabolome. While the majority of metabolomic 

studies use a single analytical source, there is a growing appreciation of the inherent value of 

combining NMR and MS for metabolomics. An overview of the current state of utilizing both 

NMR and MS for metabolomics will be presented.
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1. Introduction

Metabolic profiling has existed for hundreds of years and was a common practice in ancient 

Chinese medicine [1]. At the turn of the century the term “metabolomics”1 was coined and 

ignited renewed interest in the field [2-4], which has led to rapid developments and 

advancements in metabolomics procedures and technologies [2-4]. In effect, metabolic 

profiling has transitioned from the use of smell and/or taste to the application of advanced 

spectrometric methods such as nuclear magnetic resonance (NMR) or mass spectrometry 

(MS) [5-8]. Consequently, metabolomics has become a cornerstone of systems biology [9, 

10] since it enables unique insights that cannot be obtained from other “omics” methods 

[10-13]. Metabolomics directly relates a measurable chemical response to a biological event, 

thereby linking the genotype and phenotype of an organism [14]. Thus, the method is 

increasingly being used in nutrition science [15], environmental science [16], biomedical 

research [17] and precision medicine [18]. While interest has expanded exponentially in 

recent years (Fig. 1), the field of metabolomics is still in an early stage of growth and 

development, and faces many technical challenges [5, 7, 8, 19, 20]. Before it can become a 

routine tool for the life sciences, many of these current limitations need to be overcome. 

Similar to other “omics” methods, a single metabolomics study may contain an abundance 

of data making it difficult to correctly extract the relevant biological information [20-22]. 

Furthermore, the specific analytical platform chosen for metabolomics will uniquely limit 

the analysis because of spectral and chemical ambiguity, which, in turn, will yield an 

imperfect biological picture and incomplete coverage of the metabolome [23]. Sensitivity, 

resolution, dynamic range, ambiguous assignments, limits of detection, and various other 

issues are universal problems encountered by all analytical methods; there simply is not a 

single analytical source that will detect the entire metabolome.

Over three decades ago, the fundamental importance and benefit of employing several 

analytical methods to improve the quality of data analysis and advance compound 

elucidation was highly touted, which, at the time, produced an alphabet soup of hyphenated 

methods [24]. Although successful hyphenated techniques rarely expanded beyond 

1The term metabonomics is often used interchangeably with metabolomics and the primary distinction between the two terms is 
historical instead of scientific. The word metabolome was first used by Oliver et al. in 1998 to define, similar to the terms proteome or 
transcriptome, the collection of metabolites present in a cell, tissue or organism. Consequently, metabolomics as defined by Fiehn in 
2001 is the ‘comprehensive and quantitative analysis of all metabolites’. The term metabonomics was defined in 1999 by Nicholson et 
al. as ‘the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological 
stimuli or genetic modification’.
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combining a form of separation such as liquid chromatograph (LC), gas chromatograph 

(GC), or capillary electrophoresis (CE) with an analysis tool such as NMR or MS, the need 

for multiple analytical platforms for complex analysis was readily apparent [25]. This is 

especially true in the field of metabolomics [23]. Nevertheless, to date, the majority of 

metabolomics data sets have been acquired using only MS or NMR despite their 

fundamental complementarity [23]. Fortunately, there is a growing appreciation that 

combining MS and NMR data greatly improves the coverage of the metabolome and 

enhances the accuracy of metabolite identification [26-31]. For example, it is well-

established that the structure elucidation of an unknown natural product is greatly facilitated 

by combining the unique information from NMR (e.g., chemical shifts, coupling constants, 

NOEs, spin systems, etc.) with MS (e.g., exact mass [molecular formula], molecular 

fragments) [32, 33].

A metabolomics study is defined by both the capabilities and limitations of the analytical 

method employed, and may be significantly hindered if only NMR or MS is used for the 

analysis. The important advantages of using NMR for metabolomics include a relatively 

high-throughput, nondestructive data acquisition, minimal sample handling, simple methods 

for metabolite quantitation, and redundant spectral information to improve the accuracy of 

metabolite identification [34-36]. Conversely, NMR is limited to detecting only the most 

abundant metabolites (≥ 1 μM), while MS has a much higher sensitivity and readily 

measures concentrations in the femtomolar to attomolar range. MS also boasts higher 

resolution (∼103-104) and dynamic range (∼103-104). Conversely, MS only detects 

metabolites that readily ionize, as a result of which upwards of 40% of chemical libraries are 

not observable by MS [37, 38]. Similarly, ion suppression is a well-known problem in MS, 

which further reduces the detection of ions of interest due to matrix effects [39]. Simply, the 

presence of other compounds in the sample or containments from external sources (e.g., 
plastics, buffers, solid phase, etc.) is a ‘matrix’ that reduces the ability of a specific 

compound to be ionized through a variety of proposed mechanisms [39]. For example, an 

ion suppressing agent from the matrix may simply out-compete the compound for available 

ions. Thus, ion suppression due to matrix effects is a significant concern for metabolomics 

given the complexity and heterogeneity of metabolomics samples. In effect, the presence of 

one metabolite may lead to other metabolites being undetected [40]. Thus, MS-based 

metabolomics typically involves chromatography [41, 42] to reduce peak overlap arising 

from the relatively narrow nominal mass and mass defect distribution of the metabolome 

[43]. But the use of chromatography may induce biologically irrelevant variations in the 

metabolome resulting from non-uniform metabolite derivatization, variable metabolite 

column recovery, metabolite decomposition during derivatization or separation, metabolite 

ion-suppression due to co-eluting matrix compounds, or misalignment of replicate retention 

times [44-48]. Simply, NMR and MS have distinct strengths and weaknesses and both 

uniquely benefit metabolomics.

In recent years, technical advancements in high field magnets, pulse sequences, and 

cryoprobe technology have led to some significant improvements in the sensitivity and 

resolution of NMR experiments [23]. This, in turn, has improved the quality of 

metabolomics data and has contributed to the observed increase in NMR-based 

metabolomics studies. Despite these advancements, one-dimensional (1D) 1H NMR spectra 
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are still hindered by a significant amount of peak overlap, even for high field magnets, 

because of the limited chemical shift dispersion of metabolites [8, 49, 50]. Thus, these recent 

improvements in NMR still do not match the sensitivity and resolution advantages of MS 

[23, 51]. Analogous advancements in MS have also occurred, which have led to similar 

improvements in the quality of metabolomics data sets. High resolution spectrometry, 

accurate mass, and isotope labeling methods means that virtually every metabolite that is not 

an isomer produces a unique m/z and should be readily identified [52]. In fact, a majority of 

metabolomics studies routinely rely on MS (Fig. 1). Additionally, improvements in 

ionization methods and separation techniques have helped reduce matrix effects due to co-

eluting compounds common in complex mixtures, but ion suppression remains a primary 

issue for MS metabolomics [11, 53]. Electrospray ionization mass spectrometry (ESI-MS) 

sensitivity is directly dependent on a compound's pKa and hydrophobicity, which can be 

negatively impacted by the heterogeneous composition of a metabolomics sample [54]. For 

example, if two compounds with different pKa values are present in the same electrospray 

droplet, only the compound with the lower pKa value may be protonated and detected. Thus, 

given the various limitations of both NMR and MS, no single analytical platform has the 

ability to analyze the entire metabolome alone [11, 55]. Instead, while some overlap exists, 

NMR and MS observe a highly complementary set of metabolites [56, 57]. Thus, applying 

both NMR and MS during a metabolomics study will allow for a more comprehensive 

coverage of the metabolome [57]. The combination of NMR and MS data will also improve 

the identification of unknown analytes and will increase the accuracy of identifying known 

metabolites [28, 31, 51, 57-60]. This occurs because metabolite identification will be based 

on distinct and confirmatory evidence.

A grand challenge in the field of metabolomics is the rapid and accurate identification of 

metabolites from the variety of complex biological samples routinely analyzed (e.g., tissues, 

serum and cell extracts) [61, 62]. As a consequence, nearly all published metabolomic 

studies contain at least one misidentified or unidentified metabolite [62]. This is an 

unfortunate and unavoidable outcome of our limited knowledge of the metabolome (the 

exact composition is currently unknown), the severe limitations in the software and 

databases available for metabolite identification, and the routine reliance on a single 

analytical method. Despite the routine application of NMR and MS to elucidate the 

structures of natural products for drug discovery [32, 33], most metabolic studies still rely on 

only NMR or MS spectral data for metabolite identification based on database searches [63]. 

Unfortunately, metabolic databases only contain, at most, a few thousand reference NMR or 

MS spectra of known metabolites. There is also minimal, if any, coordination between the 

various metabolomics databases. This leads to a significant amount of redundancy between 

databases, and also results in unique data being present in individual databases, requiring an 

investigator to search across multiple databases. Also, many databases are cumbersome and 

utilize simple search algorithms, which only allow for a single spectral category per query 

[63]. Finally, most metabolomics databases are limited to either NMR or MS reference data. 

Again, this is a result of the fact that the metabolomics field has evolved to support only a 

single analytical source. Thus, it is not possible to easily search metabolomics databases for 

simultaneous matches against NMR and MS spectral data. As a result, metabolomics will 

greatly benefit from the creation of a unified NMR and MS database and the merging of 
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data. This is especially true given the growing recognition of the value of combining NMR 

and MS for metabolite assignments [28, 29, 51, 57, 58].

Multivariate statistical methods are normally applied to metabolomics data sets in order to 

simplify and expedite the data analysis [12, 64]. While chemometric techniques regularly 

streamline the process of data analysis, these advanced multivariate statistical techniques are 

routinely used incorrectly, lack proper validation, and have, unfortunately, lead to a 

proliferation of erroneous data in the scientific literature [65, 66]. This problem becomes 

compounded when an investigator is combining multiple analytical sources. In most cases, 

the samples, data, and analysis are done separately. The NMR and MS data sets are not 

integrated into a single chemometrics model because, until recently, the field lacked 

software capable of handling data from multiple analytical sources [57, 67, 68]. Thus, any 

observed changes in the NMR and MS spectra are not statistically correlated and, 

importantly, the metabolites and pathways separately identified by NMR and MS may not be 

biologically related. Only a minimal number of studies have been reported that actually 

utilized both NMR and MS in a single chemometrics model [69-72].

As outlined above, NMR and MS are routinely, but separately, used for metabolomics 

studies despite their complementary strengths. Nevertheless, there is a growing recognition 

of the benefits of combining the two techniques for metabolomics as evident by the 

increasing number of published manuscripts that utilized both NMR and MS (Fig. 1). NMR 

and MS have been combined in a number of ways that includes: 1) physically interfacing 

NMR and MS hardware, 2) chemical modification of samples by derivatization of 

metabolites with compounds that display unique characteristics for MS and NMR detection, 

3) stable isotope tracing by isotopically labeling metabolites, 4) using combined 

cheminformatics techniques on MS and NMR data sets for an accurate and rapid analysis, or 

5) unique data handling and data mining techniques which correlate trends in both data sets 

by using multivariate statistical-based methods [29, 30, 58]. Herein, we provide illustrative 

examples for each of these methods and present an overview of the various benefits derived 

from combining NMR and MS for the analysis of metabolomics samples.

2. Brief Overview of Metabolomics

2.1. Current State of NMR and MS Metabolomics

Both NMR- and MS-based metabolomics have been extensively reviewed in the recent 

scientific literature [3, 11, 13, 23, 73-80]. Similarly, a number of reviews describing the 

proper handling, preparation, and extraction of metabolic samples from urine, serum, cell 

cultures, tissue cultures, and a variety of other biological sources are readily available [36, 

81-85]. So, only a very brief overview of the general procedure for metabolic profiling will 

be presented here, primarily to highlight important differences when NMR and MS are 

combined for a metabolomics study (Fig. 2) [86]. In principle, metabolomics is a relatively 

straightforward method: the metabolome is harvested or extracted from two or more groups 

(e.g., healthy vs. diseased), and an analytical technique (e.g., NMR or MS) is used to acquire 

a spectral profile of each metabolic sample. Then, multivariate statistical techniques (e.g., 
principal component analysis [PCA], orthogonal projections to latent structures [OPLS], 

etc.) are used to determine whether the metabolomes differ and, if they do, to identify the 
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spectral features (i.e., the metabolites) defining group separation. A typical outcome of a 

PCA or OPLS model is a scores plot, where each NMR or MS spectrum has been reduced to 

a single point in PC-space. The relative clustering of the spectra in the scores plot identifies 

group membership. Similarly, a backscaled loadings plot is often generated from the OPLS 

model that is a pseudospectrum of the original NMR or MS data where the relative intensity 

and direction of the spectral peaks indicates the contribution and correlation of the peak to 

the group separation. Alternatively, a heatmap can be generated that compares all of the 

relative metabolite concentration changes per replicate. Following hierarchal clustering, if all 

or most of the replicates from the same group cluster together, then the heatmap identifies 

key metabolite concentration changes that define each group.

Since the numbers of replicates for a metabolomics data set are typically far fewer then the 

number of variables, overfitting the data, especially for supervised techniques like PLS or 

OPLS, is a serious concern [65, 66, 87]. In fact, a PLS/OPLS model can produce the 

appearance of a clear group separation even for noise or completely random data [88]. As a 

result, model validation is a critical final step before any biological interpretation of the 

model is reliable. CV-ANOVA [89], response permutation tests [87], and receiver operating 

characteristic (ROC) curves [90] are routinely used to provide standard p values and assess 

model validity. With a validated model, the observed metabolite changes can then be used to 

generate a metabolic network and identify the important metabolic pathways associated with 

the phenotype [91].

Unlike the proteome and genome, the metabolome is relatively unstable and is easily 

perturbed by the handling and processing of the sample. For example, metabolites have 

different enzyme turnover rates and different temperature stabilities [92-94]. Thus, a key 

concern is avoiding any changes in the metabolome that may be induced from sample 

preparation. Therefore, fast and uniform sample preparation protocols, rapid quenching of 

enzymatic activity, keeping samples cold throughout, and randomizing samples through the 

entire sample handling and data collection procedure are all important details that require 

optimization for a successful metabolomics study. Since biological samples are the materials 

that are analyzed, there is inherently a large natural variance to the data. Thus, to obtain 

statistical significance a maximal number of replicates, within practical constraints, is highly 

desirable [36]. Similarly, the data need to be properly normalized, scaled and aligned to 

account for both biological and instrument variance, and to remove bias due to the large 

range of metabolite concentrations. Again, various normalization, scaling and alignment 

algorithms are available and their utility for metabolomics has been previously reviewed 

[95-97]. Finally, the raw NMR or mass spectral data need to be properly processed before a 

reliable chemometrics model can be generated. For NMR, processing includes Fourier 

transformation, phasing, baseline correction, apodization, zero filling and chemical shift 

referencing. Similarly, MS requires centroiding, de-noising, de-isotoping, deconvolution and 

peak alignment. It cannot be overstated that the resulting chemometric models are incredibly 

sensitive to all aspects of the sample handling and data processing. Thus, changing 

processing details, such as a different apodization function or deconvolution algorithm will 

likely lead to a different chemometrics model and, potentially, a different biological 

interpretation. Consequently, great care must be taken in optimizing data processing 

protocols in order to avoid unintended biases in the data analysis. The complexity of the 
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situation expands exponentially if two or more analytical sources are combined to generate a 

single chemometrics model simply because of the greater number of possible processing 

protocol combinations. Thus, while metabolomics is conceptually quite simple and 

straightforward to conduct, in practice it is difficult to do correctly because of the complex 

number of steps and choices available, with multiple sources of error encountered at each 

step of the process.

2.2 Analyte Compatibility for Analysis by NMR and MS Metabolomics

NMR and MS are the most popular analytical methods used for metabolomics because of 

the wide array of chemical species both techniques can probe and are likely to encounter in a 

complex and heterogeneous metabolite mixture. MS is generally coupled with a separation 

technique, with the majority of metabolomics studies utilizing LC-ESI-MS [11, 64, 98]. The 

coupling of MS with LC or GC is critical for reducing ion suppression, spectral complexity 

and spectral overlap. To further reduce ion suppression, samples are typically acidified and 

salt concentrations are reduced, usually with a desalting column [99]. Although NMR is 

occasionally paired with a separation method, the hardware for an online LC-NMR system 

can be somewhat crude or cumbersome, and the process of manually collecting fractions is 

extremely time-consuming. Moreover, a hybrid LC-NMR system does not provide a 

substantial benefit since individual metabolites are readily detectable by NMR without 

chromatographic separation [100].

Besides different chromatographic needs, MS and NMR require different sample conditions. 

NMR samples are commonly prepared in a buffered deuterated solvent to provide a lock 

signal and maintain a constant pH of 7.4 in order to minimize chemical shift deviations and 

replicate physiological conditions [9, 99]. In general, detecting a metabolite by NMR is not 

dependent on the sample condition. However, NMR is a relatively insensitive technique and 

requires maximizing metabolite concentrations to ensure detection. On average, NMR 

metabolomics requires a minimal sample volume of approximately 30 to 600 μL, with 

metabolite concentrations of approximately μM to mM. Because of the higher sensitivity of 

MS, the concentration requirements can be significantly reduced to as low as nM to pM, 

with sample volumes on the order of a few microliters. While MS is intrinsically more 

sensitive than NMR, detecting a specific metabolite does require the metabolite to be 

efficiently ionized. Different groups of metabolites will preferentially ionize under 

drastically different experimental conditions, which depend on mode of polarization, pH and 

the ionization efficiency of the specific metabolite. Thus, the detectability of a metabolite 

may vary dramatically depending on sample conditions. For example, 0.1% formic acid or 

acetic acid is commonly added to MS samples to enhance protonation and increase 

sensitivity. Conversely, a deuterated solvent used in NMR could complicate the analysis of 

an MS spectrum because exchangeable hydrogens would still be observed, but ambiguous 

mass shifts may occur. The exchangeable hydrogens are likely not observed in the NMR 

spectrum, potentially eliminating the ability to detect a given metabolite. Moreover, minimal 

sample handling is desired to reduce experimental errors. Thus, these necessary differences 

in sample conditions present a practical challenge, namely how can a single metabolomics 

sample be analyzed by two distinct analytical platforms?
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To address the need for distinct NMR and MS sample preparations, Beltran et al. examined 

12 extraction protocols and evaluated various solvents and temperatures to identify 

conditions compatible for use by both LC-ESI-MS and NMR [101]. A single metabolite 

extract from a liver tissue was used for the NMR and MS metabolomics studies. The 

combination of solvent conditions used for metabolite extraction ranged in polarity and 

consisted of a 2 mL combination of either: (i) 1:1 methanol/H2O, (ii) 1:1 acetonitrile/H2O, 

(iii) 7:2:1 methanol/chloroform/H2O, or (iv) 7:2:1 acetonitrile/chloroform/H2O. The 

extractions were also conducted at three different temperatures: −20 °C, 25 °C, or 60 °C. 

After each extraction, the metabolomics samples were dried and then dissolved in deuterated 

acetonitrile/H2O (2:8) before acquiring a 1D 1H NMR spectrum. A resulting PCA model 

comparing the range of solvent conditions revealed a large variance between the different 

extraction protocols. Interestingly, extraction temperature had a minor impact on group 

separation. Methanol/H2O was the most efficient extraction method and the least influenced 

by temperature. In contrast, acetonitrile/chloroform/H2O was the least efficient extraction 

method.

A very intriguing aspect of this study was the LC-MS analysis of metabolites in deuterated 

solvent. Pure metabolomics standards or liver metabolite extracts were prepared in either 

H2O or D2O (Fig. 3) [101]. In this manner, the impact of solvent exchange on NMR and MS 

spectral data was evaluated. D2O did not affect measurements of metabolite concentrations. 

In addition, D2O did not induce a mass shift or perturb the isotopic distribution. Metabolites 

with readily exchangeable hydrogens were also investigated and, surprisingly, no difference 

in the spectra due to D2O was observed. The lack of deuterium exchange in metabolites was 

attributed to the mobile phase; since the deuterated metabolomics sample was injected into 

an un-deuterated mobile phase, deuterated metabolites were readily back-exchanged to a 

protonated species.

A similar study conducted by Marshall et al. identified a relatively straightforward and 

simple protocol to simultaneously investigate by both NMR and MS a metabolomics sample 

extracted from a cell lysate [57]. Human dopaminergic neuroblastoma cells were lysed by 

incubating with cold methanol (-80° C) for 15 minutes. The methanol was also used as the 

first metabolite extraction step. After removing the methanol supernatant, the cell debris 

were then washed with an 80%/20% methanol/ddH2O water mixture, followed by a second 

wash with 100% ddH2O. The supernatants from the three extractions were combined and 

then split into two portions: 1.8 mL for NMR and 200 μL for MS. The MS sample was then 

diluted tenfold with a 49.75:49.75:0.5 H2O/methanol/formic acid mixture containing 20 μM 

reserpine as an internal mass reference. The NMR sample was dried using a combination of 

RotoSpeed vacuum and lyophilization, and then resuspended in a 50 mM deuterated 

phosphate buffer (pH 7.2) with TMSP-d4 as a chemical shift reference. The separate NMR 

and MS metabolomics samples were then used to obtain a 1D 1H NMR spectrum and a 

direct-injection ESI-MS mass spectrum.
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3. Approaches for combining NMR and MS for metabolomics

3.1. Interfacing NMR and MS Hardware

Natural product chemistry is a staple of drug discovery and the pharmaceutical industry, and 

has an obvious synergy with metabolomics since both fields are focused on the 

characterization of chemical entities extracted from a complex biological mixture [102, 

103]. NMR and MS spectral data have been routinely used in tandem to characterize natural 

products and their secondary metabolites isolated from crude complex samples [102]. Since 

metabolites and natural products are essentially the same, these well-established protocols 

are an invaluable resource for characterizing the vast number of unknown metabolites in the 

metabolome. Natural product research is commonly guided by and focused on identification 

of biologically active fractions from complex mixtures, which are then analyzed by a 

sequential series of purification steps and MS profiling until a biologically active compound 

is isolated for structural determination by NMR and MS methods [104, 105]. In general, 

only a few nanograms or micrograms of a natural product are available for structural 

characterization. Therefore, sensitivity and efficiency are key concerns. In the case of NMR, 

the development of microcoils, microflow and cyroprobes have significantly improved the 

dynamic range and sensitivity of NMR and have thus greatly benefited the structural 

characterization of sample-limited natural products and metabolites [106-108]. Mass 

spectrometry has made similar advancements that have also benefited natural products 

chemistry and metabolomics by developing high-resolution mass spectrometers and tandem 

MS-MS methods to improve the accuracy and ease of structure elucidation [109-113].

The off-line combination of MS and NMR has clearly advanced natural products and 

metabolomics research, but an innovative on-line combination of the two instruments has the 

potential to significantly increase throughput, efficiency and sensitivity [59, 60]. HPLC 

fractions are routinely collected and separately analyzed by NMR and MS, but an on-line 

analysis allows for the simultaneous detection of metabolite data that are then easily cross-

correlated between the two platforms while also reducing, or potentially eliminating, sample 

handling errors. This is especially true in regard to the manual manipulation of severely 

sample-limited natural products or metabolites. Additionally, the duplicate isolation of 

redundant or unwanted compounds is a large issue in the natural products field. It is simply 

undesirable to expend valuable resources to re-discover known natural products. 

Dereplication is the commonly employed process of examining active fractions to recognize 

and eliminate previously identified natural products to avoid unnecessary compound 

isolation [114]. Dereplication routinely occurs by rapidly comparing experimental NMR 

and/or MS spectral data against spectral libraries of known natural products [60]. Employing 

an LC-NMR-MS instrument for dereplication would significantly reduce the time 

requirements, lower the amount of sample required and increase identification accuracy [60].

Previously, physically siting an instrument in close proximity to an NMR magnet was 

difficult, as it caused severe spectral distortions, required long sample transfer lines, and 

demanded significant laboratory space [59]. Fortunately, interfacing LC, NMR, and MS 

instrumentation has been greatly simplified by the advent of shielded magnets [115-117]. 

The stray fields have been significantly reduced for shielded magnets, and, in some cases, 
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the 5 gauss line lies within the magnet's dewar. This permits a close arrangement of 

instruments without incurring any magnetic interference or disturbing field homogeneity. 

The availability of bench-top mass spectrometers has also aided in the coupling of multiple 

platforms. An MS instrument with a small footprint and superior resolution makes it 

possible to site an LC-NMR-MS spectrometer in a smaller laboratory space then previously 

possible. Moreover, the proximity of the instruments simplifies sample transfer between 

them. For example, an NMR and mass spectrometer can be interfaced to LC by using a post-

column splitter or the Bruker NMR-Mass Spectrometry Interface (BNMI). The post-column 

splitter simultaneously directs LC flow to both the NMR and MS spectrometers in a 9 to 1 

ratio, respectively. BNMI is a valve-switching interface that is a computer-controlled splitter 

and double dilutor, which allows for proton–deuterium exchange to occur for NMR, and the 

optimal selection of solvent polarity for MS. Additionally, BNMI has a loop storage mode, 

which allows for a portion of the LC eluent to be temporarily stored in a sample loop while 

waiting for the NMR instrument to be available. A storage mode allows for NMR 

acquisition times that are significantly longer than the LC experiment to maximize NMR 

signal-to-noise.

Recently, Lin et al. described an LC-NMR-MS approach, which significantly reduced 

sample size, increased concentration sensitivity by 10-fold, and enhanced mass sensitivity by 

1000-fold [59, 98]. The method significantly outperformed traditional offline LC-NMR-MS 

by the addition of a nanoSplitter for nanospray LC-MS and a microcoil flow probe for NMR 

analysis. In addition, the analysis of the LC flow normally occurs with a 9:1 split between 

NMR and MS, respectively. But, instead, the improved performance required an LC flow 

that was split 98% to NMR and 2% to MS [59]. The LC-NMR-MS system exhibited a 93% 

sample recovery and yielded a limit of detection as low as 50-ng (RSD 1.17%) for NMR. 

Similarly, four natural products (ambiguine A, I, E, and hapalindole H) from a 

cyanobacterial extract were readily detected by LC-MS at a concentration of only 30 μg/mL. 

Thus, interfacing LC with parallel NMR and MS analysis may greatly benefit metabolomics 

by improving throughput, by increasing sensitivity and coverage, and by reducing the 

amount of sample required for a study.

3.2. Chemical Modification

The diverse and complementary set of information obtained from NMR and mass spectral 

data is the major reason for combining the two methods for metabolomics. However, 

combining two distinct data sets also increases the complexity of the analysis. The NMR and 

MS results obtained from a single heterogeneous sample are not easily correlated [30]. For 

example, it is not a trivial task to definitively assign an NMR chemical shift and a MS m/z 
value to a specific metabolite. Simply, there is no information in the NMR or MS spectrum 

that indicates that the chemical shift and m/z value are from the same metabolite. The lack 

of a correlation may also appear to produce contradictory results. For example, the presence 

of a metabolite may only be supported by one method or the two methods may appear to 

predict vastly different concentrations. As a result, the complexity of analyzing NMR and 

MS spectra may hinder an interpretation or yield erroneous results. Consequently, a novel 

twist on the well-established method of chemical derivation has been employed to overcome 

this lack of a correlation between NMR and MS spectral data [30]. A chemical agent is 
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introduced into a complex mixture that reacts with a specific chemical moiety or functional 

group within the metabolite. The resulting chemical modification is then visible by both 

NMR and MS.

Chemical modification has frequently been used for LC-MS and GC-MS [118-121]. 

Traditionally, compound derivatization has been used to separate stereoisomers or to 

improve ionization efficiency in LC-MS. Chemical modification for GC-MS is generally 

used to promote the volatility of compounds [122]. Fariba et al. exploited the benefits of 

chemical modification by using 15N-cholamine, a so-called “smart tag”, to specifically label 

carboxyl-containing metabolites [30, 123]. A permanent charge and an 15N isotope label are 

incorporated into the metabolites through a condensation reaction [30]. Each chemically 

labeled metabolite would then have a unique set of 1H and 15N chemical shifts that can be 

easily detected with a 2D 1H-15N HSQC NMR spectrum. Only metabolites labeled 

with 15N-cholamine are observed in the NMR spectrum because of the low natural 

abundance of 15N (0.37%). Similarly, the incorporation of a permanent charge into the 

metabolite significantly improved its ionization efficiency. Sensitivity enhancements 

exceeding three orders of magnitude were observed for labeled metabolites, which could be 

easily detected in the positive mode compared to unlabeled metabolites in the negative 

mode. Thus, the increased MS sensitivity and the unique 1H-15N chemical shifts establish a 

correlation between the NMR and MS data for a labeled metabolite. The smart-tag approach 

was successfully demonstrated with a standard mixture of 48 metabolites that each contain a 

carboxyl-group and are prevalent in human biofluids (Fig. 4) [30]. The experiment was 

successfully repeated with human serum and urine samples. The chemical shift assignments 

obtained from the standard metabolite mixture was used to quickly and accurately assign the 

48 metabolites in the biofluids. Thus, 15N-cholamine was shown to be useful for correlating 

data across multiple analytical platforms through chemical derivatization, and as a valuable 

approach to aid in the metabolite profiling of complex biological mixtures.

3.3. Stable Isotope Tracers

The ability to simultaneously measure hundreds of chemical species from a complex 

biological sample is the primary reason NMR and MS are routinely used in metabolomics, 

but the overwhelming amount of data can also confound the analysis. Consequently, the 

majority of metabolomics studies are end-point or single time-point measurements despite 

the obvious advantage of flux analysis. Fortunately, MS and NMR can de-convolute these 

complex data sets based on their unique ability to identify and distinguish between different 

isotopes. Thus, NMR and MS metabolomics analysis can be greatly simplified by using 

stable isotope tracers. Stable Isotope-Resolved Metabolomics (SIRM) has been used to 

monitor metabolite flux, to reveal novel metabolic networks, and has recently been shown to 

correlate data across MS and NMR platforms [124-130]. In this manner, SIRM may 

overcome common limitations encountered with steady-state metabolite profiling. SIRM 

also enables the combined use of NMR and MS for metabolomics, but, more importantly, 

the SIRM approach greatly benefits from combining both NMR and MS [126-129, 131].

SIRM uses stable isotope-enriched nutrients containing 13C-carbons or 15N-nitrogens, which 

are provided to an organism as the primary source of carbon or nitrogen. The 13C-carbons 
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or 15N-nitrogens are distributed throughout the organism's metabolome based on active 

metabolic processes. The resulting 13C- or 15N-labeled metabolites are readily detected by 

NMR and MS. In this manner, SIRM reveals the unique flow of 13C-carbons or 15N-

nitrogens through metabolic pathways in order to highlight systematic changes due to 

environmental stress, genetic mutations, a disease state, a drug treatment, or numerous other 

factors. Importantly, SIRM allows for monitoring the flow of position-specific carbons or 

nitrogens between metabolites (i.e., isotopomer or isotopologue probing). In essence, it is 

possible to decipher the chemical source of each carbon or nitrogen in a given metabolite 

(Fig. 5) [132]. Moreover, the analysis can be fine-tuned by repeating the experiments with 

different labeled metabolites (e.g., glucose, pyruvate, etc.) or different labeling within a 

metabolite (e.g., [1-13C] glucose, [2-13C] glucose, etc.). Identification of position-specific 

carbon or nitrogen labeling is relatively straightforward by NMR since, in general, each 

carbon or nitrogen has a unique chemical shift. For example, consider the distinct carbon 

chemical shifts observed for L-alanine: 178.5 ppm (C′), 53.4 ppm (Cα) and 19.0 ppm (Cβ). 

Conversely, it is not possible to identify position-specific carbon or nitrogen labeling by MS 

except in the case of a compound containing a single carbon or nitrogen, or by employing 

MSn fragmentation analysis. Instead, the number of isotopically labeled carbons or nitrogens 

is easily determined by MS from an observed mass shift. In addition, the abundance of each 

isotopomer is readily obtainable from an MS spectrum by comparing the relative intensity of 

each molecular-ion peak. Conversely, obtaining the number and abundance of each 

isotopomer and isotopologue is not easily obtained from an NMR spectrum.

Lane et al. used direct infusion FT-ICR-MS combined with 1D and 2D NMR methods to 

identify isotopomers of glycerophospholipids (GPL) derived from [U-13C]-glucose in breast 

cancer MCF7-LCC2 cell extracts [124]. An algorithm was also presented that accounts for 

the contribution of natural abundance 13C following the incorporation of 13C-carbon derived 

from glucose [133]:

(1)

where, IM +i;N A is the expected intensity of the ith isotopologue peak, N A13c is the 13C 

natural abundance (1.1%), cMax is the total number of carbons in the molecule, k is the total 

number of 13C carbons, n is the number of 13C carbons incorporated from a labeling source, 

k-n is the number of natural abundant 13C carbons.

Analysis of the 1D 1H NMR spectra identified phosphatidylcholines with approximately two 

double bonds as the major GPL present in the MCF7-LCC2 cell extracts (Fig. 6A-C). Based 

on the relative intensity of the assigned GPL NMR resonances, it was determined that the 
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choline head groups were not 13C labeled, but the fatty acyl chains and the glycerol moieties 

were predominately derived from [U-13C]-glucose. Specifically, the glycerol moiety was 

determined to be 44 ± 1.2% 13C, and the C2, C3 and C4 positions of the fatty acids were 

determined to have an average 13C incorporation of 46 ± 4%. These results indicated that 

nearly 50% of GPL was newly synthesized in 24 hours. The FT-ICR-MS data (Fig. 6D-F) 

complemented the NMR results by identifying the individual GPL species [i.e., PC (34:1)] 

and the abundance of the corresponding 13C isotopologues as a function of time. 

Specifically, the m0 isotopologue decreased and the m0+3, m0+2n + m0+3+2n isotopologues 

sequentially increased as 13C-carbon from glucose was incorporated into PC (34:1). The odd 

number isotopologues were derived from 13C glycerol and unlabeled fatty acids, while 

conversely; even number isotopologues resulted from unlabeled glycerol and 13C fatty acids. 

Interestingly, the abundance of the n = 10 to 20 fatty acid chains increased with time, but 

only a minimal mass shift was observed. A 12C acetate pool persisted for twenty-four hours 

from fatty acid turnover and internal triglyceride stores. In fact, only 30 to 50% of the 34 

carbons were incorporated into PC (34:1) from 13C acetyl CoA. Consistent with the NMR 

results, the mass spectral data indicates that 46% of glycerol and 44% of the fatty acyl 

moieties are 13C-labeled. Moreover, based on these measurements, isotopologue 

distributions of GPLs over a twenty-four period were accurately measured and simulated. 

Thus, the authors clearly demonstrate the value of combining NMR and MS to monitor the 

synthesis of various GPLs from pools of metabolite. The combination of MS and NMR 

yielded positional isotope labeling information, 13C isotopologue distributions, and enabled 

the accurate and efficient identification of GPL species. SIRM using both NMR and MS 

greatly improves the analysis of metabolomic flux (i.e., metabolite synthesis and turnover).

3.4. Combined Cheminformatics Methods

The effective handling and analysis of large amounts of information (i.e., “Big data”) 

presents unique challenges [134-137]. The field of metabolomics faces similar concerns, 

which make it difficult to handle the large amounts of information with traditional methods 

such as database management, basic statistical methods, or simple manual analysis [138]. 

Combined cheminformatic approaches present a valuable alternative to accelerate the 

accurate processing of “omics” data sets. Since a considerable amount of data may be 

generated by combining NMR and MS, combined cheminformatics approaches are 

increasingly being employed during metabolomics studies. Recently, the SUMMIT and 

NMR/MS translator methods were developed for the rapid and accurate identification of 

metabolites [28, 29]. SUMMIT MS/NMR and the NMR/MS translator combine NMR and 

MS to elucidate the structures of unknown metabolites from complex mixtures. NMR/MS 

translator combines COLMAR [139] database search queries and experimental NMR and 

MS spectral data to accelerate accurate metabolite identification [28]. NMR/MS translator 

uses 1D 1H NMR, or 2D 1H-13C HSQC and 2D 1H-13C HSQC TOCSY chemical shifts to 

perform a COLMAR database search and return a list of possible metabolite candidates. The 

query candidate list is then used to produce a simulated mass spectrum for each possible 

metabolite, which includes possible adducts, fragments, and isotope distributions. These 

simulated mass spectra are then compared against an experimental metabolomics mass 

spectrum to make metabolite assignments. In effect, potential metabolites identified by 

NMR are confirmed by MS. As a proof of concept, the NMR/MS translator was used to 
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successfully analyze a model mixture of 26 metabolites with 2D 1H-13C HSQC NMR 

spectra and DI-ESI-MS positive and negative mode spectra. The NMR/MS translator was 

further validated using a set of human urine samples from healthy volunteers. A total of 98 

urine metabolites were identified by the NMR/MS translator, which included 8 metabolites 

that were not previously observed in a comprehensive study of human urine. Importantly, 

only 48 of these metabolites were correctly identified using MS data alone, including 

MS/MS fragmentation patterns. The NMR/MS translator approach automates the metabolite 

assignment and avoids labor-intensive manual analysis, which enhances coverage, improves 

consistency, and increases throughput.

SUMMIT MS/NMR is an alternative high throughput approach that combines MS with 

NMR data to identify unknown metabolites in a complex biological sample (Fig. 7) [29]. 

The SUMMIT MS/NMR approach relies on the acquisition of a high-resolution mass 

spectrum, in which each m/z peak is converted into a molecular formula. The list of 

molecular formulas is then used to generate a set of all feasible structures (e.g., a structural 

manifold) with the ChemSpider database [140], which are used to predict an NMR spectrum 

using MestReNova 9.0.1 (Mestrelab Research, Santiago de Compostela, Spain). The 

COLMAR algorithm [139] is then used to compare the experimental NMR data against the 

database of predicted NMR spectra. Importantly, the experimental 2D 1H–13C HSQC NMR 

spectrum is deconvoluted into subspectra corresponding to the individual components of the 

mixture using connectivity information derived from 2D 1H–1H TOCSY, 2D 1H–13C 

HSQC-TOCSY, and 2D 1H–13C HMBC spectra. The potential metabolites are rank-ordered 

based on the relative agreement between the experimental NMR subspectrum and the 

simulated NMR spectra.

SUMMIT MS/NMR was validated using a DI-ESI-MS spectrum of a model mixture 

containing 10 metabolites [29]. The 50 largest m/z peaks were selected, which yielded 22 

molecular formulas, 362 potential structures, and 4772 predicted 2D 1H–13C HSQC NMR 

spectra. SUMMIT MS/NMR ranked 6 of the 10 metabolites as the top hit and three other 

metabolites were identified as the second-best hit. The remaining metabolite did not ionize. 

For the three metabolites identified as second best, the top hits were structurally very similar 

(i.e., allo-isoleucine instead of leucine). The approach was repeated using an MS spectrum 

of a polar extract of an E. coli lysate. The 500 largest m/z peaks were selected corresponding 

to 56 molecular formulas and 13872 structures and 1H–13C HSQC spectra. A total of 21 

metabolites were accurately and rapidly identify by SUMMIT MS/NMR, and then 

confirmed using a set of 2D 1H-13C NMR experiments. Thus, both SUMMIT MS/NMR and 

NMR/MS translator clearly illustrate the inherent value of combining NMR and MS to 

enhance metabolomics.

3.5. Multivariate Statistical Methods

A well-known problem with metabolomics data is the presence of confounding factors that 

may complicate the identification of group membership. For example, the analysis of urine 

or serum to identify biomarkers may be masked by metabolites associated with age, diet, 

ethnicity, gender, or race, among other factors. Multivariate statistical methods are able to 

cope with these multiparametric data sets and extract group membership [141]. For a 
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detailed and comprehensive review of multivariate statistics and its application for 

metabolomics see Worley et al. [12]. Chemometric techniques can be divided into 

supervised or unsupervised methods. In metabolomics, unsupervised methods are commonly 

used to identify global trends or group membership. Alternatively, supervised methods are 

highly valuable for identifying the spectral features (or metabolites) that primarily contribute 

to the differentiation between groups. PCA, PLS, and OPLS are the chemometric methods 

commonly used in metabolomics based on a single analytical source. The limited 

availability of chemometric methods applicable to multiple analytical sources is one reason 

NMR and MS have not been commonly combined for metabolomics.

Nevertheless, multivariate statistical techniques have been previously applied for the 

combined analysis of MS and NMR data sets. Chen et al. generated individual PCA models 

for NMR and MS data sets and then combined the scores from each analysis into a three 

dimensional (3D) scores plot. The combined scores yielded a greater between-class 

separation than the original NMR or MS scores alone. Unfortunately, such an analysis 

ignores the highly informative correlations that exist between the two data sets. Gu et al. 
replaced the binary class designation of an MS data set with the first principal component 

(PC1) from a PCA model generated from NMR data to produce a subsequent OPLS-DA 

model for the MS data [70]. Again, a greater class separation was observed when the MS 

OPLS-DA model was generated with the NMR PC1 compared to the binary classification 

[57]. Nevertheless, such an analysis carries no statistical guarantee of success for any data 

set.

Recently, it was shown that a chemometrics model generated by integrating NMR and MS 

metabolomics data provided better group separation and a greater level of model 

interpretability than with NMR or MS data sets alone [57]. Marshall et al. combined 1D 1H 

NMR and DI-ESI-MS. Multiblock methods are similar to traditional PLS and PCA, but 

provide a means for analyzing data from multiple analytical sources [142-144]. The spectral 

observations from each analytical method are placed into separate “blocks,” which allows 

for the generation and simultaneous usage of within-block and between-block data 

correlations. Since the blocks share common trends, a model based on the between-block 

correlations will provide a better agreement with the biological groups. In effect, better 

discrimination between groups is expected by combining NMR and MS data than would be 

achieved from only the individual data sets. DI-ESI-MS and 1D 1H NMR spectra were 

collected on cell lysates obtained from human dopaminergic neuroblastoma cells (SK-N-SH) 

treated with different neurotoxins: rotenone, 6-hydroxydopamine (6-OHDA), 1-methyl-4-

phenylpyridinium (MPP+), or paraquat. The PCA model produced from the 1D 1H NMR 

data set yielded only two groups corresponding to the untreated controls and cells treated 

with the different neurotoxins. In effect, NMR detected no difference in the metabolome of 

neuronal cells after treatment with the different neurotoxins. The PCA model generated from 

the MS data set produced a modest separation between four groups.

The untreated controls, MPP+, and paraquat treatment each formed a separate group. Both 

the rotenone and 6-OHDA cell treatment were clustered together and formed the fourth 

group (Fig. 8). The MB-PCA and MB-PLS models generated from both the DI-ESI-MS and 

1D 1H NMR data sets yielded five distinct groups corresponding to each neurotoxin 
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treatment and the untreated controls. This clearly demonstrated that each neurotoxin induced 

dopaminergic neuronal cell death through a distinct molecular mechanism. A detailed 

analysis of the metabolic impact of paraquat revealed that paraquat “hijacks” the pentose 

phosphate pathway (PPP) to increase NADPH-reducing equivalents and stimulate paraquat 

redox cycling, oxidative stress, and cell death [57, 71]. Thus, a successful outcome for a 

metabolomics study was critically dependent on combining NMR and MS data.

4. Conclusion

Metabolomics is an invaluable tool of systems biology and has made significant 

contributions to several diverse fields, including drug discovery, disease diagnosis, nutrition, 

environmental studies, and personalized medicine. To date, the majority of metabolomics 

data sets have been acquired using either MS or NMR separately. However, it is well known 

that combining MS and NMR data greatly improves the coverage of the metabolome and 

enhances the accuracy of metabolite identification. Consequently, combining NMR and MS 

techniques for metabolomics is a growing trend that will greatly benefit the quality and 

accuracy of metabolomics data. Herein we have reviewed several methodologies for 

integrating NMR and MS for the analysis of metabolomics samples. As demonstrated 

throughout this review, combining NMR and MS greatly enhances and improves the 

outcomes of metabolomics studies.
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Glossary of Abbreviations

1D One-Dimensional

2D Two-Dimensional

3D Three-Dimensional

6-OHDA 6-hydroxydopamine

ANOVA ANalysis Of Variance

BNMI Bruker

NMR Mass Spectrometry Interface

CE Capillary Electrophoresis
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COLMAR Complex Mixture Analysis by NMR

CV-ANOVA ANOVA of the Cross-Validated residuals

ddH2O double-distilled water

DI-ESI-MS Direct Infusion ElectroSpray Ionisation Mass Spectrometry

ESI ElectroSpray Ionisation

GC Gas Chromatograph

GPL GlyceroPhosphoLipids

HMBC Heteronuclear Multiple-Bond Correlation

HSQC Heteronuclear Single Quantum Coherence spectroscopy

FT-ICR-MS Fourier Transform Ion Cyclotron Resonance Mass 

Spectrometry

LC Liquid Chromatograph

LysoPC (16:0) Lysophospholipid (16:0)

MB-PCA Multi-Block-Principal Component Analysis

MB-PLS Multi-Block-Projections to Latent Structures

MetPA METabolomics Pathway Analysis

MPP+ 1-methyl-4-phenylpyridinium

MS Mass Spectrometry

MSn multiple-stage mass spectrometry where n is the number of 

product ion stages (n=2,3, etc.)

m/z mass to charge ratio NADPH, Nicotinamide Adenine 

Dinucleotide Phosphate

NMR Nuclear Magnetic Resonance

OPLS Orthogonal Projections to Latent Structures

OPLS-DA Orthogonal Projections to Latent Structures- Discriminate 

Analysis

PC (34 1), PhosphatidylCholine 34:1

PC Principal Component

PC1 first Principal Component

PCA Principal Component Analysis
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pKa negative logarithm of an acid dissociation constant

PLS Projections to Latent Structures

PPP Pentose Phosphate Pathway

PRA Pattern Recognition Approaches

ROC Receiver Operating Characteristic

RSD Relative Standard Deviation

SIRM Stable Isotope-Resolved Metabolomics

TCA cycle TriCarboxylic Acid cycle

TMSP-d4 3-(TriMethylSilyl)Propionic-2,2,3,3-d4

TOCSY Total Correlation SpectroscopY

XCMS various forms (X) of Chromatography Mass Spectrometry
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Highlights

• Metabolomics routinely relies on only a single analytical source

• Combining NMR and MS improves the quality of a metabolomics study

• Both NMR and MS are required for accurate metabolite assignments
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Figure 1. 
The chart plots the number of MS metabolomics (green), NMR metabolomics (blue), and 

combined NMR and MS metabolomics (red) studies published per year from 2001 to 2016. 

These data were obtained from a keyword search of all documents on PubMed using the key 

words “MS and metabolomics”, “NMR and metabolomics”, or “MS and NMR and 

metabolomics”.
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Figure 2. 
Illustration of the metabolomics work flow that combines advanced NMR spectroscopy 

techniques with multivariate statistics. Samples are collected in a uniform way to minimize 

variability and are analyzed by NMR profile to collect data on all metabolites potentially 

present in the sample. Pattern recognition approaches (PRA) include principal component 

analysis, partial least squares discriminant analysis, orthogonal projections to latent 

structures, heat map, support vector machines, and random forests method, and other modes 

aiming to highlight underlying trends and visualization tools such as contribution. Trend and 

box plots are used to further evaluate these. Receiver operating characteristic (ROC) curves 

are generally considered the method of choice for evaluating the performance of potential 

biomarkers. The markers are eventually placed in a metabolic pathway to provide insight on 

the biochemical phenomena. (Samples) Multiple replicate samples are obtained from cells, 

tissues, or biofluids (e.g., urine, plasma, etc.) for each group (e.g., healthy vs. disease). 

(NMR profile) A 1D 1H NMR spectrum is collected for each metabolomics sample, which 

becomes the data set. A mass spectrum can be used instead or in addition to the NMR 

spectrum. (PRA) Illustrations of typical multivariate statistical analysis of the metabolomics 

NMR data set. Clockwise from upper-left, a scores plot from a PCA model indicating two 

distinct clusters or groups are present in the data set. A heatmap shows the clustering of 

metabolite changes (x-axis) relative to each group replicate (y-axis). The relative color of 

each bin corresponds to the metabolite concentration difference between replicates. The 

heatmap identifies which set of metabolites are uniquely changing between each group. The 

result of a random forest classification is summarized by plotting the out-of-bag error rate or 
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misclassifications versus the number of trees. The results indicate that the healthy and 

disease groups can be separated with an error rate of < 5% with a nominal number of trees. 

A back-scaled loadings plot, which is a pseudo 1D 1H NMR spectrum, is generated from an 

OPLS model. The relative intensity and direction of each peak conveys the importance and 

correlation of the NMR peak to the observed group separation in the corresponding scores 

plot. (ROC) Illustrations of the validation and the further analysis of the key metabolites 

identified from the multivariate statistical analysis that define the group separation. On the 

left is a ROC curve, which plots sensitivity (true positive rate) versus 1-specificity (false 

positive rate). The area under the curve is a measure of the accuracy of the model to 

correctly predict group membership. On the right is the pathway topology analysis produced 

by MetPA (http://metpa.metabolomics.ca) from the list of metabolites identified by the 

multivariate statistical analysis. MetPA assists in identifying the set of important metabolic 

pathways associated with the phenotype. (Pathways) Illustration of metabolic networks or 

signaling pathways identified from the observed metabolomic changes between the groups. 

Reproduced with permission from reference [86].
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Figure 3. 
A) Scatter plot representing the area of each feature from the XCMS matrix of LC/MS data 

of liver samples reconstituted in H2O and D2O. A correlation coefficient (R2) of 0.997 

indicates a high linear regression, which demonstrates that differences between the number 

and abundance of features detected in liver extracts reconstituted in H2O and D2O are 

insignificant. (B) Mass spectra of phenylalanine, tryptophan, and LysoPC (16:0) 

reconstituted in D2O (top) and H2O (bottom). Labile hydrogens are marked in red. Mass 

spectra show that the isotopic distributions of the compounds are not altered by D2O, 

indicating either slow H/D exchange of acidic protons in solution or fast back-exchange of 

labile deuterons in aqueous LC/MS buffers due to a total solvent accessibility of small 

molecule structures. Reproduced with permission from reference [101].
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Figure 4. 
Schematic figure illustrating the “smart isotope tag” approach used to detect the same 

metabolites using NMR and MS with high sensitivity. Tagging carboxyl-containing 

metabolites with 15N-cholamine enables their enhanced detection by both NMR and MS. 

Reproduced with permission from reference [30].
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Figure 5. 
Metabolic model of liver acetate oxidative metabolism used to estimate hepatic TCA cycle 

flux (VTCA) and anaplerosis (VANA). Carbon positional enrichment denoted in red occurs 

during the initial incorporation of label from 1-13C-acetate to glutamate on the first pass 

through the TCA cycle. Positional enrichment denoted in blue occurs during the 2nd pass 

through the TCA cycle, with label originating from internal scrambling at succinate or from 

bicarbonate (HCO3
−)/13CO2 via anaplerosis. Reproduced with permission from reference 

[145].
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Figure 6. 
High resolution NMR spectra of a methanolic extract of LCC2 cells. Glycerophospholipids 

were extracted from LCC2 cells grown in the presence of 10 mM [U-13C]-glucose for 24 h. 

(A) 1D 1H NMR spectrum and (B) TOCSY spectrum. The TOCSY spectrum was recorded 

at 18.8 T 293 K with 50 ms mixing time at a B1 field strength of 9 kHz. The data were 

processed with one linear prediction and zerofilling in t1 and apodized using an unshifted 

Gaussian function in both dimensions. (C) 1D 1H NMR spectra, top: 1D 13C-edited 1H 

(HSQC) spectrum, bottom: high resolution 1H NMR spectrum. High resolution FT-ICR 

mass spectrum of a methanolic extract of LCC2 cells. (D) FT-ICR-MS profile spectrum of 

an LCC2 methanol extract after 24 h labeling with [U-13C]-glucose. A close up of the m/z 
region from 760 to 782 is shown. The accurate masses (better than 1 ppm) at high resolution 

(>100,000 at measured mass) enable assignment of the GPLs and their isotopologues. 

Masses were externally calibrated, and secondarily calibrated with respect to internal 

standard reserpine; intensities have been arbitrarily scaled to 100 units for m0 at m/z = 

760.5860. (E) Mass distribution of PC 34:1 normalized to the total intensity as a function of 

time. The distribution at 0 h is indistinguishable from the expected natural abundance 

intensity. Line graphs are used here for clarity only; no values are implied between data 

points. (F) Time courses of selected mass peaks. (■) m0, (□) m0+3, (•) Σ(m0+2n); (○) 

Σ(m0+3+2n). The m0+3 intensities were fitted to a(1-exp(−kt)) with a = 0.11 ± 0.008 and k 

= 0.19 ± 0.04 h−1 . Reproduced with permission from reference [124].
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Figure 7. 
Schematic representation of the SUMMIT MS/NMR strategy for the identification of 

metabolites in complex metabolomic mixtures by the combined use of mass spectrometry 

and 1D 1H NMR spectroscopy. High-resolution MS yields the unique molecular formulas of 

the metabolites present in the mixture (left). For each molecular formula, all possible 

structures are generated, representing the total structural manifold depicted as the sum of the 

three local manifolds (green, red, blue; middle), each belonging to a different mass. Next, 

NMR chemical shifts are predicted for all manifold structures. Comparison of the predicted 

with the experimental NMR chemical shifts (right) allows identification of the structures that 

are present in the mixture, requiring neither an NMR nor an MS metabolomics database [28, 

29, 58]. Reproduced with permission from reference [29].
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Figure 8. 
Scores generated from (A) PCA of 1H NMR, (B) PCA of DI-ESI-MS, and (C) MB-PCA 

of 1H NMR and DI-ESI-MS. Separations between classes are greatly increased upon 

combination of the two data sets via MB-PCA. Symbols designate the following classes: 

Control ( ), Rotenone ( ), 6-OHDA ( ), MPP+ ( ), and Paraquat ( ). Corresponding 

dendrograms are shown in (D-F). The statistical significance of each node in the dendrogram 

is indicated by a p value. Reproduced with permission from reference [57].
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