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Abstract

Purpose—To inform the interpretation of clinical optical coherence tomography and fundus 

autofluorescence?imaging in geographic atrophy (GA) of age-related macular degeneration 

(AMD) by determining the distribution of retinal pigment epithelium (RPE) phenotypes in the 

transition from health to atrophy (GA) in donor eyes.

Method—In RPE-Bruch’s membrane flat mounts of 2 GA eyes the terminations of organized 

RPE cytoskeleton and autofluorescent material were compared. In high-resolution histological 

sections of 13 GA eyes, RPE phenotypes were assessed at ±500 and ±100 µm from the descent of 

the external limiting membrane (ELM) towards Bruch’s membrane. The ELM descent was defined 

as curved, reflected, or oblique in shape. Thicknesses of RPE, basal laminar deposit (BLamD), and 

RPE+BLamD were measured.

Results—A border of atrophy that can be precisely delimited is the ELM descent, as opposed to 

the termination of the RPE layer itself, because of dissociated RPE in the atrophic area. 

Approaching the ELM descent, the percentage of abnormal RPE morphologies increases, the 

percentage of age-normal cells decreases, overall RPE thickens, and BLamD does not thin. The 

combination of RPE plus BLamD is 19.7% thicker at −100 µm from the ELM descent than at 

−500 µm (23.1 ± 10.7 vs 19.3 ± 8.2 µm; p=0.05).
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Conclusion—The distribution of RPE phenotypes at the GA transition support the idea that 

these morphologies represent defined stages of a degeneration sequence. The idea RPE 

dysmorphia including rounding and stacking helps explain variable autofluorescence patterns in 

GA 14 is reinforced. The ELM descent and RPE+BLamD thickness profile may have utility as 

SDOCT metrics in clinical trials.

Précis

Morphological phenotypes of the retinal pigment epithelium distribute across the transition to 

atrophy in age-related macular degeneration in a manner consistent with a recently described two-

pathway hypothesis of RPE fate and also reinforce RPE dysmorphia as a candidate mechanism for 

variable autofluorescence.
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Introduction

Geographic atrophy (GA) in end-stage age-related macular degeneration (AMD) is a loss of 

retinal pigment epithelium (RPE) as revealed by clinical imaging modalities that highlight 

RPE organelles (lipofuscin, melanolipofuscin, melanosomes). GA expansion is orderly and 

quantifiable, and it is an important endpoint for clinical trials. 1,2 Because the fate of cells at 

the transition between health and atrophy may be irreversible despite intervention, 

understanding cellular and molecular changes in this region is requisite for validating GA 

enlargement as an endpoint. Precursors of atrophy are also desirable, both for monitoring 

disease progression and severity and for illuminating disease mechanisms that might enable 

earlier intervention. 3–6 Because imaging technologies currently used to define GA are 

critically affected by the morphology of individual RPE cells, the transition to GA can be 

newly informed with data from high-resolution and comprehensive histology. 7–9

Fundus autofluorescence (FAF) is an imaging technique dependent on stimulated emission 

of light, mostly from RPE lipofuscin, a lysosomal organelle containing bis-retinoid by-

products of the visual cycle and other non-degradable material. 10, 11 Absence of FAF signal 

is taken to indicate RPE atrophy although the exact margins of hypo-FAF have not been 

topographically correlated with the margin of RPE loss in any published series. Hyper-FAF 

is posited as an indicator for progression in GA by natural history studies12, with different 

FAF patterns indicating different expansion rates. 12, 13 Hyper-FAF can be explained by 

several cell-autonomous mechanisms, including increased concentration of efficiently 

detected fluorophores, increased concentration of lipofuscin granules, loss or re-positioning 

of melanosomes, RPE dysmorphia resulting in taller individual cells, and RPE migration 

resulting in vertically superimposed cells. 14, 15 In a histologic study of 10 GA eyes, using 

unbiased sampling, quantification of autofluorescence (AF), and a grading system for RPE 

morphology, 14 we determined that hyperautofluorescence could be explained by 

enlargement and stacking of cells that created a longer path length for exciting light through 

fluorophores, rather than a high intracellular concentration of lipofuscin granules.
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The transition to atrophy exhibits a degeneration sequence in which space serves a surrogate 

for time. Previous histopathologic studies of the GA transition (Supplementary Table 1) 

described cells of irregular shape and pigmentation, sloughed and heaped cells, cells in 

double layers, and RPE-derived material within the neurosensory retina. 14–17 Sarks et al 18 

reported a steady progression of worsening RPE morphology towards the atrophic area, 

which we confirmed. 14 To define an RPE stress-response repertoire in AMD, we recently 

used high-resolution histology to create a taxonomy of morphologic phenotypes using 

spindle-shaped melanosomes as markers. Phenotypes were then assembled into a schema of 

plausible transitions 7, 8 that suggested two main pathways of RPE fate. One pathway 

comprises sloughing of spherical pigmented cells into the subretinal space with anterior 

migration into the neurosensory retina. A second pathway comprises ‘shedding’ of granule 

aggregates into underlying basal laminar deposits (BLamD) in a manner consistent with 

apoptosis. 9, 14 Following migration and death, the remaining epithelium disintegrates into 

fully pigmented ‘dissociated’ cells scattered across atrophic areas. 7, 8, 19 Dissociated RPE 

cells in turn are sources of ‘subducted’ cells found between the RPE basal lamina and Bruch 

membrane. These newly described migratory cells of apparent RPE origin play an as-yet 

undefined role in AMD progression. Remarkably, most RPE phenotypes are visible by 

SDOCT, 8, 20, 21 suggesting that an accurate timeline of RPE degeneration is attainable 

through clinical imaging.

Here we tested whether RPE phenotypes 7–9 distribute across the GA transition in a manner 

consistent with the two-pathway hypothesis of RPE fate described in the previous paragraph. 

We demonstrate numerous AF and pigmented RPE in the atrophic zone. We describe 

progression and clearing on either side of an atrophy border defined by the descent of the 

external limiting membrane (ELM) towards Bruch’s membrane. Our data support the two-

pathway model and reinforce RPE dysmorphia as a strong candidate mechanism for variable 

FAF.

Methods

RPE flat mounts of AMD eyes were studied to assess the relationship of AF and 

cytoskeleton at the termination of the intact RPE layer, as described. 9 In other AMD eyes, 

sub-micrometer histological cross-sections through the fovea and superior perifovea were 

studied to assess phenotypes of RPE morphology, as described. 7, 8 All tissues were taken 

from a bio-repository of short post-mortem (<6 hr) eyes assembled for AMD research from 

donors to the Alabama Eye Bank in 1995–2009. Our studies were approved by institutional 

review at the University of Alabama at Birmingham and adhered to the Tenets of the 

Declaration of Helsinki.

Flat-mounts

Of 35 RPE-Bruch’s membrane flat-mounts previously prepared from 35 Caucasian donors, 9 

2 GA tissues were revisited. AMD status was determined at the time of accession using 

stereo color photographs from a dissecting microscope, based on criteria of the Alabama 

Age- related Maculopathy Grading System. 22 The presence of atrophic areas was also 

verified in ex vivo AF imaging (Spectralis, Heidelberg Engineering, Heidelberg, Germany). 
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To enable definition of the RPE cytoskeleton, F-actin was labeled with Alexa 647 phalloidin 

(Life Technologies, Grand Island, NY, USA). To illustrate RPE cell melanosome content and 

to illustrate F-actin and lipofuscin/melanolipofuscin distribution, bright field and 

fluorescence imaging, respectively, was performed using a confocal microscope (BX51, 

Olympus, Center Valley, PA, USA) at predefined locations and settings, as described, plus 

additional locations in areas affected by atrophy. 23

Cross-sectional histology

Of 82 AMD eyes prepared for sub-micrometer epoxy sections stained with toluidine blue, 

13 eyes with GA from 12 donors (8 women, 4 men, 85.6 ± 4.9 years) were identified by 

absence of a continuous RPE layer for a distance >250 µm in the presence of basal linear 

deposit or drusen and in the absence of evidence of neovascularization.

We identified the descent of the ELM towards Bruch’s membrane, as detailed in the Results 

section. At 100 µm and 500 µm on either side of this boundary, in agreement with previous 

clinical studies, 24–26 we annotated RPE morphology and measured RPE and BLamD 

thickness, for a total of 4 assessments per transition (2 in the atrophic area and 2 in the non-

atrophic area). Negative distances (−500 and −100 µm) represent locations on the non-

atrophic side of the ELM descent, and positive distances (+100 and +500 µm) are on the 

atrophic side, so that progression moves like a time-line from left (non-atrophic) to right 

(atrophic) in all figures. This sampling pattern, centered around a defined point, differs from 

that in our previous publications, also using these eyes, which spaced samples systematically 

across the whole macula. 7, 8 Annotations were recorded in a custom database (Filemaker) 

while using a 60X numerical aperture = 1.4 objective and CCD camera to display tissue 

images at 1900X on a monitor (in the range of low magnification electron microscopy). We 

used the nomenclature for RPE morphology defined by Zanzottera et al 7, 8 (Table 1). In 

brief, cells containing spindle-shaped melanosomes and lipofuscin apposed to a basal lamina 

or basal laminar deposits were considered RPE and cells in other layers or spaces containing 

those organelles or plausibly derived from such cells, were considered RPE-derived. The 

percentage of each RPE morphology was referenced to the total number of samples with 

RPE (which differs from our previous studies 7, 8).

Our results are based on the analysis of 13 eyes of 12 donors, 18 sections (13 central, 5 

superior), 69 transitions, and 171 assessment locations (36 at −500 µm, 63 at −100 µm, 47 at 

+100 µm, 25 at +500 µm). The number and pattern of assessment locations differed among 

eyes, because atrophic areas extended off section edges, were less than 1000 µm wide, or did 

not extend into the superior macula.

We compared mean RPE thickness for each phenotype at −500 µm and −100 µm and mean 

BLamD thickness at ±500 µm and ±100 µm. Per previous convention, 7, 8 only cells in the 

RPE layer (and not pigmented cells out of the layer) were measured. Also by convention, 

thicknesses at sites of ‘sloughed’ included two cells if the migrating cell was touching cells 

in the layer and just the epithelial cell if it was not. RPE thicknesses were available for all 

RPE morphologies except ‘atrophy with’ and ‘without BLamD’ and ‘dissociated’ RPE. 

Generalized estimating equations were used to test if the mean thickness of RPE (or 

BLamD) at each location was different from zero. A pooled variance was used so that a p-
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value could be generated even if only one observation was included in one of the groups. A 

p-value <0.05 was considered statistically significant.

Results

In flat-mounts we compared the termination of intact RPE layer, signified by orderly 

cytoskeleton delimiting polygonal cells, to the distribution of AF attributable to lipofuscin 

and melanolipofuscin. Figure 1 shows multiple cells in the area beyond an organized RPE 

mosaic, consistent with the numerous spherical and fully pigmented cells found atop 

BLamD and Bruch’s membrane in late AMD eyes by cross-sectional histology and adaptive 

optics assisted imaging. 7, 8, 15, 19 In addition, by demonstrating directly that the atrophy 

border is not sharply defined in the RPE layer itself by histology, these data prompt us to 

seek a more reliable reference point for analyzing the sequence of degeneration.

Guided by an early description by S.H. Sarks, 27 we chose as a marker of the atrophy border 

the descent of the external limiting membrane (ELM) towards Bruch’s membrane. The ELM 

comprises junctional complexes between the Müller cells and photoreceptor inner 

segments 28–30 and together with junctional complexes among RPE, bounds the subretinal 

space. 31 Figures 2 and 3 show high-magnification and low-magnification histologic views, 

respectively, of three GA eyes, demonstrating how the ELM descent assumes one of three 

shapes: curved as originally described 27 (Figure 2A), oblique (Figure 2B), and reflected 

(Figure 2C). The outer nuclear layer can parallel the ELM in its course to end coterminously 

with the ELM descent (Figure 3B), or it can sweep further into the atrophic area (Figure 

3A,C). On the non-atrophic side of curved and reflected ELM descents (Figure 3A,C), 

individual photoreceptors (and the Müller cells interleaved among them) shorten and shift 

orientations from vertical and orthogonal to Bruch’s membrane to horizontal and parallel to 

Bruch’s membrane. The atrophic area delimited by the ELM descent contains a small 

number of cone photoreceptor cell bodies (lacking outer segments and wave-guiding 

capability), either as part of outer retinal tubulation 32–35 or as part of the outer nuclear layer 

where it diverges horizontally from the ELM (Figure 3A,C). Thus the ELM descent cleanly 

divides a region where photoreceptors are present and potentially salvageable 15 from a 

region where photoreceptors are either absent or present and degenerated beyond rescue. At 

69 transitions to atrophy in 13 GA eyes, 49.3% of ELM descents were curved, 31.0% were 

oblique, 16.9% were reflected, and 2.8% were indeterminate due to tissue imperfections. In 

the last case, the ELM was extrapolated over the imperfection to Bruch’s membrane.

RPE morphology on either side of the ELM descent in 13 GA eyes is illustrated 

microscopically in Figure 3 and graphically in Figure 4. Along this gradient RPE overall 

becomes increasingly non-uniform in morphology then ‘sloughed’. Inside the atrophic area 

are ‘dissociated’ RPE cells lying atop BLamD. A thin layer of BLamD continues inside GA 

far from the ELM descent. In Figure 3A,B, flattened or dome-shaped ‘subducted cells’ lie on 

Bruch membrane throughout the atrophic area. Figure 4 shows that as the ELM descent is 

approached from the non-atrophic side, the percentage of abnormal RPE represented by 

‘sloughed’, ‘shedding’, and ‘intraretinal’ morphologies increases, and the percentage of age-

normal ‘non-uniform’ cells decreases. ‘Dissociated’ RPE left by the breakup of the layer are 
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common in atrophic zone, especially near the ELM descent. ‘Atrophy with BLamD’ is the 

most frequent grade at +500 µm. ‘Subducted’ cells appear on both sides of the ELM descent.

Tables 2 and 3 show thickness of the RPE layer and BLamD in relation to the ELM descent. 

Table 2 shows mean thicknesses for each RPE phenotype at −500 and −100 µm from this 

boundary. For ‘shedding’, ‘bilaminar’, and ‘intraretinal’ phenotypes, RPE was significantly 

thicker at −100 µm from the ELM descent than at −500 µm. ‘Sloughed’ RPE was not 

significantly different at the two locations, likely due to the variability in its measurement 

(see Methods). ‘Non-uniform’ RPE was thinner at −100 µm than at −500 µm. Combining all 

morphologies, RPE was 20.6% thicker at −100 µm from the ELM descent than at −500 µm 

(14.6 µm vs 12.1 µm), a significant difference (p=0.039). Table 3 shows that BLamD was 

significantly thicker at −500 µm than −100 µm for ‘sloughed’ and ‘bilaminar’ RPE and 

similar at both locations for other morphologies and for all morphologies combined (7.2 

± 6.1 µm vs 8.4 ± 8.2 µm, p<0.26). Although variable, the thickest BLamD was associated 

with ‘shedding’ RPE at −100 µm (16.7 µm) and with ‘dissociated’ RPE at +500 µm (13.9 

µm). In the atrophic area, BLamD without RPE was significantly thinner far from the ELM 

descent (5.2 µm) than near (7.1 µm), and BLamD with ‘dissociated’ RPE did not thin at 

these locations (8.7 µm vs 13.9 µm, p = 0.42).

To facilitate analysis of SDOCT scans in which BLamD may not be easily separated from 

RPE, thicknesses for RPE and BLamD together are shown in Table 4. Combining across all 

RPE morphologies, RPE + BLamD is 19.6% thicker at −100 µm than at −500 µm (23.1 

± 10.7 µm vs 19.3 ± 8.2 µm), a significant difference (p=0.05).

Discussion

High-resolution clinical imaging has prompted new attention to RPE fate in GA. Based on 

clinical imaging studies, investigators have proposed cell death mechanisms such as 

lipofuscin accumulation, 36–39 necrosis, 18, 40 oxidative damage due to increased 

phagocytosis of damaged photoreceptors, 41, 42 and toxic molecules spreading outward from 

atrophy. 43, 44 To test a recently proposed two-pathway hypothesis of RPE fate in advanced 

AMD (apoptosis and migration) based on histology, we determined how RPE morphologies 

distributed across the transition from health to atrophy. Our data show a progression of RPE 

phenotypes toward the ELM descent in eyes with GA. Despite some individually thin cells, 

the net effect was overall thickening of the RPE layer. Along with showing ‘dissociated’ 

cells inside atrophy and ‘subducted’ cells on both sides of the ELM descent, our data 

support the overall hypothesis. Our results (summarized schematically in Figure 5) have 

several points of significance.

Biometric methods of analysis

Our report advances the histopathologic literature on GA (Supplementary Table 1) by 

focusing on the RPE layer as a basis for seeking associations among all chorioretinal layers 

in future studies. Understanding and treating GA depends critically on understanding RPE 

fate in a manner that matches the comprehensiveness of structural OCT imaging and adds 

value to FAF imaging. Foundational literature (Supplementary Table 1) established that GA, 

neovascularization, and drusen are part of the same age-related disease process, 45 and that 
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GA involves an area of RPE loss. 27, 45, 46 Early studies reported results on a per eye 

basis. 27, 45 Later studies introduced degrees of RPE loss 47 and a simple RPE staging 

system 16 to provide cellular detail and permit comparison among layers 17. Here we used 

epoxy sections for a high-resolution, comprehensive, and polychromatic visualization across 

the whole macula. We focused on cardinal features of RPE ultrastructure, particularly 

spindle-shaped melanosomes and contact with a basal lamina or BLamD. The clinical 

variability of border features is postulated to result from different etiologies (primary 

atrophy, drusen-related atrophy, and atrophy after RPE detachment). 48 Using principles of 

unbiased systematic sampling, 49 we converted continuous variation in morphology and 

location to discrete categories and developed measures amenable to biometric analysis and 

hypothesis-testing. We included both progression to RPE cell death outside atrophic areas 

and for the first time, clearing processes within atrophic areas. Previous GA progression 

studies from our group and others classified RPE morphology in zones of different lengths 

along Bruch’s membrane. 14, 50–52 Here we annotated RPE status at standard locations 

specified with respect to an origin (ELM descent). This process is less subjective and faster 

than finding boundaries. Thus, it is potentially applicable to SDOCT B-scans.

Pathogenic mechanisms

The GA transition has been the focus of numerous histologic studies (Supplementary Table 

1) that described cells in the subretinal space as hyperplastic, hypertrophic, shed, and 

sloughed RPE 8, 14, 15, 18, 52, 53. Accordingly, the SDOCT literature reports “reflective 

material” associated with the RPE-Bruch’s membrane band, “irregular elevation of RPE”, 

and “RPE thickening” at this junction. 26, 38, 39, 48, 54, 55. Reports of RPE thinning 56–58 were 

not supported. Cells are variably identified among these authors, including RPE 48, RPE 

packed with pigment granules 4, 6, 54, 55, RPE/macrophages 38, and melanin-containing 

cells. 59 Like others using electron microscopy, we considered these subretinal cells RPE, 

because they contained numerous RPE-characteristic granules at a concentration resembling 

that of cells in the RPE layer 8, 18 and because evidence for other cell types was lacking.

We confirmed and extended earlier semi-quantitative 14 and qualitative 18 research showing 

dramatic changes in RPE health within 500 µm of the atrophy border. While some cells are 

likely dying via apoptosis (‘shedding’) many others appear to be undergoing 

transdifferentiation to a migratory phenotype, as indicated by spherical morphology and 

penetration past the ELM into the retina. Cells with melanosomes between BLamD and 

Bruch’s membrane 7, 18 (‘subducted’) were speculated to have originated in the atrophic area 

as ‘dissociated’ cells that underwent epithelial mesenchyme transition and migrated 

horizontally into less affected areas, perhaps even contributing to the expansion of GA. Our 

new data are consistent with this model, as ‘subducted’ cells were proportionately more 

frequent in the atrophic area and at −100 µm than at −500 µm, although numbers are small. 

Both stage-specific RPE immunoreactivity suggesting activation and loss of 

polarity 16, 53, 60, 61 and non-stage-specific RPE immunoreactivity consistent with cell death 

pathways 44, 62 have been reported in GA eyes.

Notably, “melanin-filled” cells resembling ‘sloughed’ and ‘intraretinal’ RPE in GA express 

inflammatory markers (CD163, a haptoglobin-hemoglobin scavenger 61). By high-resolution 

Zanzottera et al. Page 7

Retina. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



histology, the organelle content of these phenotypes appears very similar to that of cells in 

the RPE layer, a coincidence difficult to ascribe phagocyte activity, and we like others 18 

consider them RPE. Further, cells resembling ‘subducted’ also express monocyte markers 

CCR2 and CD68 and leukocyte marker CD18, as do cells in the RPE layer. 60, 63 Because 

we find transitional forms from ‘dissociated’ to ‘subducted’ in single intact histological 

sections 7, we consider ‘subducted’ of RPE origin. Assignment of cellular identify is 

complicated by loss of immunoreactivity for structural RPE markers in advanced AMD, so 

the presence of other cell types such as microglia remain a possibility. 64, 65. Definitive 

assignment of identities in future studies should thus include quantification of RPE 

organelles and stable markers indicative of RPE origin as well as for monocyte origin 66 to 

distinguish among these competing hypotheses.

While not contradicting well-established roles of macrophages 67, 68 and inner-retina-derived 

microglia 61, 69, 70 in advanced AMD, our data point to a role for transdifferentiated RPE 

that remains to be determined. Further, whether treatments should promote survival or 

suppression of these cells is unknown. Answering such questions are now research priorities, 

with major ramifications for clinical image interpretation, therapeutic strategies, and choice 

of experimental model systems. The latter issue is germane, because many laboratory mouse 

strains have microglia in the subretinal space that could ingest debris and appear RPE-like 

due to AF. 70–73 An equivalent population has not yet been described in normal aged human 

eyes, although microglia appear in atrophic areas 61, 69, 70 and in association with advanced 

subretinal drusenoid deposits. 74 Alternatively, several mouse models involving targeted 

disruption of mechanistically diverse pathways also exhibit ‘sloughed’ RPE 75–80, 

supporting the concept that RPE stress responses are a final common pathway to multiple 

different stressors. What molecular signals prompt RPE to assume migratory behaviors in 

human GA eyes is unspecified. Presumably such signals will also confront replacement cells 

surgically delivered to patients with GA. 81, 82

Interpretation of autofluorescence imaging

Our data have special significance for interpreting clinical FAF imaging of GA. Fully 

pigmented and nucleated RPE have been recently identified within atrophic areas by 

adaptive optics assisted near-infrared reflectance imaging and by histology. 8, 15, 19 We 

estimated that as much as 22% of atrophic areas retains ‘dissociated’ RPE, 8 which may help 

explain choriocapillaris survival in these regions. 83 We herein confirmed that these cells are 

AF (Figure 1) and thus can contribute signal. Imaging studies indicate that atrophic areas are 

not completely non-autofluorescent, especially towards the border. 6, 12, 24, 25, 39, 54, 55, 84–87 

The atrophic area varies in FAF intensity, with rapid progressers exhibiting a moderate 

signal attributable now to cells as well as to BLamD. 88 The latter is visible on SDOCT as a 

split RPE/Bruch membrane complex. 89

Of interest is how our data impact the interpretation of focal hyperautofluorescence found 

around GA, frequently thought of as high intracellular lipofuscin accumulation that leads to 

cell death. 36–39 RPE hypertrophy and migration both lengthen the summation path for 

exciting light through biologic fluorophores, as we previously demonstrated 14. The current 

study replicates our finding of RPE dysmorphia in second set of GA eyes prepared with 
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higher-resolution histology and analyzed with a more comprehensive grading system. We 

suggest that this mechanism be considered the leading hypothesis to explain focally 

increased FAF in GA. Our current data do not support a widely-

cited 6, 12, 25, 36–41, 84, 86, 87, 90–94 suggestion of RPE death by lipofuscin engorgement, 

granule dispersion, and necrosis. 18

In contrast, our current data do synergize with other evidence that collectively prompt a re-

evaluation of lipofuscin’s role in AMD. In RPE flat mounts of AMD eyes, cells are seen to 

redistribute, aggregate, and overall lose autofluorescent granules in concert with cytoskeletal 

stress, as they degenerate. 9 Topographically precise longitudinal imaging in GA patients has 

shown that hyperAF indicates disease activity but does not predict atrophy on either a fine-

grain 24 or population 95 basis. In AMD patients imaged with quantitative AF, which 

standardizes across populations via a fluorescent reference material in the light path, 96 FAF 

intensities decrease rather than increase. 97 Neither photoreceptor loss nor RPE loss in aging 

is topographically associated with AF increase in studies using accurate methods for 

macular cell counts 98, 99. Mass spectrometric and chromatographic analysis of normal 

human and monkey eyes revealed that the well-studied lipofuscin component A2E and its 

major oxidation products are lower in macula than in periphery. 100–103 Thus, the relevance 

of experimental A2E loading of cultured RPE cells to achieve AMD milestones such as cell 

death 104 and complement dysregulation 105 can be questioned. Because the lipofuscin 

phototoxicity hypothesis underlies use of visual cycle modulators for AMD 106 and blue- 

light blocking intraocular lenses for cataract, 107, 108 our conclusions if sustained could have 

wide-ranging impact on therapeutic strategies for age-related eye disease.

Biomarkers for clinical trials – ELM descent

S.H. Sarks first observed that the ELM delimits atrophy, 27 and herein we characterized for 

the first time shapes of ELM descents. We and others 16, 109 previously observed that the 

ELM descent is comprised of reactive Müller cell processes extending outward to approach 

Bruch’s membrane in areas of photoreceptor loss. Its shape in atrophy is governed by an 

outward and lateral extension of Müller cell processes as photoreceptors degenerate, as 

illustrated in published histology (Figure 2C,E of reference 16; Figure 4C of reference 109 

Figure 2C, 4C). Shorter or fewer photoreceptors due to marked atrophy will result in a 

descent that is straight and obliquely oriented rather than curved. Recent research about 

outer retinal tubulation (ORT), a neurodegenerative and gliotic process common in advanced 

AMD, established the continuity of the ELM from the GA border to the lumen of 

ORT, 32, 35. Thus the ‘reflected’ descent may represent a phase of ORT formation via 

scrolling. Several authors early in the SDOCT era mentioned 85, 87, 92 or illustrated 41 the 

ELM as a boundary, even describing its curvature. 48 ELM presence is linked to preserved 

visual function, 39 and ELM absence is considered a robust indicator of atrophy 4, 6, 38, 54, 55. 

Separately 110, and consistent with previous reports 18, 111 we will show that the proportion 

of ‘oblique’ ELM descents relative to ‘curved’ plus ‘reflected’ is significantly higher in 

donor eyes with neovascular AMD than in GA, likely due to exudation-related photoreceptor 

death. The ELM descent may thus have value as a biomarker in distinguishing between 

primary GA and atrophy secondary to neovascular AMD.
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Strengths, limitations, conclusions

Strengths of this study were the number of GA eyes analyzed at high-resolution, a cellular 

phenotyping approach to make RPE degeneration as granular as possible, and unbiased 

sampling methods that included both progression and clearing processes. Limitations were 

the small number of RPE flat mounts for en face viewing, lack of flat-mounts and histology 

from the same donors, the small numbers of eyes representing some RPE phenotypes, and 

lack of clinical histories. Nevertheless, our study represents the first detailed examination of 

RPE morphology in the GA transition to since the epic 1988 description by Sarks et al 18. As 

such we formulated new hypotheses testable in longitudinal imaging of appropriate patient 

populations, as well as a basis to study stage-specific changes originating outside the RPE 

layer. Data are expected to inform the interpretation of clinical SDOCT and FAF, 

mechanistic studies of RPE fate in AMD, and therapeutic strategies for RPE protection and 

replacement 82, 112.
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Figure 1. Variation in RPE autofluorescence and cytoskeleton in geographic atrophy
RPE-Bruch’s membrane flat mount from an 81-year-old male with geographic atrophy 

secondary to AMD, with abundant AF material inside the atrophic area. Arrows indicate 

termination of organized RPE cytoskeleton in all panels. A. Phalloidin-labeled cytoskeleton 

of RPE cells at the border of atrophy. In the atrophic zone, cells lose f-actin cytoskeleton, 

and condensed f-actin tangles form from remaining f-actin fragments. B. Brightly AF 

lipofuscin/melanolipofuscin granules, either within isolated cells or in extracellular granule 

aggregates shed into basal laminar deposit 9. C. Images from Panels A and B are 

superimposed to show the relationship of AF material to the termination of organized 

cytoskeleton. D. Bright field image confirms that cells and cellular fragments also have 

melanosomes. Scale bar: 50 µm.
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Figure 2. Descent of the external limiting membrane in 3 eyes with geographic atrophy
Panoramic views of the transition to atrophy in these eyes are shown in Figure 3. ELM, 

external limiting membrane, green arrowheads; INL, inner nuclear layer; ONL, outer nuclear 

layer; RPE, retinal pigment epithelium. Bruch’s membrane, black arrowhead; persistent 

BLamD, white arrowhead. Bar in C applies to all panels. A. The ELM descent is curved. 

‘Dissociated’ RPE, yellow arrowhead; ‘subducted RPE, orange arrowhead. 87-year-old man. 

B. The ELM descent is oblique. 83-year-old woman. C. The ELM descent is reflected. 90-

year-old-man.
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Figure 3. Retinal pigment epithelium morphology in eyes with geographic atrophy
ELM descent (green arrowheads) and its projection onto Bruch’s membrane (red arrow) are 

shown. Regions between −100 and +100 µm are shown at higher magnification in Figure 2. 

RPE and BLamD morphology and thickness were analyzed at −500 and −100 µm outside 

GA (yellow ticks, to the left of the red arrow) and +500 and +100 µm inside GA (yellow 

ticks, to the right of the right arrow). Sub-micrometer epoxy sections, toluidine blue stain. 

INL= Inner nuclear layer, ONL= Outer nuclear layer. A. The ONL sweeps past the curved 

ELM descent, into the atrophic area. 87-year-old man. B. The ONL is parallel to a oblique 

ELM descent. 83-year-old woman. C. The ONL sweeps past a reflected ELM descent, into 

the atrophic area. 90-year-old-man. Outside GA (A,B,C): ‘Non-uniform’ RPE becomes 

‘Very non-uniform’, then ‘sloughed’ in sub-retinal space, near the ELM descent. Inside GA 

(A,B,C): ‘dissociated’ RPE cells persist over BLamD, and a thin layer of BLamD remains 

far from the border. In A and B, ‘Subducted’ cells lie on Bruch’s membrane (orange 

arrowhead). In A and C, one giant RPE cell at −100 µm is packed with granules9. Complete 

sections are available at Project MACULA website. A. http://projectmacula.cis.uab.edu/?

p=2799; C. http://projectmacula.cis.uab.edu/?p=2288

Zanzottera et al. Page 20

Retina. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://projectmacula.cis.uab.edu/?p=2799
http://projectmacula.cis.uab.edu/?p=2799
http://projectmacula.cis.uab.edu/?p=2288


Figure 4. Distribution of RPE morphologies with respect to the ELM descent in geographic 
atrophy
The ELM descent defines GA margins (red arrow). The number of assessment locations is 

expressed at the right of each bar. Epithelial, non-epithelial, atrophic, and subducted 

morphologies 8 are indicated by blue, green, orange, and brown bars respectively, with less 

affected at the top and more affected at the bottom. Percentages are referenced to the total 

number of RPE. There is a shift from age-normal to abnormal RPE phenotypes at the ELM 

descent. We confirmed a single atrophic grade at −100 µm and epithelial grade at +100 µm.
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Figure 5. 
Hypothesized sequence of RPE fate with imaging consequences at the border of geographic 

atrophy (GA) in AMD. Phenotypes of RPE morphology were previously described 7, 8. The 

ELM descent is not shown. As indicated on a representative fundus autofluorescence image 

of a patient with GA, panels 1–2 move from the margin of atrophy to its center. Panels 3–5 
move from the center to the margin. 1. Age-normal ‘non-uniform’ RPE overlies Bruch’s 

membrane, which contains numerous lipoprotein particles (yellow). Basal laminar deposit 

(BLamD, green) is thin and continuous. RPE organelles are reflective and stacked in three 

cushions from apical to basal - melanosomes, lipofuscin, and mitochondria. 2. Within 500 

µm of the border, cells undergo apoptosis (‘shedding’) and anterior migration (‘sloughed’ or 

‘intraretinal’); and BLamD is thick. The net effect of RPE dysmorphia on imaging is 

thickening and roughening of the hyperreflective RPE-Bruch’s membrane band by SDOCT, 

hyperreflective foci in the retina and within thick BLamD, 8, 21 and variably focal 

hyperautofluorescence. 3. Due to death or migration of RPE, the remaining layer 

disintegrates. Pigmented and nucleated ‘dissociated’ RPE are scattered across the atrophic 

zone and may be visible by autofluorescence. 4. ‘Subducted’ cells likely originate in the 

atrophic zone, where they are unmoored from their junctional complexes. They dive down 

and flatten on Bruch’s membrane while retaining a reduced number of characteristic 
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granules. 5. ‘Subducted’ cells migrate at least 100 µm into the marginal area and express 

inflammatory markers 61, 64, 66. While their activities are not known, they could participate 

in the spread of GA.
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Table 1

Histological phenotypes of retinal pigment epithelium in age-related macular degeneration

RPE phenotype Description (grades used in previous publications 14, 17)

Non uniform Slightly non-uniform morphology and pigmentation (1)

Very non-uniform Very non-uniform morphology and pigmentation (2)

Sloughed Intact epithelium with spherical cells sloughed into sub-retinal space (2A)

Shedding Intact epithelium with basal shedding of non-nucleated RPE fragments containing granules into basal laminar 
deposits (2B)

Bilaminar Double layers (2L)

Vacuolated A single large vacuole, sometimes with contents, delimited apically by extremely effaced cytoplasm

Intraretinal Anterior migration of nucleated RPE through the external limiting membrane (3)

Dissociated Nucleated RPE in atrophic area (no external limiting membrane), adherent to persistent BLamD or Bruch’s 
membrane

Entombed Entombed by fibrovascular scar, intermingled with other cells and fluid in the same layer

Subducted Rounded or flattened, in sub-RPE space, not adjacent to basal lamina

Melanotic Large black, spherical melanosomes, individual cells or cells in multiple layers, in sub-retinal or sub-RPE space, 
associated with neovascular scars

Entubulated In lumen of outer retinal tubulation, not adjacent to basal lamina

Atrophy with BLamD No cells; persistent basal laminar deposits (4)

Atrophy without BLamD No cells; no basal laminar deposit (5)

Notes: phenotypes defined by Zanzottera et al 7, 8

Abbreviations: BLamD, basal laminar deposits; RPE, retinal pigment epithelium.
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Table 2

RPE thickness relative to the ELM descent in geographic atrophy

−500 µm −100 µm Overall

RPE
Morphology

RPE thickness,
µm

Mean ± SD; N

RPE thickness,
µm

Mean ± SD; N

p-value, -
500 µm vs –

100 µm

RPE thickness,
µm

Mean ± SD; N

Overall 12.1 ± 5.2; 12 14.6 ± 6.9; 12 0.039 13.7 ± 6.4; 12

Non-uniform 10.9 ± 2.5; 8 8.3 ± 0.2; 2 <0.0001 10.5 ± 2.5; 9

Very non-uniform 12.5 ± 3.2; 6 11.8 ± 4.9; 7 0.48 12.1 ± 4.3; 8

Sloughed 15.3 ± 9.3; 6 18.3 ± 7.4; 9 0.43 17.4 ± 8.0; 10

Shedding 9.0 ± 2.0; 4 14.1 ± 7.6; 7 <0.0001 13.0 ± 7.0; 8

Bilaminar 9.3 (n/a); 1 20.4 ± 11.0; 2 0.044 16.7 ± 10.0; 3

Vacuolated --- 13.2 (n/a); 1 --- 13.2 (n/a); 1

Intraretinal 10.5 (n/a); 1 14.4 ± 1.5; 2 <0.0001 13.6 ± 2.2; 3

Notes:

N indicates number of donors in which measurements were made (13 eyes from 12 donors total).

Thicknesses were measured for the epithelial component of morphologies that also included a non-epithelial component, as described 8.

Thicknesses were not recorded for ‘dissociated’ RPE within the atrophic area.

P-value obtained via general estimating equations

SD, standard deviation

n/a, not applicable
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Table 4

RPE + Basal laminar deposit thickness relative to the ELM descent in geographic atrophy

RPE
Morphology

−500 µm from ELM
descent

−100 µm from
ELM descent

−500 µm vs −100
µm

Overall

RPE + BLamD thickness in µm, mean ±
SD; N

p-value RPE + BLamD thickness
in µm, mean ± SD; N

Overall 19.3 ± 8.2; 12 23.1 ± 10.7; 12 0.05 21.7 ± 10.0; 12

Non-uniform 14.1 ± 2.8; 8 14.3 ± 2.5; 2 0.93 14.1 ± 2.7; 9

Very non
Uniform 19.0 ± 8.7; 6 16.5 ± 7.3; 7 0.34 17.4 ± 7.8; 8

Sloughed 24.4 ± 10.2; 6 23.9 ± 7.6; 9 0.91 24.1 ± 8.3; 10

Shedding 23.6 ± 7.2; 4 30.9 ± 12.7; 7 <0.0001 29.2 ± 11.9; 8

Bilaminar 14.3 (n/a); 1 21.7 ± 12.9; 2 0.25 19.2 ± 10.1; 3

Vacuolated --- 18.7 (n/a); 1 --- 18.7 (n/a); 1

Intraretinal 17.8 (n/a); 1 23.4 (10.3): 2 0.21 22.2 (9.2); 3

Notes:

N indicates the number of donors in which measurements were made (13 eyes from 12 donors total).

P-value obtained via general estimating equations

SD, standard deviation

n/a, not applicable
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