
therapeutic target” for pharmacologic interventions in IPF. Thus,
at our current state of knowledge, we believe that it is a reason-
able approach to try to identify mediators and pathways that are
crucially involved in this fatal disease and that might serve as
targets for therapeutic interventions. We also believe that, in
the end, effective treatment of IPF is likely to require a combina-
tion of therapies targeting multiple mediators/signaling pathways.
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Bronchial Nitric Oxide Flux May Be Better Associated
with Inducible Nitric Oxide Synthase
Promoter Methylation

To the Editor:

We read with great interest the article by Breton and colleagues
(1) reporting the association between DNA demethylation of
arginase (ARG)1 and ARG2, but not inducible nitric oxide
synthase (iNOS), gene promoters, and fractional exhaled nitric
oxide (FENO) in children with asthma. The authors are the first
to link epigenetic variation in buccal DNA with increases in
FENO, a biomarker associated with acute bronchial hyperres-
ponsiveness, asthma relapse, and respiratory infection (2–4).
They shed new light on biological mechanisms that may under-
lie NO production during asthma exacerbations. We commend
the authors’ collection of buccal cells as noninvasive, readily
accessible cells that represent aerodigestive tract cells and can
share similar patterns of gene expression with bronchial
epithelial cells (5). This approach may have great advantages
in longitudinal pediatric research.

Our group at the Columbia Center for Children’s Environ-
mental Health also was interested in investigating the associa-
tion between buccal cell iNOS promoter demethylation and
FENO, and evaluated the association between alveolar and con-
ducting airway contributions of FENO with iNOS demethylation
(6). Buccal cells were collected from 9- to 11-year-old urban
children twice, 4–7 d apart (n ¼ 57 subjects). Similarly, iNOS
CpG-359 (corresponding to position 3 of NOS2A) was moder-
ately methylated with a mean methylation level of 53.8% (SD
5.43; interquartile range 5.00). This intermediate level of meth-
ylation provides opportunity for changes in methylation pat-
terns, presumably in association with environmental exposures.

We also examined the association between methylation of
iNOS and FENO, and its postulated components bronchial NO
flux (JNO) and alveolar NO (Calv) with methodology that takes
advantage of multiple flow rates during collection of samples
(6). Using generalized estimating equations to model the
repeated measures, we found that iNOS methylation was not
significantly associated with FENO. However, when compart-
mentalizing NO production into its proximal (bronchial) and
distal (alveolar) airway components, iNOS methylation was
associated inversely with JNO (b ¼ 23.68, 95% confidence
interval: 26.68 to 0.67, P ¼ 0.016), but not Calv (P . 0.1).
Previously we showed that JNO was highly correlated with FENO

and may be a better indicator of seroatopy than Calv. In con-
trast, Calv may be a better indicator of current wheeze (6).

Breton and colleagues’ study and our pilot study suggest that
measures of buccal cell DNA methylation may be informative
biomarkers of airway inflammation in pediatric cohorts. Addi-
tionally, our pilot data suggest that iNOS demethylation may
be more closely associated with proximal NO source components.
Breton and colleagues may be underestimating the iNOS effect
estimate because they have an NO measure from both proximal
and distal sources in the lung. To strengthen these conclusions,
both studies would benefit from buccal RNA expression analysis.
Nonetheless, both studies reveal some new understanding on the
immunopathogenesis of airway inflammation. Further studies are
needed to examine the association of environmental asthma trig-
gers with methylation patterns and clinical outcomes.
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From the Authors:

We thank Kuriakose and colleagues for their insightful commen-
tary regarding our recent publication (1). We agree with their
conclusion that buccal cell DNA may be a useful biomarker for
airway inflammation in pediatric research, and their attempt to
further distinguish bronchial NO flux (JNO) and alveolar NO
(Calv) is a worthwhile endeavor.

As part of the Children’s Health Study, we also estimated
bronchial and alveolar components of fractional exhaled nitric
oxide (FENO) using six published modeling approaches (2). How-
ever, we are unable to assess the role of inducible nitric oxide
synthase (iNOS) methylation on JNO and Calv, as buccal DNA
was not collected during extended FENO measurements. In our
study, we also found that FENO and JNO and all model-derived
JNO parameters were highly correlated (all r . 0.95). Given this
high degree of correlation, it is puzzling that Kuriakose and co-
workers observed an association between iNOS methylation and
JNO but not FENO. We used natural log-transformation for FENO

in our models. If Kuriakose and colleagues analyzed their data
comparing the highest quartile with the remaining quartiles as
they did earlier (3), then difference in analytic approach could
also account for the difference in findings.

In fact, the arginase–nitric oxide synthase pathway is complex,
and the study of a single element in relation to FENO is simplistic
and liable to miss associations. More recent work in our cohort by
Salam and colleagues highlights this complexity by demonstrating
a complex synergy between air pollution exposures, genetic varia-
tion, and DNA methylation in iNOS in association with FENO (4).
So while our original study observed no effect of DNAmethylation

in iNOS with FENO, once genetic variation and exposure informa-
tion are taken into account, an association with FENO is observed.

The results of the investigation by Kuriakose and colleagues
and our own highlight the need to delve into the complexity of
underlying biological mechanisms to the extent possible in epi-
demiologic research. In addition to better phenotyping of the
outcome or biomarker of interest (such as breaking FENO into
its components), this will likely require analyzing large popula-
tions, multiple exposures, integrating genetic and epigenetic
variation together in the context of environmental exposure,
or some combination thereof. While both studies have contrib-
uted to a further understanding of the pathogenesis of airway
inflammation, much more work lies ahead.
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Sarcoidosis Mortality

To the Editor:

Pointing out the limitations of a sarcoidosis mortality analysis
(1), Baughman and Lower emphasized the contribution of black
incidence to its computation (2). Thus, assuming prognostic
equality and a black:white (B:W) incidence of 12:1 (3), the com-
puted mortality in blacks would be 12 times that in whites. (The
white incidence and B:W ratios cited by the authors [1] are
marked outliers [4].) To circumvent this distortion, sarcoidosis
mortality should be replaced by the incidence-independent,
cumulative case-fatality rate—sarcoidosis deaths/100 cases—
which have shown no B:W distinction (5).

In contrasting the favorable, single-institution mortality (popu-
lation-based settings [PS]) with that experienced in tertiary clinics
(TCs), Baughman and Lower, citing our metaanalysis (5), pointed
out that the latter are “frequently populated by patients with more
advanced disease.” However, the plausible inference that unfavor-
able selection for TC referral accounts for the marked discrepancy
in sarcoidosis mortality in the two settings is insufficient to ac-
count for its magnitude. A systematic review (5) of sarcoidosis
mortality showed that the proportion of (prognostically highly
favorable) stage I was high and similar in both settings: TCs,
49% versus PS, 59%; that sarcoidosis mortality in TCs was 10
times that in PS and 7.5 times after correction for prognostically
unfavorable, advanced (III, IV) stage. The difference appeared to
be largely ascribable to a seven times greater propensity to
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