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Abstract

Cohort studies in air pollution epidemiology aim to establish associations between health 

outcomes and air pollution exposures. Statistical analysis of such associations is complicated by 

the multivariate nature of the pollutant exposure data as well as the spatial misalignment that arises 

from the fact that exposure data are collected at regulatory monitoring network locations distinct 

from cohort locations. We present a novel clustering approach for addressing this challenge. 

Specifically, we present a method that uses geographic covariate information to cluster multi-

pollutant observations and predict cluster membership at cohort locations. Our predictive k-means 

procedure identifies centers using a mixture model and is followed by multi-class spatial 

prediction. In simulations, we demonstrate that predictive k-means can reduce misclassification 

error by over 50% compared to ordinary k-means, with minimal loss in cluster representativeness. 

The improved prediction accuracy results in large gains of 30% or more in power for detecting 
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effect modification by cluster in a simulated health analysis. In an analysis of the NIEHS Sister 

Study cohort using predictive k-means, we find that the association between systolic blood 

pressure (SBP) and long-term fine particulate matter (PM2.5) exposure varies significantly 

between different clusters of PM2.5 component profiles. Our cluster-based analysis shows that for 

subjects assigned to a cluster located in the Midwestern U.S., a 10 μg/m3 difference in exposure is 

associated with 4.37 mmHg (95% CI, 2.38, 6.35) higher SBP.
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1. Introduction

Cohort studies provide a valuable platform for investigating health effects of long-term air 

pollution exposure by leveraging fine-scale spatial contrasts in exposure between subjects 

(Künzli et al., 2001; Dominici et al., 2003; Wilson et al., 2005). These studies facilitate a 

level of precision in exposure assignment that is not available in traditional analyses based 

upon aggregated data from administrative districts. However, cohort-specific exposure 

monitoring is rarely done at more than a small subset of subject locations for a short period 

of time, if at all (Cohen et al., 2009). Instead, pollutant concentrations measured at locations 

in regulatory monitoring networks, not at cohort locations, are used. This spatial 
misalignment between monitor and subject locations is often addressed through a two-stage 

modeling approach. First, an exposure prediction model is developed using the regulatory 

monitoring data, and predictions are made at cohort subject locations (e.g., Brauer et al., 

2003; Keller et al., 2015). These predicted exposures are then used in regression analyses, 

where their association with health outcomes is estimated (e.g., Adar et al., 2010).

Fine particulate matter (particles with aerodynamic diameter less than 2.5 μm; PM2.5) is a 

mixture of many components whose chemical composition varies widely due to sources, 

meteorology, and other factors (Bell et al., 2007). Variations in PM2.5 composition can 

modify the association between total PM2.5 mass and health effects (Brook et al., 2010; 

Franklin et al., 2008; Zanobetti et al., 2009), and analysis that distinguishes between 

different component profiles can improve our understanding of exposures’ health effects 

(Brauer, 2010).

Multi-pollutant exposures such as PM2.5 component concentrations present challenges to the 

two-stage modeling approach for addressing spatial misalignment. Multi-dimensional 

prediction requires ignoring correlation between pollutants or making strong assumptions 

about correlation structure that may be difficult to verify with limited monitoring data. 

Interpreting coefficient estimates for simultaneous exposures to multiple pollutants presents 

challenges of generalizability. Reducing the dimension of a multi-pollutant exposure prior to 

prediction provides an attractive means to address these challenges in prediction and 

interpretation. Dimension reduction methods simplify the complex structure of multi-

pollutant exposures by reducing them to a smaller set of low-dimensional observations that 

retain most of the characteristics of the original data but that can be predicted more reliably.
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Clustering methods are a class of dimension reduction methods that partition multi-pollutant 

observations into a pre-specified number of clusters. For multi-dimensional observations of 

PM2.5 components, this amounts to assigning each observation to a representative 

component profile. Oakes et al. (2014) highlight clustering as a promising approach for 

understanding multi-pollutant health effects. The ‘k-means’ algorithm is a popular clustering 

method that identifies clusters that minimize the distance between each observation and the 

center of its assigned cluster. Recent work has applied clustering methods (including k-

means) to time series of PM2.5 observations to find groups of days with similar component 

profiles in daily averages (Austin et al., 2012) and groups of locations with similar profiles 

in long-term averages (Austin et al., 2013). These clusters were used for analyzing 

exposures by city (Kioumourtzoglou et al., 2015), but have not been used for cohort subject 

locations. For cohort studies with spatially misaligned monitoring data, the lack of 

monitoring observations means we cannot directly cluster cohort locations using component 

profiles. One option is then to use k-means to cluster monitoring data and to subsequently 

predict cluster membership at subject locations. However, this can work poorly when 

membership in the clusters identified by k-means is not predictable using available 

geographic covariates. Modifying the k-means procedure to account for the covariates used 

in the subsequent prediction model provides a promising approach for efficient prediction of 

cluster membership at subject locations.

In this paper, we present a method for clustering multi-pollutant exposures in the context of 

cohort studies with spatially misaligned data and apply it to an analysis of PM2.5 component 

exposure in a national cohort. Section 2 presents the motivating analysis of total PM2.5 and 

systolic blood pressure in the Sister Study cohort. Section 3 describes an approach for 

clustering multi-pollutant data in a cohort study using a combination of existing methods. In 

Section 4, we introduce our new method for defining clusters that improves predictive 

accuracy at cohort locations. Section 5 details simulations illustrating this method, and in 

Section 6 we apply the method to the Sister Study cohort. We conclude in Section 7 with a 

discussion.

2. PM2.5 and SBP in the Sister Study

The National Institute of Environmental Health Sciences (NIEHS) Sister Study cohort 

comprises 50,884 women with a sister with breast cancer from across the United States 

enrolled between 2003 and 2009. In a cross-sectional analysis of the Sister Study cohort, 

Chan et al. (2015) found that a difference of 10μg/m3 in annual average PM2.5 was 

associated with 1.4 mmHg higher systolic blood pressure (SBP) [95% CI: 0.6, 2.3; p < 

0.001]. Chan et al. (2015) used predictions of 2006 annual average ambient PM2.5 exposures 

from a universal kriging (UK) model fit to monitoring data from the EPA Air Quality 

System (AQS) (Sampson et al., 2013). The UK model has two components: a regression on 

geographic covariates for the mean combined with spatial smoothing via a Gaussian 

Process. The geographic covariates included measures of land-cover, road network 

characteristics, vegetative index, population density, and distance to various geographic 

features, which Sampson et al. (2013) reduced in dimension using partial least squares. An 

exponential covariance structure was used for smoothing in the Gaussian Process.
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During baseline home visits, blood pressure measurements were taken, along with 

anthropometric measurements and phlebotomy. Residential history of subjects is available 

for assigning long-term exposures based upon participant locations. In their health model, 

Chan et al. (2015) performed linear regression of SBP on PM2.5, adjusting for age, race, SES 

status (household income, education, marital status, working more than 20 hours per week 

outside the home, perceived stress score, and SES Z-score), rural-urban continuum code, 

geographic location (via spatial regression splines), cardiovascular risk factors (BMI, waist-

hip-ratio, smoking status, alcohol use, history of diabetes and hypercholesterolemia), and 

blood pressure medication use.

In order to better understand how the observed PM2.5 effect varies by PM2.5 composition, 

we will re-analyze the Sister Study cohort in Section 6 to investigate whether the association 

between PM2.5 and SBP is modified by clustering subjects using component profiles of 

PM2.5.

3. Clustering Spatially Misaligned Data

In this section we consider clustering PM2.5 component observations into K component 

profiles, in the presence of spatial misalignment between the monitor and subject locations, 

by combining existing methods for unsupervised clustering and spatial prediction.

Ideally we would like to observe the matrix  of annual average mass fractions at n 
cohort locations for p components of PM2.5, which we refer to as component species. 

However, we can only observe the matrix  of annual average mass fractions at 

n* AQS monitoring locations. (Throughout this paper we use an asterisk to denote values at 

monitor locations, while values without an asterisk correspond to cohort locations). 

Geographic covariates such as distance to primary roadways and land use categorizations are 

available at both monitoring and cohort locations. Let  and  be 

matrices containing values of d geographic covariates (which may include spatial splines) at 

monitoring and cohort locations, respectively. Let  denote an assignment matrix 

for monitoring locations, with each row having a 1 in a single entry and zeros in all other 

entries. If , observation i is assigned to cluster k. Denote by 𝓤 the set of matrices of 

this form.

For a two-stage exposure-health analysis, we first cluster the mass fraction observations to 

reduce dimension and identify representative component profiles. Then only cluster labels 

(assignments) need to be predicted at cohort locations, not full exposure vectors. The 

procedure can be broken down into the following steps:

Step 1: Cluster monitoring data

a. Create cluster centers M = [μ1 ⋯ μK] from the monitoring data X*.

b. Make cluster assignments U* at monitor locations s∗ by assigning each location 

to the cluster with the closest center.

Step 2: Predict cluster membership
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a. Train a classification model for predicting cluster assignments using covariates 

R* and cluster assignments U* at monitoring locations.

b. Predict cluster assignments  at cohort locations using this classification model 

and covariates R.

Cluster assignments from Step 2(b) can be used as effect modifiers of the association 

between health outcomes and total PM2.5 mass, which we assume has already been 

predicted at subject locations. By separating the procedure into two steps (clustering and 

prediction), we allow for flexibility in the choice of a prediction model, recognizing that 

different methods may perform better in certain scenarios.

In the following subsections we describe the procedure in more detail. In Section 4 we 

present an alternative to k-means clustering for Step 1(a), which leads to improved 

performance in Step 2 and increased power to detect effect modification in a health analysis.

3.1. Step 1: Clustering Monitoring Data

The widely-used k-means algorithm provides a straightforward way to simultaneously 

define cluster centers for the mass fraction data (Step 1(a)) and make cluster assignments at 

monitor locations (Step 1(b)). The k-means solution is a reduction, indexed by the 

assignment matrix U∗, of multivariate data (X∗) into K clusters, each identified by its center 

(or representative vector) μk, that minimizes the within-cluster Sum-of-Squares (wSS∗):

(1)

where M = [μ1 ⋯ μK]. The center for the kth cluster is the mean of the vectors assigned to 

that cluster: , where  is the number of observations in the 

kth cluster. Implementations of the k-means algorithm, often that of Hartigan and Wong 

(1979), exist in many statistical packages, which makes this approach easy to implement 

using existing software.

3.2. Step 2: Predicting Cluster Membership

The classification model chosen for Step 2 can be any multi-class prediction method. Here 

we focus on multinomial logistic regression although we also consider other methods such 

as support vector machines (SVMs) in the simulations and particulate matter analysis.

For multinomial logistic regression, let Zi ∈ {1, …, K} denote the assignment of observation 

i to one of K classes (here, clusters from Step 1). The multinomial logistic regression model 

postulates that
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(2)

where Γ = (γ1, …, γK−1) is a matrix of regression coefficients and  is a row of R. The 

system (2) defines a generalized linear model, and maximum likelihood estimates of Γ can 

be computed using a standard iteratively-reweighted least squares algorithm. Rewriting (2) 

as the softmax function

(3)

and plugging in the maximum likelihood estimates  yields classification 

probabilities for each observation. The matrix  of predicted cluster membership is created 

by assigning each observation to the cluster with the largest classification probability:

(4)

3.3. Evaluating Predictive Error

The performance of the clustering procedure can be evaluated by the mean-squared 

prediction error (MSPE) across cohort locations, , which gives 

the sum of squared distances between observations X and the centers of the clusters to which 

each observation is predicted to belong . MSPE can be broken down into two 

components: representativeness of the cluster centers and accuracy of predicted cluster 

membership.

Similar to representativeness at monitor locations, which is quantified by wSS∗ as defined in 

(1), cluster representativeness at cohort locations is computed as . 

The matrix  contains assignment to the nearest cluster 

(which may not be the cluster to which a location was predicted to belong).

The accuracy of predicted cluster membership is quantified using two metrics, classification 

accuracy (Acc) and mean-squared misclassification error (MSME). Classification accuracy 

is the proportion of locations correctly classified: . The 

straightforward interpretation of Acc makes it an attractive metric. However, Acc does not 
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account for the magnitude of misclassification. MSME provides this information, by 

averaging the squared distances between the closest cluster centers UM⊤ and the predicted 

cluster centers . That is, .

All of these measures require knowing the (typically unavailable) cohort observations X, but 

in applications can be estimated via cross-validation. Because wSS and MSME are on the 

same scale, we can directly compare them to assess the tradeoff between representativeness 

and prediction accuracy, analogous to trading off between bias and variance to achieve lower 

mean squared error in parameter estimation.

4. Covariate-adaptive Clustering of Spatially Misaligned Data

The k-means algorithm clusters multi-pollutant observations at monitored locations, but 

does not account for the need to predict cluster membership at cohort locations (Step 2), 

which is required for spatially misaligned data. There is no reason to expect that 

membership in clusters identified by k-means using pollutant observations at monitoring 

locations will be accurately predicted at subject locations using geographic covariates. If 

cluster membership cannot be predicted well at subject locations, then the identified clusters 

are of little use for epidemiological analysis.

To address this problem, we propose incorporating the geographic covariates that will be 

used for predicting cluster membership into the procedure for defining cluster centers. We 

first use a soft-assignment procedure, described in Section 4.1, that yields cluster centers. 

We then make hard assignments to clusters by minimizing the distance between observations 

and their assigned cluster center, in the same manner as k-means. We refer to this clustering 

procedure as predictive k-means.

4.1. Defining Cluster Centers for Predictive k-means

Let  be a latent random variable that takes on values k = 1,…, K and represents cluster 

membership. We relate this variable to the covariates  via a multinomial logistic regression 

model. Let  denote , with the latter defined as the softmax function 

in (3). Conditional on the value of , assume that the observation  is normally distributed 

as . This model implies the following log-likelihood function:

(5)

The log-likelihood in (5) corresponds to a one-level mixture of experts problem (Jordan and 

Jacobs, 1994). Mixture of experts models use a set classification models (the ‘experts’) that 

are combined via a ‘gating’ network that uses soft assignment to select between experts. By 

incorporating hierarchical levels of gating networks, mixture of experts models can be quite 

flexible. Following the approach of Jordan and Jacobs (1994), we solve (5) using the EM 
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algorithm with iterative updates to , , and . Details of the algorithm are provided in the 

Supplemental Material (Keller et al., 2017).

Using this approach, the cluster centers μk (columns of M) depend upon the covariates R∗ 

via a multinomial logistic regression model for cluster assignment. The incorporation of 

prediction covariates into the cluster centers improves the accuracy of predicting cluster 

membership at cohort locations.

The parameter estimates  provide ‘working’ cluster assignments for monitor locations. This 

suggests an alternative approach for prediction in which the cluster membership at cohort 

locations is predicted using  instead of building a separate classification model 

(Step 2). Such an approach, however, does not use optimal assignments (conditional on 

identified cluster centers) at monitor locations. In the simulations and PM2.5 analysis, we 

compare this approach to multinomial logistic regression and classification using an SVM.

4.2. The Role of the Variance

The parameter σ2 implicitly controls the tradeoff between representativeness and predictive 

accuracy. As σ2 → 0, the optimization problem of maximizing the log-likelihood (5) 

reduces to the k-means optimization problem, assuming all qk are non-zero (Bishop, 2006, 

Chap. 9). For predictive k-means, we restrict σ2 to be positive, but small values of σ2 allow 

for increased representativeness (smaller wSS) while larger values of σ2 allow for improved 

predictive accuracy (smaller MSPE and MSME) at the cost of decreasing representativeness.

Here we estimate σ2 using maximum likelihood, as described in Section 4.1. An alternative 

approach is to select σ2 using cross-validation (CV). The predictive k-means procedure 

(selection of cluster centers, assignment of monitors to clusters, fitting of classification 

model, and prediction of cluster membership) could be repeated on CV data sets for various 

fixed values of σ2, and then the value of σ2 that yielded the smallest cross-validated value of 

MSPE selected for use in the primary analysis. However, this can be computationally 

impractical in situations where CV is already being used for model selection. For that 

reason, we do not select σ2 by CV in the analysis of PM2.5 components in Section 6, but we 

provide an example of this approach in the simulations.

5. Simulations

We conducted two sets of simulations to demonstrate the clustering approaches presented 

here. The first set illustrates the differences between the clusters from predictive k-means 

and standard k-means procedures in a two-dimensional setting that allows for easy 

visualization of the centers. The second set demonstrates the methods in a higher-

dimensional setting and includes a simulated health analysis to elucidate benefits in power 

achieved by using clusters from predictive k-means.

5.1. Two-dimensional Exposures

For the first simulation set, we consider two-dimensional exposures (X1, X2) and three 

independent covariates (R1, R2, and W). Only R1 ~ N(0, 1) and R2 ~ N(0, 1) are observed, 

while W ~ Bernoulli(0.5) is unobserved. The covariates determine membership in one of 
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four underlying clusters (denoted by Z ∈ {1, 2, 3, 4}), constructed so that two clusters 

cannot be distinguished using the observed covariates:

Conditional on cluster membership, the exposures X1 and X2 are normally distributed: (X1|Z 
= k) ~ N(μk1, 1) and (X2|Z = k) ~N(μk2, 1), where μ1 = (−4, 1), μ2 = (−4, −1), μ3 = (4, 1), 

and μ4 = (4, −1). By design, observations from clusters 1 and 2 cannot be distinguished 

using the observed covariates available for prediction.

For a set of 1000 replications, each with a sample size of n = 1000, cluster centers were 

identified using the k-means and predictive k-means procedures described in Sections 3 and 

4. The iterative optimization algorithms for both methods are not guaranteed to find global 

optima (Jordan and Jacobs, 1994), so 50 different starting values were used for optimization. 

For each replication, a second sample of 1000 observations was drawn from the same data 

generating mechanism and underlying cluster membership at these test locations predicted 

using multinomial logistic regression with covariates R1 and R2. This simulation was done 

twice, once identifying K = 3 clusters and once identifying K = 4 clusters.

When K = 3, we are selecting a number of clusters fewer than the number in the data 

generating model. This scenario is plausible in applications when the underlying data 

generating mechanism is not fully known. We see in Figure 1a that k-means correctly 

identified two cluster centers (either μ1 and μ2 or μ3 and μ4) and would estimate the center 

of the third cluster as approximately (4, 0) or (−4, 0), respectively. Because k-means does 

not incorporate R1 or R2 into the cluster centers, the estimated centers are evenly split 

between these two possibilities. On the other hand, Figure 1b shows that the predictive k-

means procedure estimated centers in approximately the same location for all replications: 

(4, 1), (4, −1), and (−4, 0). The first two clusters correspond to μ3 and μ4, while the third 

center estimated by predictive k-means is directly between μ1 and μ2, which are 

indistinguishable by the prediction covariates R1 and R2.

Measures of representativeness and predictive accuracy are reported in Table B.1 of the 

Supplemental Material (Keller et al., 2017). The classification accuracy of k-means is 0.83, 

and predictive k-means improves upon this by eight percentage points (0.91). While wSS is 

less than 1% higher for predictive k-means than for regular k-means, misclassification error 

(MSME) drops by more than 50% (0.54 for predictive k-means compared to 1.13 for regular 

k-means).

When K = 4, we are selecting the same number of clusters as in the data generating 

mechanism. In this scenario, predictive k-means also provides measurable improvement in 

predictive accuracy, as MSME drops by almost 25% (from 2.02 to 1.53) with little loss in 

representativeness (wSS increases by 2%). Predictive k-means achieves this tradeoff by 

selecting centers corresponding to clusters 1 and 2 (Figure 1d) that are closer to one another 
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than the centers identified by k-means (Figure 1c). This reduces prediction error when 

cluster membership is incorrectly predicted.

These simulations demonstrate how when informative covariates (R1, R2) are allowed to 

influence cluster centers, we can get substantial improvements in predictive accuracy with 

little loss in representativeness. This simulation was repeated using uninformative covariates 

(i.i.d. N(0, 1) random variables independent of all other covariates and the outcome) in the 

predictive k-means procedure and to predict cluster membership in the test set. The results 

from this simulation, also presented in Table B.1 of the Supplemental Material (Keller et al., 

2017), show that predictive k-means performs essentially the same as k-means when the 

covariates do not provide useful information.

5.2. Multi-pollutant Spatial Exposures

For the second set of simulations, we simulated long-term average observations for p = 15 

pollutants at 7,333 AQS monitor locations throughout the contiguous United States.

We first assigned each location to belong to one of three latent spatial clusters and one of 

three latent non-spatial clusters, with membership denoted by Ai ∊ {1, 2, 3} and Bi ∊ {1, 2, 

3}, respectively. To assign Ai, a correlated spatial surface was simulated according to the 

model , where  and  are normalized versions of the Lambert 

coordinates  and . The matrix V has exponential covariance structure: 

. This surface was partitioned into tertiles to 

give the values Ai. Membership in the non-spatial clusters (Bi) was assigned using i.i.d. 

draws from a uniform distribution.

Conditional on latent cluster membership, the pollutant observations xi at each location were 

simulated from a log-normal distribution:

for j = 1, …, p. The component means E[xij|Ai = k, Bi = k′] = 4+ajk+bjk are combinations of 

coefficients determined from spatial and non-spatial cluster memberships. Each ajk (for j = 

1, …, p and k = 1, …, K) is an independent observation from the normal distribution 

. Similarly, . We considered two settings for : (1, 2), which 

induces greater separation between clusters in the non-spatial partition than between clusters 

in the spatial partition, and (2.5, 0.5), which results in greater separation between clusters in 

the spatial partition. In the latter scenario we expect both k-means and predictive k-means to 

find similar cluster centers, since the greatest between-cluster separation is among clusters 

that depend upon spatial covariates. The component concentrations were converted to mass 

fractions by dividing by total particulate matter, i.e. , where .

For each of 500 replications, 200 locations were randomly selected as ‘monitors’ and the 

remaining locations served as ‘cohort’ locations. Cluster centers were estimated from the 
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mass fractions  ‘monitor’ locations via regular k-means and predictive k-means, using a 

matrix of thinplate regression splines (TPRS) with 15 degrees of freedom (df) as R*. We 

present results for estimating the mixture model variance parameter σ2 via maximum-

likelihood and via CV. Cluster membership at ‘cohort’ locations was predicted using 

multinomial logistic regression (MLR), an SVM, and the working coefficients from the 

mixture of experts model.

Predicted cluster assignments were then used as interaction variables in a linear regression 

analysis of the association between SBP and PM. Blood pressure measurements for each 

‘cohort’ location were simulated as , where . The 

values of βj were chosen so that the variability in the SBP–PM association was the same 

among the latent spatial and non-spatial clusters. For each set of predicted cluster 

assignments , we fit the linear model 

. A Wald 

test of the null hypothesis H0: β12 = β13 = 0 was performed to determine whether there were 

between-cluster differences in the association between SBP and PM.

When , overall prediction error was lowest for predictive k-means with σ2 

selected by CV and MLR used as the classifier (MSPE = 15.03). Misclassification error 

(MSME) was more than 50% smaller for predictive k-means compared to regular k-means 

(1.72 compared to 4.18) and classification accuracy was 15 percentage points higher (see 

Table 1). The clusters identified by predictive k-means were only slightly less representative 

(wSS of 13.57 and 13.69) than those identified by k-means (13.38).

The power for detecting a between-cluster difference (at the α = 0.05 level) in health effect 

is plotted in Figure 2 for varying values of σSBP. In the setting , all three 

prediction methods gave similar results for predictive k-means with σ2 selected by 

maximum likelihood, while MLR performed best for clusters from regular k-means and 

predictive k-means with σ2 chosen by CV. The highest power was obtained by predictive k-

means with σ2 selected by CV (0.76 at σSBP = 4), followed by predictive k-means with σ2 

chosen by maximum likelihood (0.60) and regular k-means (0.42). When true (oracle) 

cluster assignments were used, the power from regular k-means clusters (0.90) exceeded that 

from predictive k-means clusters with σ2 chosen by maximum likelihood (0.78). This 

demonstrates that the benefits in power for predictive k-means are due to the improved 

predictive accuracy, despite the slight loss in representativeness.

When , representativeness was essentially the same for both methods 

(12.97 for k-means, 12.90 for predictive k-means). Although overall prediction error was 

only slightly smaller for predictive k-means, prediction accuracy was 4 percentage points 

higher and misclassification error approximately 25% lower for predictive k-means (1.46 

and 1.37 versus 1.92). The power for detecting effect modification was essentially the same 

for all clustering and classification methods, with the exception of low power when the SVM 

approach and the mixture of experts working coefficients were used for predictive k-means 
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with σ2 chosen by CV (see Figure 2). These results show that predictive k-means and k-

means have comparable performance in settings where they are identifying similar cluster 

centers.

6. PM2.5 Components and NIEHS Sister Study

To expand upon the analysis of Chan et al. (2015), we investigated the relationship between 

SBP and long-term exposure to PM2.5, grouping subjects by predicted membership in 

clusters with different component profiles. Our analysis included 47,206 cohort subjects 

with complete covariate information.

We obtained data for 130 AQS monitoring locations that in 2010 measured mass 

concentration for twenty-two PM2.5 component species (elemental carbon [EC], organic 

carbon [OC], , , Al, As, Br, Cd, Ca, Co, Cr, Cu, Fe, K, Mn, Na, S, Si, Se, Ni, V, 

and Zn) in addition to measurements of PM2.5 mass made in accordance with Federal 

Reference Methods. Annual averages were computed by averaging all available daily 

observations from each monitoring location having at least 41 measurements in the calendar 

year with a maximum gap of 45 days between observations. We converted mass 

concentrations to mass fractions by dividing the annual average of each species at a 

monitoring location by the annual average PM2.5 concentration at that location. To make the 

distribution of mass fractions within each component more symmetric, we log-transformed 

the mass fractions.

We applied the predictive k-means method to this monitoring data, selecting the number of 

clusters and the covariates by 10-fold cross-validation. Because of the limited number of 

observations (n* = 130), we only investigated K ≤ 10. Using a matrix of more than 200 

geographic covariates at monitor locations, we computed the first three scores from a 

principal component analysis (PCA). We considered models with either 2 or 3 PCA scores 

and TPRS with either 5 or 10 df, with the same covariates used for determining cluster 

centers and in the classification model. The smallest cross-validation MSPE was for the 

model with K = 8 clusters and a combination of 2 PCA scores and 10 df TPRS as the 

covariates. Table 2 provides CV performance metrics for different prediction methods and 

Table C.1 in the Supplemental Material (Keller et al., 2017) provides metrics for other 

choices of K. A support vector machine (SVM) was used as the classification model, 

because it resulted in better cross-validated predictive accuracy (MSPE = 18.33) than 

multinomial logistic regression (21.28) or using the working coefficients from the mixture-

of-experts model (24.33). For comparison, we applied regular k-means to the component 

data using the same prediction covariates. Cross-validated MSME was slightly worse for 

regular k-means (18.95), and MSME was notably higher (7.06) compared to predictive k-

means (5.97).

The cluster centers identified by predictive k-means are plotted in Figure 3. Many of the 

monitor locations in the Midwest and Mid-Atlantic regions were assigned to Cluster 1 (n* = 

32), which has above-average mass fractions of  and , suggestive of high ambient 

ammonia levels from agricultural emissions favoring particulate over gaseous  (U.S. 

EPA, 2003). Cluster 2 (n* = 26) included monitors from New England, the south-eastern 
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coast, and parts of the upper Midwest, and had higher fractions of Cd, V and Ni, which are 

associated with ship emissions (Thurston et al., 2013) and residual oil burning in New York 

City (Peltier et al., 2009). Monitors in the Southeast were mostly assigned to Cluster 3 (n* = 

27) and had a component profile notable for its relatively low fraction of particulate nitrate 

( ) relative to sulfate ( ), a pattern that has previously been attributed to high 

amounts of acidic sulfate and low levels of ammonia in the region (Blanchard and Hidy, 

2003). The California monitors were grouped into Cluster 4 (n∗ = 8), which also had low 

sulfur fractions and large fractions of sodium and nitrate particles, likely from marine 

aerosols and agricultural emissions, respectively. Cluster 5 (n∗ = 8) included monitors from 

the Pacific Northwest and Southwest, with high fractions of almost all pollutants except 

sulfate. Cluster 6 (n∗ = 20) had high fractions of Fe, Zn, and Mn, which are indicative of 

emissions from steel furnaces and other metal processing (Thurston et al., 2013), and the 

monitors assigned to this cluster were all near industrial plants of some kind. Cluster 7 (n∗ = 

8) had high fractions of the crustal elements Si, Ca, K and Al, indicative of the surface soil 

composition in the Western U.S. (Shacklette and Boerngen, 1984). The eigth cluster was a 

single site outside of Pittsburgh, PA, which has been previously noted for non-attainment of 

air quality standards due to nearby industrial sources (U.S. EPA, 2006).

Predicted assignments to the predictive k-means clusters at Sister Study cohort locations are 

mapped in Figure 4b. Predicted membership at cohort locations tended to follow the same 

general spatial patterns as monitor assignments, with some differences in the Mountain West 

and Mid-Atlantic regions. A majority of subjects were predicted to belong to Clusters 1 (n = 

12, 828), Cluster 2 (n = 13, 926), or Cluster 3 (n = 9, 915).

Using a linear model for SBP with the same confounders as Chan et al. (2015) (see Section 

2), we estimated the association between SBP and long-term PM2.5 exposure, stratifying 

exposure by cluster. We used predictions of 2010 annual average PM2.5 concentrations from 

a universal kriging model following the same approach as Sampson et al. (2013). The 

association coefficient estimates are provided in Table 3. The estimated difference in SBP 

associated with a 10 μg/m3 difference in PM2.5 overall (without clustering) was 1.81 mmHg, 

which is higher than, but still contained within the confidence interval for, the estimate 

obtained by Chan et al. (2015) for 2006 annual average exposure. When estimating cluster-

specific associations, Cluster 1 had a much stronger association (4.37 mmHg higher SBP for 

each 10 μg/m3 difference in PM2.5, 95% Confidence Interval [CI]: 2.38, 6.35) than the 

estimate that pools all subjects together. The point estimates for Clusters 3 and 4 were also 

higher (2.91 and 3.51, respectively) than the unclustered estimate. Although the point 

estimates for Clusters 5 and 6 were quite large (3.07 and 5.60, respectively), their confidence 

interval were quite large and include 0. In Clusters 2 and 7, there was no evidence of an 

association between PM2.5 and SBP. A Wald test for effect modification showed that the 

differences between clusters were statistically significant (p = 0.020). As a sensitivity 

analysis, we explored adjusting for finer scale spatial variation and allowing the coefficients 

for the covariates in the health model to vary by PM2.5 cluster assignment, however this did 

not substantively change the results (data not shown).

For comparison, we used regular k-means to cluster the PM2.5 component data and predicted 

cluster membership at cohort locations using the same prediction covariates. The clustering 
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results and a table of association estimates are provided in Supplemental Material Section D 

(Keller et al., 2017). The cluster centers (Figure E.1) are quite similar to those from 

predictive k-means, and the map of k-means cluster assignments at subject locations (Figure 

E.2) looks visually similar to that from predictive k-means. However, there are some notable 

differences in the estimated health effects. The estimate for k-means Cluster 1 is attenuated 

by more than 30% compared to the predictive k-means analysis. Only 267 subjects were 

predicted to belong to k-means Cluster 6 (compared to 1,209 assigned to predictive k-means 

Cluster 6), resulting in a highly variable estimate. For Cluster 3, the k-means analysis 

estimates an attenuated effect, while the predictive k-means cluster yields a similar, but 

larger and statistically significant association.

As a further sensitivity analysis, Section C of the Supplemental Material (Keller et al., 2017) 

presents results for analysis for different numbers of clusters. In general, we see that under 

other choices of K, the strongest significant health effects are still estimated in subjects 

residing in the Midwest, South, and California.

7. Discussion

We have presented a novel approach for clustering multivariate environmental exposures and 

predicting cluster assignments in cohort studies of health outcomes. The motivating 

application is air pollution epidemiology, where multi-pollutant exposure data are available 

from regulatory monitoring networks, but these monitors do not measure exposure at cohort 

locations. We first demonstrated how dimension reduction could be performed through the 

existing method of k-means clustering followed by spatial prediction. However, the clusters 

identified by k-means may not be predictable at subject locations, which makes them of 

limited use for epidemiological analysis. To address this, we introduced the predictive k-

means method, which incorporates prediction covariates into the estimation of cluster 

centers.

Through simulations, we demonstrate that clusters from predictive k-means provide 

substantial gains in prediction accuracy compared to the k-means approach. The simulations 

did not provide strong evidence to favor one of the three classification approaches compared 

(multinomial logistic regression, working coefficients from the mixture of experts model, 

and an SVM), however the SVM clearly outperformed the alternatives in the analysis of the 

PM2.5 component data. In addition to improved predictive accuracy, the simulations 

demonstrated that predictive k-means clusters yield higher power for detecting effect 

modification by cluster membership.

The mixture model (4.1) that is the foundation of the predictive k-means method includes 

several assumptions about the data that are not required to hold for the method to show 

benefit. In particular, the model assumes multivariate normality, independence between 

pollutants, and constant variance across clusters. However, we emphasize that we employ 

this mixture model as a tool for constructing cluster centers for analysis, and do not assume 

that this parametric mixture model can fully represent the complicated processes that 

generate the particular matter components under study. Furthermore, we violated each of 

these assumptions in the design of Simulation 2 and still demonstrated benefit from 
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predictive k-means. A potential extension of predictive k-means for future work is to allow 

the cluster variance parameter (σ2) to vary between clusters rather than assuming a constant 

value for the entire dataset.

As with any cluster analysis, the choice of the number of clusters is important. In our 

analysis of the PM2.5 component data, we chose K = 8 based upon a cross-validation 

analysis. We restricted the candidate choices to K ≤ 10 due to the need to have enough 

monitors assigned to each cluster so that a prediction model could be developed. The results 

of Simulation 1 suggest that the benefits of predictive k-means remain even when the chosen 

number of clusters does not match the underlying data generation mechanism.

A challenge for the predictive k-means approach is adequately accounting for uncertainty in 

cluster assignments in the health model. The health estimates presented here condition on 

cluster assignment and do not incorporate further uncertainty. When multinomial logistic 

regression is used as the prediction method, cluster assignment probabilities are available for 

propagation, conditional on cluster centers. This could be approached as a categorical 

extension of the multi-pollutant measurement error approaches of Bergen and Szpiro (2015). 

But when an SVM is used for classification, as in the data analysis here, no probabilistic 

uncertainties for the assignment are available. Accounting for uncertainty in predicted 

cluster assignment at the same time as determining the cluster centers is more difficult. Even 

for fixed K, choosing different covariates for the predictive k-means model can result in 

different clusters, which makes interpretation of the clusters across models unclear. A 

direction for addressing this problem is the post-selection inference approaches of Berk et al. 

(2010) and Lee et al. (2016).

We found a significant association in the NIEHS Sister Study between SBP and 2010 long-

term ambient PM2.5 exposure that was higher than previous estimates based upon 2006 

exposure when ignoring PM2.5 composition (Chan et al., 2015). Although all baseline 

measurements on Sister Study participants were complete prior to 2010, we used 2010 

measurements due to changes in the collection of PM2.5 speciation data during prior years. 

Using clusters identified by predictive k-means, we found that this association varied 

significantly by PM2.5 composition and was strongest among subjects predicted to belong to 

Clusters 1 and 3, which included most subjects living in the Midwest and Southeast. These 

results are consistent with the findings of Thurston et al. (2013), who found that PM2.5 

exposure dominated by secondary aerosols were significantly associated with mortality. The 

strength of the estimated effects in clusters with component profiles notable for secondary 

aerosols may be due in part to the available speciation data, since the relatively small 

number of monitors means that the component data, and the clusters derived from them, 

capture regional variation better than small scale (within-city and near-source) variability.

By incorporating covariate information into cluster centers, the predictive k-means 

procedure performs dimension reduction appropriate for spatially-misaligned data. This 

method provides a useful tool for understanding how differences in exposure composition 

are associated with health effects.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Cluster centers from Simulation 1. Figures (a) and (c) are the centers identified by regular k-

means when K = 3 and K = 4, respectively. Figures (b) and (d) are the centers identified by 

predictive k-means when K = 3 and K = 4, respectively. Each point in the clouds is a cluster 

center from a single replication; the outlined diamonds denote the latent cluster centers.
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Fig 2. 
Power for detecting a between-cluster difference in SBP-PM association from Simulation 2. 

Clusters identified by k-means (KM) and predictive k-means with σ2 chosen by maximum 

likelihood (PKM-MaxLik) or cross-validation (PKM-CV). Cluster membership was 

predicted using multinomial logistic regression (MLR), SVM, working coefficients from the 

mixture of experts model (ME-Working), or oracle assignment using true exposure values. 

The rows correspond to  and .
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Fig 3. 
Cluster centers identified by predictive k-means in the 2010 annual average PM2.5 

component data. Species mass fractions were log transformed and then standardized, so 

values shown represent relative composition. Components are ordered by decreasing mass 

concentration.
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Fig 4. 
(a) Assigned predictive k-means cluster membership at AQS monitor locations. (b) Predicted 

cluster membership at Sister Study cohort locations (jittered to protect confidentiality).
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Table 3

Estimated difference in SBP (in mmHg) associated with a 10 μg/m3 difference in annual ambient PM2.5 

exposure. Cohort is partitioned by membership in clusters from predictive k-means.

Exposure n Est. 95% CI p-value

Overall PM2.5 47,206 1.81 (0.74, 2.88) <0.001

PM2.5 by Cluster 0.015a

 Cluster 1 12,828 4.37 (2.38, 6.35) 0.000016

 Cluster 2 13,926 0.77 (−1.19, 2.74) 0.44

 Cluster 3 9,915 2.91 (0.19, 5.62) 0.036

 Cluster 4 4,033 3.51 (0.68, 6.34) 0.015

 Cluster 5 4,057 3.07 (−1.07, 7.21) 0.15

 Cluster 6 1,029 5.60 (−0.71, 11.9) 0.08

 Cluster 7 1,418 −2.11 (−6.55, 2.33) 0.35

a
p-value for a Wald test for a difference between cluster coefficient estimates.
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