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Abstract

CBP-93872 suppresses maintenance of DNA double-stranded break-induced G2 check-

point, by inhibiting the pathway between ataxia-telangiectasia mutated (ATM) and ATM-

and Rad3-related (ATR) activation. To examine the potential use of CBP-93872 for clinical

applications, we analyzed the synergistic effects of platinum-containing drugs, oxaliplatin

and cisplatin, pyrimidine antimetabolites, gemcitabine and 5-fluorouracil (5-FU), in com-

bination with CBP-93872, on cell lethality in colorectal and pancreatic cancer cell lines.

Treatment with CBP-93872 significantly increased cancer cell sensitivities to various che-

motherapeutic agents tested through suppression of checkpoint activation. Our results thus

reveal that combination treatment of CBP-93872 with known chemotherapeutic agents

inhibits phosphorylation of ATR and Chk1, and induces cell death.

Introduction

All mammalian cells are continuously exposed to endogenous and exogenous DNA damaging

stresses, such as ultraviolet (UV) rays, oxidative stress and ionizing radiation (IR). To maintain

genomic stability against these stresses, cells activate a global signaling network, termed DNA

damage response (DDR); which in turn leads to cell cycle arrest, apoptosis, and premature

senescence [1]. Upon DNA damage, abnormal DNA structures are rapidly sensed, and DNA

damage signals are transmitted to downstream effectors via the phosphatidylinositol 3-kinase-

related protein kinases (PIKKs) ATM (ataxia telangiectasia mutated) and ATR (ATM and

Rad3 related). These kinases phosphorylate multiple key regulators to mediate various cellular

responses [2].

One such critical downstream regulator is Chk1 (checkpoint kinase 1). Following DNA

damage and stalled DNA replication, Chk1 is phosphorylated at S317 and S345, mainly by

ATR. Furthermore, subcellular localization of Chk1 is altered upon phosphorylation, allowing
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Chk1-mediated phosphorylation of important cell cycle modulators including p53 and Cdc25

phosphatases. This triggers multiple downstream events such as cell cycle arrest, and transcrip-

tional repression [3–5]. Chk1 is thus essential for the S-phase, and G2, DNA damage check-

points [6–8]; and also DNA replication checkpoints [9, 10].

Transient cell cycle arrest after DNA damage is mediated by two distinct signaling path-

ways; one is the p53-p21-dependent G1 checkpoint [11], and the other is the Chk1-Cdc25-de-

pendent G2 checkpoint [12, 13]. Given that most cancer cells lack functional p53, and are thus

defective in the G1 checkpoint, effective DNA repair of these cancer cells and their survival

depend on the G2 checkpoint. G2 checkpoint inhibitors, therefore, might be used as chemo-

sensitizers of known anticancer therapies for p53-deficient cancer cells [14–16].

Indeed, platinum-based chemotherapy is now widely used for treatment of various cancers

[17]. Colon and pancreatic cancers are leading causes of cancer-related death worldwide. Che-

motherapeutic agents such as oxaliplatin and gemcitabine are currently used for colon or pan-

creatic cancer treatments, respectively. It is, however, widely known that cancer cells

eventually acquire chemoresistance against these drugs [18–20]. To overcome such resistances,

combinatorial therapy- using two or more chemotherapeutic agents together, has become a

common strategy; to optimize efficacy of cancer treatment, and also reduce toxicity toward

normal cells.

Combinatorial therapy of platinum-based drugs with other chemicals are now being com-

monly employed for treatment of various types of cancers [21]. One such chemical is FOLFIR-

INOX (folinic acid, 5-fluorouracil, irinotecan, and oxaliplatin), which improves overall

survival in metastatic pancreatic cancer [22]. Indeed, beneficial roles of FOLFIRINOX treat-

ment in combination with bevacizumab, has been reported in metastatic colorectal cancers

[23]. Similarly, administration of platinum-drugs in combination with Nivolumab, also

improved survival in advanced Non-Small-Cell Lung Cancers [24]. Despite such improve-

ments, however, it is also clear that development of more effective therapeutic strategies is

required to enhance clinical efficacy of existing chemotherapeutic agents.

Using p53-deficient cell based screening, we previously identified CBP-93872 as a promis-

ing G2 checkpoint inhibitor [25]. CBP-93872 specifically suppresses the maintenance, but not

initiation, of DNA double strand break (DSB)-induced G2 checkpoint; by inhibiting Nbs1-de-

pendent activation of ATR [26]. To evaluate the potential use of this drug for clinical applica-

tion, we explored the synergistic effects of various anticancer agents in combination with CBP-

93872, on cell lethality in p53-deficient colorectal cancer (HT29), and pancreatic cancer cells

(Panc-1).

Results

Combined treatment of CBP-93872 with oxaliplatin, cisplatin, 5-FU or

gemcitabine effectively suppresses cell growth

To examine the synergistic effects of CBP-93872 with various chemotherapeutic agents on cell

death, we first determined the minimum concentrations of CBP-93872 to suppress HT29 or

Panc-1 cell proliferation, using the WST-1 assay. We found that CBP-93872 suppressed cell

proliferation, at concentrations greater than 50 μM (HT29) or 200 μM (Panc-1), 72 hrs after

the treatment (Fig 1A and 1B).

Oxaliplatin and cisplatin are commonly used for treating colorectal and pancreatic cancers.

Both of these drugs are platinum-containing compounds that produce bulky DNA adducts

and DNA cross-links. Repair of such crosslinks frequently results in the generation of DSBs. In

contrast, 5-FU induces replication fork arrest, leading to an S-phase block, and is widely used

as an antimetabolite for colorectal cancer. To investigate the combined effect of CBP-93872
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Fig 1. Combined treatments of CBP-93872 with oxaliplatin, cisplatin, 5-FU, or gemcitabine effectively suppresses cell

growth. (A) HT29 cells were treated with the indicated concentrations of CBP-93872 for 72 hrs, followed by WST-1 assay. Data are
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and various anticancer drugs on cell proliferation, we treated HT29 cells with oxaliplatin (5–

30 μM), cisplatin (5–100 μM) or 5-FU (5–10 μM), together with CBP-93872 (50 μM). Indeed,

combined treatment of CBP-93872 together with oxaliplatin, cisplatin or 5-FU significantly

reduced HT29 cells proliferation in almost all concentrations; being more effective at high con-

centrations (Fig 1C).

Gemcitabine is an analog of deoxycytidine that inhibits DNA synthesis. This is also the

major drug used for clinical intervention of pancreatic cancers. To investigate the role of gem-

citabine to suppress the growth of a pancreatic cancer cell line, we treated Panc-1 cells with

oxaliplatin (10–30 μM), cisplatin (5–30 μM) or gemcitabine (0.1–0.5 μM), in combination

with CBP-93872 (200 μM). We again observed that combined treatment of CBP-93872 with

oxaliplatin, cisplatin or gemcitabine efficiently inhibited cell proliferation (Fig 1D). Taken

together, these results indicate that CBP-93872 acts as a chemosensitizer with platinum-con-

taining drugs or pyrimidine antimetabolites.

CBP-93872 enhances oxaliplatin, cisplatin, gemcitabine or 5-FU

mediated apoptosis

We next examined whether suppression of cell proliferation by combined treatment of CBP-

93872 with oxaliplatin, cisplatin, gemcitabine or 5-FU was mediated via apoptosis. Indeed,

HT29 cells treated with both CBP-93872 and oxaliplatin showed significant increase in sub-G1

cell population (from 6.1% to 24.3%) (Fig 2A). Administration of CBP-93872 and cisplatin,

or gemcitabine also produced similar effects in HT29 cells or Panc-1 cells (Fig 2B and 2C).

Importantly, combined treatments with CBP-93872 markedly increased cisplatin-induced

apoptosis (from 7.9% to 24.0%), in HT29 cells. CBP-93872 similarly increased gemcitabine-

induced apoptosis (from 8.4% to 38.5%) in Panc-1 cells, and 5-FU-induced apoptosis in HT29

cells (from 5.8% to 19.5%) (S1 Fig). These results indicate that CBP-93872 sensitizes oxalipla-

tin, cisplatin, gemcitabine or 5-FU-induced apoptosis in cancer cell lines.

Consistent with the above observations, cleaved caspase 3- a marker of apoptosis, was abun-

dantly detected after combined treatment with CBP-93872 (Fig 2D–2F, S1 Fig). In addition,

the level of γH2AX- a marker of DNA DSBs, was also elevated after combined treatment with

CBP-93872 (Fig 2D–2F).

CBP-93872 abrogates oxaliplatin or cisplatin induced G2 checkpoint

We previously reported that CBP-93872 specifically suppresses IR-induced G2 checkpoint

[26]. We asked whether this was also the case for oxaliplatin or cisplatin. Indeed, we observed

a higher mitotic index after CBP-93872 treatment in combination with oxaliplatin or cisplatin,

in HT29 cells (Fig 3A and 3B). These findings thus indicated that CBP-93872 inhibits oxalipla-

tin or cisplatin induced G2 checkpoint.

It has also been reported that gemcitabine induces S-phase arrest to prevent premature

mitosis [27]. Thus, gemcitabine-treated cells showed a decreased mitotic index. This reduction

was significantly attenuated by a concomitant use of CBP-93872 in Panc-1 cells (Fig 3C), indi-

cating that the S-phase checkpoint triggered by gemcitabine was also abolished by CBP-93872.

presented as means ± SD (n = 3). (B) Panc-1 cells were treated with the indicated concentrations of CBP-93872 for 72 hrs, followed

by WST-1 assay. Data are presented as means ± SD (n = 3). (C) HT29 cells were treated with CBP-93872 (50 μM) in combination with

indicated concentrations of oxaliplatin, cisplatin or 5-FU for 72 hrs, followed by WST-1 assay. (D) Panc-1 cells were treated with CBP-

93872 (200 μM) in combination with indicated concentrations of oxaliplatin, cisplatin or gemcitabine for 72 hrs, followed by WST-1

assay. The black bars show individual treatments; while the white bars show combined treatment with CBP-93872. Data are

presented as means ± SD (n = 3). Statistical significance was calculated using Student’s t-test (*, p < 0.01) (C, D).

https://doi.org/10.1371/journal.pone.0178221.g001
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Fig 2. CBP-93872 enhances oxaliplatin-, cisplatin- and gemcitabine-induced apoptosis in HT29 cells or Panc-1 cells. (A, B) HT29

cells were treated with oxaliplatin (30 μM) (A) or cisplatin (30 μM) (B) in the presence or absence of CBP-93872 (50 μM). Cells were
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CBP-93872 reduces the levels of phosphorylated ATR and Chk1

In order to elucidate the molecular basis underlying increased level of apoptosis by combined

treatment of CBP-93872 with other anticancer drugs, we examined whether CBP-93872 treat-

ment affected ATR activation or Chk1 phosphorylation. ATR activation, measured by auto-

phosphorylation at T1989, was readily detected in cells treated with oxaliplatin or cisplatin

alone (25) (Fig 4A and 4B and S2 Fig). Furthermore, phosphorylation of Chk1 at S345 was also

detected under the same conditions (Fig 4A and 4B and S2 Fig).

As expected, combined treatment with CBP-93872 strongly inhibited ATR activation, and

Chk1 phosphorylation, induced by oxaliplatin or cisplatin alone. The G2 checkpoint is medi-

ated at least in part by Cdc25C phosphorylation at S216, and the consequent inhibition of

Cdk1 by its phosphorylation at Y15/Y14. Consistent with these observations, combined treat-

ment of CBP-93872, with anticancer drugs, reduced the levels of phosphorylation of Cdk1 and

Cdc25C (Figs 4A and 5B). We also found that CBP-93872 reduced the levels of phosphoryla-

tion of ATR and Chk1, in gemcitabine-treated Panc-1, or 5-FU-treated HT29 cells (Fig 4C,

S2 Fig).

Discussion

Increased chemo- or radio-resistance, or both, causes major difficulties in the treatment and

management of malignant cancers. It is believed that cancer cells gain therapeutic resistances

via activation, and enhancement, of specific DNA repair pathways [28]. Administration of

cytotoxic agents, in combination with chemosensitizers: such as inhibitors of cell cycle check-

points or DNA repair pathways, is therefore of great importance for development of effective

cancer therapies. These combined therapies likely result in synthetic lethality, in specific types

of cancer cells.

In addition, several checkpoint kinase inhibitors have been extensively studied, and have

entered clinical trials [29]. For example, specific ATR inhibitors (VE-821 and NU6027) were

shown to enhance cytotoxicity of cancer cells in combination with multiple DNA damaging

agents. These inhibitors are currently being evaluated in Phase 1 clinical developments [30].

Furthermore, inhibitors of DNA damage mediators PARP1 (Poly [ADP-ribose] polymerase 1)

and WEE1 (WEE1 G2 Checkpoint Kinase) have also been developed, and tested via clinical

studies [31].

Most of the molecular targets of these inhibitors, however, are also important for the sur-

vival of normal cells. As a result, these inhibitors could cause unfavorable toxicity in normal

cells. Consistent with this notion, UCN-01: which inhibits Chk1, is not suitable for clinical

interventions owing to unpredictable toxicity results obtained in Phase 1 trials [32].

We have previously identified that CBP-93872 inhibits ssDNA-induced ATR activation, by

activating multiple substrates that regulate DNA repair and cell cycle arrest [26]. It has also

been reported that Chk1 modulates DNA repair via regulation of the homologous recombina-

tion repair protein Rad51 [33]. In addition, replication stress caused by chemotherapeutic

agents, such as oxaliplatin, cisplatin and gemcitabine, activates ATR. ATR in turn phosphory-

lates multiple downstream substrates that orchestrate DNA damage responses. Cells may

survive replication stress by preventing firing of replication origins, stabilizing stalled replica-

tion forks, and promoting DNA repair and cell cycle checkpoints. Such processes are likely

harvested at 72 hrs, fixed and subjected to FACS analysis (left panels). The percentages of cells in sub-G1 phase are shown in the panels

on the right. Data are presented as means ± SD (n = 3). Statistical significance was calculated using Student’s t-test (*, p < 0.01). (C) Panc-

1 cells were treated with gemcitabine (0.1 μM) in the presence or absence of CBP-93872 (200 μM). (D-F) HT29 cells or Panc-1 cells, were

collected at the times indicated. Total cell extracts were subjected to immunoblotting, using the indicated antibodies.

https://doi.org/10.1371/journal.pone.0178221.g002
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Fig 3. CBP-93872 inhibits maintenance of G2 and S-phase checkpoints. (A, B) HT29 cells were treated with oxaliplatin (30 μM) (A), or cisplatin

(30 μM) (B) in the presence or absence of CBP-93872 (50 μM). Nocodazole (500 nM) was added to inhibit the exit of cells from mitosis. Cells were
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disrupted by concomitant treatments of CBP-93872 with chemotherapeutic agents used in this

study. Thus, cell death induced by CBP-93872 could be mediated through destabilization of

one or more pathways mentioned above.

Anticancer drugs such as cisplatin, oxaliplatin, 5-FU and gemcitabine are commonly used

to treat digestive tract cancer. Indeed, combined use of these drugs have been extensively

employed for clinical interventions [34–37]. While response rates and progression-free sur-

vival has improved by these therapies, no ideal combination of agents with fewer side effects

and broader cytotoxicity has yet emerged.

CBP-93872 specifically suppresses G2 checkpoint through inhibition of DSB-dependent

ATR activation [25, 26], and therefore is expected to enhance the effect of anticancer drugs in

p53-deficient cancer cells, as the G2 checkpoint is required for survival in these cells. Impor-

tantly, CBP-93872 should have little impact on normal cells, as these cells possess a functional

p53-p21 pathway. Our study indicates that CBP-93872 might be a potential candidate as a che-

mosensitizer, for combined use with existing anticancer agents such as oxaliplatin, cisplatin,

gemcitabine, or 5-FU.

Materials and methods

Cell culture

The HT29 human colorectal cancer cell line was cultured in McCoy’s 5A medium (Thermo

Fisher Scientific), supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomy-

cin (PS). Panc-1 human pancreatic cancer cells were obtained from RIKEN BRC through the

National Bio Resource Project of the MEXT, Japan. Panc-1 was grown in RPMI-1640 (Sigma-

Aldrich) supplemented with 10% FBS and 1% PS. All cells were cultured at 37˚C in 5% CO2.

Reagents

CBP-93872 (Chugai Pharmaceutical company) was used at a final concentration of 50 μM (HT29)

and 200 μM (Panc-1), unless otherwise indicated. Cisplatin (Wako) was used in a final concentra-

tion of 30 μM (HT29) and 10 μM (Panc-1), while the final concentrations of oxaliplatin (Wako),

5-FU (Wako), gemcitabine (Tokyo Chemical Industry), nocodazole (Sigma-Aldrich) were 30 μM,

5 μM, 0.1 μM, and 500 nM, respectively. DMSO (Sigma-Aldrich) was used as a control.

WST-1 cell proliferation assay

The viability of the cells was determined using the Premix WST-1 cell proliferation assay

(Roche Applied Science). Cell lines were seeded in 96-well plates (4.0×103 cells/well), in 100 μL

medium, and allowed to attach overnight. Following cellular adhesion, treatment with cis-

platin, oxaliplatin, 5-FU, gemcitabine was performed. After 72 hrs, 10 μL WST-1 reagent was

added to the plates followed by additional incubation for 1 hr. The absorbance reading of each

well was measured using a microplate reader (iMARK; Bio-Rad), at a wavelength of 450 nm.

Western blotting

Collected cells were suspended in SDS sample buffer, boiled for 5 min, separated by SDS-

PAGE and transferred to a polyvinylidene difluoride membrane. Membranes were incubated

overnight with primary antibodies, followed by 1 h incubation with secondary antibodies. The

harvested at 48 hrs, fixed, and stained with anti-H3-pS10 antibodies to determine the mitotic index. Mitotic indices (left) and typical examples (right)

are shown. Data are presented as means ± SD (n = 3). Statistical significance was calculated using Student’s t-test (*, p < 0.01). ((C) Panc-1 cells

were treated with gemcitabine (0.1 μM) in the presence or absence of CBP-93872 (200 μM) with nocodazole (500 nM).

https://doi.org/10.1371/journal.pone.0178221.g003
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Fig 4. CBP-93872 reduces the levels of oxaliplatin-, cisplatin- and gemcitabine-induced phosphorylations

of ATR and Chk1. (A, B) HT29 cells were treated with oxaliplatin (30 μM) (A), or cisplatin (30 μM) (B) in the
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antibodies used for western blotting were ATR (sc-1887; Santa Cruz Biotechnology), phospho-

ATR Thr1989 (128145; GeneTex, Inc.), Chk1 (C9358; Sigma-Aldrich), phospho-Chk1 Ser345

(2348; Cell Signaling Technology), Cdk1 (sc-54; Santa Cruz Biotechnology), phospho-Cdk1

Tyr15 (9111; Cell Signaling Technology), Cdc25C (sc-13138; Santa Cruz Biotechnology), phos-

pho-Cdc25C Ser216 (9528; Cell Signaling Technology), Cleaved-caspase3 (9661; Cell Signaling

Technology), γH2AX (61796; GeneTex, Inc.) and β-actin (ab6276; Abcam).

Cell cycle analysis

Cells were harvested at 16, 24, 48, 72 hr after treatment, and fixed with 70% ethanol. Cell pellets

were washed once with PBS, and stained with phospho-histone H3 Ser10 antibodies (06–570;

Millipore) for 2 hr, followed by 30 min incubation with Alexa Fluor 488 secondary antibodies

(Thermo Fisher Scientific), and counterstained with 0.1 mg/mL propidium iodide containing

RNase for 30 min at 37˚C. Cell cycle analysis was performed by flow cytometry using a BD

FACSVerseTM flow cytometer (BD Biosciences).

Supporting information

S1 Fig. Combined treatment of CBP-93872 with oxaliplatin, cisplatin, 5-FU, or gemcita-

bine effectively suppresses cell growth in HT29 or Panc-1 cells.

(A) HT29 cells were treated with 5-FU (5 μM), in the presence or absence of CBP-93872

(50 μM). Cells were harvested at the times indicated, fixed and subjected to FACS analysis to

determine the proportion of cells in sub-G1 phase. Data are presented as means ± SD (n = 3).

Statistical significance was calculated using Student’s t-test (�, p< 0.01).

(B, C) Panc-1 cells were treated for the time indicated with oxaliplatin (30 μM) (B), or cisplatin

(10 μM) (C), in the presence or absence of CBP-93872 (200 μM). Total cell extracts were ana-

lyzed by immunoblotting using the antibodies indicated.

(D) HT29 cells were treated and analyzed as in (A).

(TIF)

S2 Fig. CBP-93872 reduces the levels of phosphorylation of ATR and Chk1 in HT29 and

Panc-1 cells.

(A) (B) Cells were treated as in S1 Fig, and total cell extracts were subjected to immmunoblot-

ting using indicated antibodies.

(C) Experiments were performed as described in S1 Fig, and total cells extracts were subjected

to immmunoblotting using indicated antibodies.

(TIF)
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