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Abstract

Multispectral palmprint recognition has shown broad prospects for personal identification

due to its high accuracy and great stability. In this paper, we develop a novel illumination-

invariant multispectral palmprint recognition method. To combine the information from multi-

ple spectral bands, an image-level fusion framework is completed based on a fast and adap-

tive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher

criterion. The FABEMD technique decomposes the multispectral images into their bidimen-

sional intrinsic mode functions (BIMFs), on which an illumination compensation operation is

performed. The weighted Fisher criterion is to construct the fusion coefficients at the decom-

position level, making the images be separated correctly in the fusion space. The image

fusion framework has shown strong robustness against illumination variation. In addition, a

tensor-based extreme learning machine (TELM) mechanism is presented for feature extrac-

tion and classification of two-dimensional (2D) images. In general, this method has fast

learning speed and satisfying recognition accuracy. Comprehensive experiments con-

ducted on the PolyU multispectral palmprint database illustrate that the proposed method

can achieve favorable results. For the testing under ideal illumination, the recognition accu-

racy is as high as 99.93%, and the result is 99.50% when the lighting condition is

unsatisfied.

1 Introduction

Nowadays, biometrics [1–3] plays an increasingly important role in the modern information

society and has drawn more and more research attention throughout the world. As an emerg-

ing and promising biometric characteristic, palmprint possesses some remarkable advantages

such as high distinguishability, excellent user-friendliness and strong stability. Generally

speaking, palmprint recognition [4–7] is to verify the identity of a person based on the palm

information including principal lines, wrinkles and fine ridges. In contrast to password cards

or identification cards, palmprint recognition is much more convenient, efficient and reliable

with extensive and successful applications [8]. However, it is still faced with some challenges in

real noisy environments, where the illumination condition may be unsatisfied or even
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corrupted and then the performance of a palmprint recognition system based only on the visi-

ble spectrum degrades quickly. In addition, traditional methods obtain features from a single

spectral band and consequently cannot achieve enough discriminative information of identi-

ties. In recent researches, there is a growing trend to use multispectral images instead of

exploiting a single spectral image to improve the accuracy of a palmprint recognition system

[9–12]. Images are captured at Blue, Green, Red and Near-infrared (NIR) spectral bands

respectively, each of which commonly highlights different specific and complementary palm

features. It is demonstrated that the utilization of multispectral images has made palmprint

recognition as one of the most reliable and successful personal identification approaches.

Multispectral palmprint analysis is mainly focused on two separate directions, i.e., fusing

multispectral information either at image level or at matching score level. For the first

approach, the basis idea is to perform a multiscale decomposition on each source image, then

integrate all these decompositions to form a composite representation, and finally reconstruct

the fused image to be recognized by performing an inverse transform. Two major kinds of

multiscale techniques, namely pyramid decomposition and wavelet decomposition, have been

investigated in multispectral palmprint image fusion. A comparative research on multispectral

palmprint image fusion was conducted in [13], where wavelet transform (WT), gradient pyra-

mid (GP), morphological pyramid (MP) and curvelet transform (CT) were evaluated on two

different spectral bands. Qualitative analysis demonstrated that the CT based image fusion

could achieve a higher recognition accuracy. Besides, some other innovative methods, such as

nonsubsampled contourlet transform (NSCT) [14, 15], discrete wavelet transform (DWT) [11,

12, 16], shift-invariant digital wavelet transform (SIDWT) [17, 18] and digital shearlet trans-

form (DST) [19, 20], were widely and successfully used in multispectral palmprint image

fusion. Alternatively, in the case of fusion at matching score level, palmprint features are

extracted from different spectral bands separately, followed by a comparator to obtain a

matching score. These matching scores in turn are fused using a sum rule and then verification

is carried out on the fusion results. For example, Zhang et al. [21] employed the orientation-

based coding (OC) for feature extraction of each spectral band and proposed a matching rule

robust to the effect of information overlapping. In [22], Khan et al. applied the contour code

(CC) for the representation of multispectral images before performing the matching score-

level fusion. In [23], sum and weighted sum rules were utilized at the fusion stage. Addition-

ally, some other explorations have been made in recent years. In [24], Hong et al. developed a

novel hierarchical approach based on the block dominant orientation code (BDOC) and the

block-based histogram of oriented gradient (BHOG) for feature-level fusion. Instead of using a

fusion strategy, Xu et al. [25] presented a new method from a different perspective by utilizing

the quaternion principal component analysis (QPCA) and the quaternion discrete wavelet

transform (QDWT), which could fully extract the multispectral information.

Among the abovementioned works, the image fusion based scheme appears to be more

attractive because it can effectively remove the noise that may be present during the acquisition

process of palmprint images. Thus in this paper, we mainly concentrate on developing a novel

method for illumination-invariant palmprint recognition by fusing multispectral information

at image level. Firstly, the fast and adaptive bidimensional empirical mode decomposition

(FABEMD) [26–28] is applied to each image captured at different spectral bands respectively,

and then the fused image can be represented by the weighted sum of some bidimensional

intrinsic mode functions (BIMFs). Secondly, a weighted Fisher criterion [29, 30] is introduced

to select the proper fusion weights such that the fused image can contain enough discrimina-

tive information. Finally to improve the recognition accuracy and reduce the computation

cost, a novel tensor-based extreme learning machine (TELM) [31–33] mechanism is proposed

for classification of two-dimensional (2D) images. Extensive experiments under even or
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uneven illumination conditions are carried out on the PolyU multispectral palmprint database

[11, 21, 34, 35] to show the superiority of our proposed method.

The rest of this paper is organized as follows: Section 2 introduces the multispectral imaging

device and the region of interest (ROI) extraction method. Section 3 provides a schematic dia-

gram of the proposed method and describes the FABEMD, the weighted Fisher criterion based

image fusion strategy and the TELM in detail. Section 4 introduces the database and presents

an experimental analysis. Finally, some concluding remarks are reported in Section 5.

2 Multispectral palmprint imaging and acquisition

Before elaborating on the proposed method, we make an introduction to how the multispectral

palmprint images are acquired and how the ROIs are located. Fig 1 shows the structure of the

imaging device, which consists of a computer, an A/D converter, a CCD camera, a multispec-

tral ring light source and a light controller. With signals from the light controller, the ring light

source can successively generate four kinds of uniform illuminators at multiple spectral bands,

i.e., Blue (470 nm), Green (525 nm), Red (660 nm) and NIR (880 nm). These four illuminators

are switched between each other so quickly that a user’s multispectral palmprint images can be

captured almost at the same time. Therefore the translation or rotation between two images is

very small, making registration no longer necessary for image fusion. During the acquisition

process, users are required to put their palms on the device panel where several pegs are

employed to fix the placement of the hands. The CCD camera then acquires the palmprint

images under the generated illuminators. Afterwards, by an A/D converter, the analog signals

of images are converted to digital ones stored in the computer. Fig 2 illustrates a typical multi-

spectral palmprint sample.

Extracting an ROI from the acquired image is an essential step for multispectral palmprint

recognition, which could efficiently decrease the effect of rotation and translation of the palm.

As shown in Fig 2(a), by finding the two key points (E1, E2) located at the troughs between

fingers, a coordinate system is built at the Blue band to crop the ROI. Here the line passing

through E3 and E4 is the perpendicular bisector. Once the coordinate system is established, it

is applied to the other spectral bands. The detailed steps are described in [34]. Fig 3 shows the

Fig 1. Structure of the multispectral palmprint imaging device.

https://doi.org/10.1371/journal.pone.0178432.g001
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extracted ROIs with a size of 128×128. Particularly, the palmprint images in color are also

exhibited so that we can follow which channel is more informative visually.

3 Proposed multispectral palmprint image recognition method

Fig 4 illustrates the outline of the proposed palmprint recognition method, which mainly con-

sists of three key steps: performing the FABEMD on the multispectral images and applying

illumination compensation to the extracted BIMFs, determining the appropriate fusion coeffi-

cients based on the weighted Fisher criterion, and verifying the identities of palmprint images

by a TELM classifier. Initially, for each spectral channel, the palmprint image is decomposed

into some BIMFs and a residue using the FABEMD technique, where the residue can be con-

sidered as the estimation of the illumination condition at this spectral band. Based on the resi-

due, BIMFs are adjusted with an illumination compensation operation. Afterwards, the fusion

of multispectral images can be completed by calculating a weighted sum of all the adjusted

BIMFs from Blue, Green, Red and NIR spectral bands. An improved Fisher criterion consider-

ing the neighborhood information is utilized to solve the fusion coefficients. By this means, the

training samples in the fusion space can contain very discriminative information. In other

words, the ratio of the between-class distance to the within-class distance in the fusion space

tends to be maximized. Finally, the training fusion images are prepared in a tensor format and

then employed to learn a TELM model. TELM combines tensor representation and extreme

Fig 2. A typical multispectral palmprint sample: (a) Blue, (b) Green, (c) Red, and (d) NIR. The white

square is the ROI of the image.

https://doi.org/10.1371/journal.pone.0178432.g002

Fig 3. Extracted ROIs: (a) Color, (b) Blue, (c) Green, (d) Red, and (e) NIR.

https://doi.org/10.1371/journal.pone.0178432.g003
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learning machine theory to determine the input weights and output weights of a single-hid-

den-layer feedforward neural network, by which the testing samples are classified.

3.1 Fast and adaptive bidimensional empirical mode decomposition

Fast and adaptive bidimensional empirical mode decomposition (FABEMD) is a data-driven

signal analysis method that decomposes a 2D signal into its characteristic hierarchical compo-

nents known as bidimensional intrinsic mode functions (BIMFs) [26]. It is based on an itera-

tive shifting process, where the local extrema of the signals are initially detected and then the

envelopes are estimated with the detected results. FABEMD adopts two kinds of order-statis-

tics filters, namely MAX and MIN filters, to get the upper and lower envelopes, where the filter

size is derived from the data.

Given a 2D signal I, FABEMD can represent it by

I ¼
XK

i¼1

Si þR: ð1Þ

Here, K is the number of BIMFs decomposed from I, Si denotes the ith BIMF, and R is the

residue. In the shifting process, Si is extracted from its source signal Ji, where Ji = Ji−1 − Si−1

and J1 = I. The detailed steps are explained as follows:

Step 1: Set i = 1 and initialize Ji = I.

Step 2: Identify the local maxima and minima maps Mi, Ni of Ji.by exploiting a neighboring

window search strategy as shown in Fig 5. A data point is regarded as the local extremum if its

value is strictly higher or lower than all of the neighbors within the window. Particularly, for

finding extrema points at the boundary or corner, the neighbors outside the image are

neglected. Usually a window with a size of 3×3 is preferred for optimal results.

Step 3: Determine the proper window size for order-statistics filters based on the local max-

ima and minima maps Mi, Ni. For each local maximum point in Mi, the Euclidean distance to

the nearest other local maximum point is computed and stored in an adjacent maxima dis-

tance vector denoted as dadj−max. Similarly, an adjacent minima distance vector denoted as

dadj−max is calculated as well. The number of elements in the maxima (minima) adjacent vector

is equal to the number of local maxima (minima) points. Considering a square window, the

gross window size wen−g for the order-statistics filters can be determined in two different ways

Fig 4. Outline of the proposed method.

https://doi.org/10.1371/journal.pone.0178432.g004
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as shown below:

wen� g ¼ d1 ¼ minfminfdadj� maxg; minfdadj� mingg; or

wen� g ¼ d2 ¼ maxfminfdadj� maxg; minfdadj� mingg:
ð2Þ

The final window size wen is obtained by rounding wen−g to the nearest odd integer. Here,

the range of wen used for the multispectral palmprint images is from 3 to 69.

Step 4: Generate the upper and lower envelops UEi, LEi by applying order-statistics and

smoothing average filters. MAX and MIN filters with the window size of wen×wen are

employed to form the upper and lower envelops respectively according to the following equa-

tions:

UEiðm; nÞ ¼ max
ðs;tÞ2Zmn

Jiðs; tÞ;

LEiðm; nÞ ¼ min
ðs;tÞ2Zmn

Jiðs; tÞ;
ð3Þ

where the value UEi(m, n) of the upper envelop at any point (m, n) is simply the maximum

value of the elements in Ji in the region defined by Zmn. Zmn is the square region with a size of

wen×wen centered at the point (m, n). Similarly the value LEi(m, n) of the lower envelop at any

point (m, n) is simply the minimum value of the elements in Ji in the region defined by Zmn.

To attain smooth continuous surfaces for upper and lower envelopes, smoothing operations

are performed on both UEi(m, n) and LEi(m, n), which may be stated as

UEiðm; nÞ ¼
1

wen � wen

X

ðs;tÞ2Zmn

UEiðs; tÞ;

LEiðm; nÞ ¼
1

wen � wen

X

ðs;tÞ2Zmn

LEiðs; tÞ:
ð4Þ

Step 5: Compute the ith BIMF by Si = (UEi + LEi)/2 and set i i + 1, Ji = Ji−1 − Si−1. Repeat

steps 2 to 5 until the number of the extracted BIMFs is K.

Based on the above steps, a 2D signal is decomposed into K BIMFs Si, i = 1, . . ., K. Then the

residue R can be calculated according to (Eq 1). The decomposition results of a palmprint

image using FABEMD are shown in Fig 6.

In practical applications, the process of multispectral image acquisition is not so much

restricted as described in Fig 1. For example, the images may be acquired in an open environ-

ment using a multispectral camera. The lighting condition is usually uncontrolled, and per-

haps the images may be not uniformly illuminated. However, the results of FABEMD are very

sensitive to the variation of lighting as demonstrated in Fig 7. In order to extract stable BIMFs,

Fig 5. Demonstration of local maxima and minima maps: (a) source signal, (b) local maxima map, and

(c) local minima map.

https://doi.org/10.1371/journal.pone.0178432.g005
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an illumination compensation method based on the residue of FABEMD is applied. Seen from

Figs 6(f) and 7(f), the residue can be considered as a trend of the illumination. After an average

filtering operation, the obtained smooth residue Rs is taken as the approximate illumination

estimation. Then the adjusted BIMFs ~S i can be addressed by

~Siðm; nÞ ¼
Siðm; nÞ=Rsðm; nÞ; if Rsðm; nÞ 6¼ 0

Siðm; nÞ=eps; otherwise

(

; i ¼ 1; 2; � � � ;K ð5Þ

Fig 6. Decompositions of a palmprint image using FABEMD: (a) the source image, (b) the 1st BIMF, (c)

the 2nd BIMF, (d) the 3rd BIMF, (e) the 4th BIMF, and (f) the residue.

https://doi.org/10.1371/journal.pone.0178432.g006

Fig 7. Decompositions of the noised image in Fig 6(a) using FABEMD: (a) the noised image, (b) the

1st BIMF, (c) the 2nd BIMF, (d) the 3rd BIMF, (e) the 4th BIMF, and (f) the residue.

https://doi.org/10.1371/journal.pone.0178432.g007
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where ~S iðm; nÞ; Siðm; nÞ and Rs (m, n) are the values of ~S i; Si and Rs at any point (m, n), eps
stands for a very small offset (In our paper, we set it as 1E-5).

Fig 8 shows the adjusted BIMFs. Compared with the decompositions exhibited in Fig 7, it

can be seen that the uneven lighting condition is obviously improved by the illumination com-

pensation operation. By this means, we can extract stable BIMFs which could be utilized to

reconstruct the original image.

3.2 Image fusion based on the weighted Fisher criterion

Image fusion aims to combine the complementary information of multisource images and

make the fused image more understandable and purposeful. For multispectral palmprint rec-

ognition [9–12], the task of image fusion is to reserve the useful features and remove the con-

fusing identity information in each fusion component so that the images can be separated

perfectly in the fusion space. For this purpose, an improved weighted Fisher criterion is

applied to the BIMFs extracted from multispectral images.

For the jth palmprint sample, the corresponding vectorized BIMFs decomposed from

Blue, Green, Red and NIR bands are denoted by Vbj
i;Vgj

i ; Vrji and Vnj
i respectively. Here

j = 1, 2, . . ., N and i = 1, 2, . . ., K. N is the number of palmprint samples. K is the number of

BIMFs that an image is decomposed into.Vbj
i, Vgj

i , Vrji and Vnj
i are the ith adjusted BIMFs of

the images captured at Blue, Green, Red and NIR bands of the jth palmprint sample. A general

image fusion framework can be described by

Fj ¼
XK

i¼1

fφiVbj
i þ φKþiVgj

i þ φ
2�KþiVrji þ φ

3�KþiVnj
ig ¼ Vjφ; ð6Þ

where Vj ¼ ½Vbj
1; � � � ;Vbj

K ; Vgj
1; � � � ;Vgj

K ;Vrj1; � � � ;VrjK ;Vnj
1; � � � ;Vnj

K � and φ = [φ1,

φ2, . . ., φ4�K]T. Fusion based on the classic Fisher criterion [29] is to construct a set of fusion

coefficients φ which could maximize the between-class distance and minimize the within-

Fig 8. Demonstration of the adjusted results of Fig 7: (a) the smooth residue using an average filter

with a size of 10×10, (b) the 1st BIMF, (c) the 2nd BIMF, (d) the 3rd BIMF, (e) the 4th BIMF, and (f) the

reconstructed image by summing the K BIMFs.

https://doi.org/10.1371/journal.pone.0178432.g008
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class distance simultaneously in the fusion space, that is

φ ¼ arg max
φ

XN

j¼1
ðVjφ � �VφÞTðVjφ � �VφÞ �

Xm

l¼1

XNl

j¼1
ðV

j
ðlÞφ � �VðlÞφÞ

T
ðV

j
ðlÞφ � �VðlÞφÞ

Xm

l¼1

XNl

j¼1
ðV

j
ðlÞφ � �VðlÞφÞ

T
ðV

j
ðlÞφ � �VðlÞφÞ

¼ arg max
φ

XN

j¼1
ðVjφ � �VφÞTðVjφ � �VφÞ

Xm

l¼1

XNl

j¼1
ðV

j
ðlÞφ � �VðlÞφÞ

T
ðV

j
ðlÞφ � �VðlÞφÞ

¼ arg max
φ

φT
XN

j¼1
ðVj � �VÞ

T
ðVj � �VÞφ

φT
Xm

l¼1

XNl

j¼1
ðV

j
ðlÞ �

�VðlÞÞ
T
ðV

j
ðlÞ �

�VðlÞÞφ

¼ arg max
φ

φTDφ
φTDwφ

; ð7Þ

D ¼
XN

j¼1
ðVj � �VÞ

T
ðVj � �VÞ;

Dw ¼
Xm

l¼1

XNl

j¼1
ðV

j
ðlÞ �

�VðlÞÞ
T
ðV

j
ðlÞ �

�VðlÞÞ;

ð8Þ

where �V is the mean of all samples Vj, j = 1, 2, . . ., N, �VðlÞ is the mean of the samples

belonging to the lth class (Here, class means the identity of the palmprint), V
j
ðlÞ is the jth

sample of the lth class, Nl is the number of samples of the lth class, m is the number of clas-

ses and N ¼
Xm

l¼1
Nl. Then the fusion coefficient vector φ is obtained by solving the gener-

alized eigenvalue decomposition:

Dφ ¼ lDwφ: ð9Þ

Here, φ is the eigenvector corresponding to the largest eigenvalue.

A drawback of the traditional Fisher criterion is that it pays equal attention to every sample

when constructing the fusion coefficient vector. In fact, the samples near the class center main-

tain relative rest in the projection from decomposition space to fusion subspace. Meanwhile,

the samples close to the border should be projected towards their corresponding class centers

and keep farther away from other class points. In other words, the closer to the class center

these samples are, the less contribution they make to the projection. Whereas, the farther away

from the class center and the closer to the border those samples are, the more contribution

they make. Inspired by this fact, a contribution factor μj of a sample Vj is defined as

mj ¼

X

i;Vi2C
j
b

expð� kVi � Vjk
2
=d

2
Þ

X

i;Vi2Cj expð� kVi � Vjk
2
=d

2
Þ
; ð10Þ

where Cj is the set of the k-nearest neighbors of the jth sample Vj, C
j
b is the subset of Cj with

classes different from the one of Vj, and δ is the spread of Gaussian. From this definition, it

can be inferred that when a sample is located inside the class with no between-class samples

surrounded, the contribution factor μj is zero. When a sample is near the border and its k-

nearest neighbors are not all from the same class, the value of μj is nonzero. Moreover, when

the number of between-class samples increases and the distance of between-class samples

decreases, the value of μj becomes larger and the contribution of this sample is greater. An

extreme condition is that the value of μj is one, meaning that all the k-nearest neighbors are

from other classes.

Multispectral palmprint recognition
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Based on the contribution factor, a weighted Fisher criterion is proposed. A large weight is

arranged to the sample located close to the border and a small weight is given to the sample

near the class center:

φ ¼ arg max
φ

φT
XN

j¼1
mjðVj � �VÞ

T
ðVj � �VÞφ

φT
Xm

l¼1

XNl

j¼1
m
j
ðlÞðV

j
ðlÞ �

�VðlÞÞ
T
ðV

j
ðlÞ �

�VðlÞÞφ

¼ arg max
φ

φTDφ
φTDwφ

; ð11Þ

where m
j
ðlÞ is the contribution factor of the jth sample of the lth class, D and Dw are redefined as

D ¼
XN

j¼1
mjðVj � �VÞ

T
ðVj � �VÞ;

Dw ¼
Xm

l¼1

XNl

j¼1
m
j
ðlÞðV

j
ðlÞ �

�VðlÞÞ
T
ðV

j
ðlÞ �

�VðlÞÞ:

ð12Þ

The fusion vector φ can be computed with a generalized eigenvalue decomposition accord-

ing to (Eq 9), and then the fused image is achieved by (Eq 6). Fig 9 shows the weighted Fisher

criterion based image fusion results under different illumination conditions. As expected, the

fused images include all the detailed information from each spectral band. Moreover, we can

find that the fused images are nearly not influenced by the lighting change.

3.3 Tensor-based extreme learning machine

Extreme learning machine (ELM) is a novel training method for single-hidden-layer feedfor-

ward neural networks (SLFNs) with the hidden nodes randomly assigned and then fixed with-

out iteratively tuning [32]. It has gained comprehensive interest due to its fast learning speed,

good generalization ability and ease of implementation. However, ELM is originally proposed

for one-order tensor (i.e. vector) classification. In the case of higher-order signals, they must

be preliminarily vectorized, which may lose some structure information and degrade the final

classification performance. In our work, we have made an improvement of the traditional

ELM based on tensor decomposition. All input training samples are represented by a higher-

order tensor. The input weights of an SLFN are calculated by applying a higher-order singular

value decomposition (HOSVD) technique [31], and then the output weights are analytically

determined by the simple generalized inverse operation.

For N distinct samples {xi, ti}, i = 1, 2, . . ., N, xi is a 1×n input vector and ti is a 1×m out-

put vector. In our work, xi represents the vectorized fused image of the ith sample and n
denotes the number of pixels in the fused image. ti is the class label and m denotes the num-

ber of classes. Training an SLFN with ~N hidden nodes is to find the suitable input weights

αj; j ¼ 1; 2; � � � ; ~N and output weights βj; j ¼ 1; 2; � � � ; ~N such that

f ~N ðxiÞ ¼
X~N

j¼1

gðxe
iαjÞβj ¼ ti; i ¼ 1; 2; � � � ;N; ð13Þ

where αj is a (n + 1)×1 vector and denotes the weight vector connecting the input nodes to

the jth hidden node, βj is a 1×m vector and denotes the weight vector connecting the jth
hidden node to the output nodes, xe

i is the augmenting vector of xi with the format of

[xi 1] 2 Rn+1, and g(x) is the activation function (e.g., sigmoid and threshold). Here, we

select sigmoid gðxÞ ¼ 1

1þe� x as the activation function. The above formula can be written
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compactly as

Hβ ¼ T; ð14Þ

where β ¼

β1

..

.

β~N

2

6
6
4

3

7
7
5

~N�m

, T ¼

t1

..

.

tN

2

6
6
4

3

7
7
5

N�m

and H ¼

gðxe
1
α1Þ � � � gðxe

1
α ~N Þ

..

.
� � � ..

.

gðxe
Nα1Þ � � � gðxe

Nα ~N Þ

2

6
6
4

3

7
7
5

N� ~N

. Further-

more, H is described in a more compact way as

H ¼ gðxeαÞ; ð15Þ

where xe ¼

xe
1

..

.

xe
N

2

6
6
4

3

7
7
5

N�ðnþ1Þ

and α ¼ ½α1 � � � α~N �ðnþ1Þ� ~N .

The ELM theory has proved that, if the activation functions are infinitely differentiable, the

hidden layer output matrix H can be obtained by using a random map α with (Eq 15).

Fig 9. Demonstration of the weighted Fisher criterion based image fusion under different illumination

conditions. Each row illustrates a multispectral palmprint sample and the corresponding fusion image.

https://doi.org/10.1371/journal.pone.0178432.g009
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Afterwards, the output weight matrix β is calculated by

β ¼ HyT; ð16Þ

where H† is the Moore—Penrose generalized inverse of H.

Different from ELM designed only for signals in vector format, our proposed tensor-based

ELM (TELM) is an extension for higher-order signals. Here, tensors are the generalization of

vectors with orders higher than one. A tensor A 2 RðI1�I2�����IpÞ has order p. I1, I2, . . ., Ip repre-

sent the number of elements for each dimension. Instead of using a random map, a HOSVD-

based method is employed in TELM to construct the multidimensional feature projection

matrices, by which the input training data are mapped into the hidden layer.

Firstly, we introduce two basic operations in HOSVD. The matrix unfolding

A
ðqÞ
2 RIq�

Y

i6¼q
Ii of a tensor A 2 RðI1�I2�����IpÞ along dimension q is defined as

A)qA
ðqÞ
;

A
ðqÞ
ðiq; jÞ ¼ Aði1; � � � ; iq; � � � ; ipÞ; j ¼ 1þ

Xp

l¼1;l 6¼q

ðil � 1Þ
Yp

o¼lþ1;o6¼q

Io:
ð17Þ

The product between a tensor A 2 RðI1�I2�����Iq�����IpÞ and a matrix B 2 RJq�Iq is denoted by

C ¼ A�qB; ð18Þ

where C 2 RI1�I2�����Jq�����Ip is a tensor with the elements computed by

Cði1; i2; � � � ; jq; � � � ; ipÞ ¼
X

iq

Aði1; i2; � � � ; iq; � � � ; ipÞBðjq; iqÞ: ð19Þ

Note that the matrix unfolding C(q) along dimension q is the product between B and A(q),

that is

C
ðqÞ
¼ BA

ðqÞ
: ð20Þ

Given N distinct training samples in higher-order format

fxi 2 RI1�I2�����Ip ; ti 2 Rmg; i ¼ 1; 2; � � � ;N, where xi is the 2D fused image in our work and

xi 2 RI1�I2 ; I1 ¼ I2 ¼ 128, the core task for TELM is to construct the multidimensional pro-

jection matrices. For this purpose, we first prepare the input training tensor as

Γ 2 RN�I1�I2 ;

Γði; i1; i2Þ ¼ xiði1; i2Þ; i ¼ 1; 2; � � � ;N; i1 ¼ 1; 2; � � � ; I1; i2 ¼ 1; 2; � � � ; I2:
ð21Þ

Then the HOSVD decomposes the training tensor Γ as

Γ ¼ Z�2U2�3U3; ð22Þ

where U2, U3 are the multidimensional projection matrices and Z is the hidden layer input

tensor. For i = 2, 3, Ui can be computed from the standard SVD of the unfolding matrix Γ(i),

i.e.,ΓðiÞ ¼ UiSiV
T
i . Ui is the orthogonal matrix that contains the orthonormal vectors spanning

the column space of the matrix unfolding Γ(i). Then the tensor Z can be addressed by using

the inversion formula:

Z ¼ Γ�2U
T
2
�3U

T
3
: ð23Þ
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Actually, we use the simple truncation of the first ~N 1;
~N 2 columns of the matrices U2, U3 to

calculate the hidden layer output matrix H, that is

Z ¼ Γ�2U
T
2;N~

1

�UT
3;N~

2

;

H ¼ gðZð1ÞÞ:
ð24Þ

This truncation operation can not only maintain the discriminative multidimensional pro-

jections but also greatly reduce the computational cost. With the multidimensional projection

matrices, the input tensors are mapped into the feature subspace. Finally, we can achieve the

output weight matrix β of the hidden layer through (Eq 16).

In the TELM algorithm, the multidimensional feature projection matrices are utilized as

the input weights, which effectively reserves the structure information of the input tensors.

The output weights are calculated by solving the generalized inverse. There are no iterative

learning steps and thus the learning speed is very fast.

4 Experiments

In this section, we report the experimental results and evaluate the performance of the pro-

posed method. The recognition accuracy (RA) indicator is used as the assessment standard

and it is defined as

RA ¼
Numc

Num
; ð25Þ

where Numc stands for the number of correctly recognized samples and Num is the total num-

ber of testing samples.

All the experiments were conducted on a machine with a 2.50 GHz Intel core™ processor

and 8 GB memory. MATLAB 2012a was used as the simulation software.

4.1 Multispectral palmprint database

We conducted the experiments on the PolyU multispectral palmprint database offered by

Hong Kong Polytechnic University [11, 21, 34, 35]. All the images were collected from 250 vol-

unteers (195 males and 55 females) aged from 20 to 60 years old. The acquisition was com-

pleted in two different sessions, each lasting about 9 days. In one session, the subject was

required to provide 6 images for his left and right palms respectively. The palmprint images

were acquired at four spectral bands, i.e., Red, Green, Blue and NIR. For each band, there are

6,000 images obtained from 500 different palms in total. Fig 10 shows some multispectral

palmprint samples in the PolyU database.

All the original images in the database were illuminated uniformly. To verify the robustness

of our method against the variation of illumination, we manually generated the noised data

through multiplying the palmprint images by an uneven illumination image as shown in Fig

11. In the experiments, the 12000 original palmprint images captured from four spectral bands

in the first session were used as the training samples, while the remaining ones with light noise

added were taken as the testing samples.

4.2 Parameter discussion

We conducted several experiments to investigate the effects of different settings in FABEMD.

The results are shown in Fig 12. To test the influence of the number K of BIMFs, we gradually

increased it from 1 to 5. In the accomplishment of FABEMD, an illumination compensation

operation was performed based on the residue. In order to verify its actual performance, a
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comparison was made between two experiments with and without illumination compensation.

We also discussed the results with different ways (d1 or d2) of determining the gross window

size wen−g for the order-statistics filters. All these trials were carried out on the original images

and the noised images, respectively.

From Fig 12(a) and 12(b), we can conclude that the illumination compensation operation

significantly improves the robustness of the method against the variation of lighting condition.

As shown in Fig 12(a), without this operation, the recognition accuracy decreases seriously

when the images are noised by uneven illumination. Meanwhile, when illumination compen-

sation is completed, the results with original images and noised images are nearly the same

(Fig 12(b)). It can also be seen that the recognition accuracy increases rapidly as K becomes

Fig 10. Demonstration of multispectral palmprint images in the PolyU database. Each row shows a

multispectral palmprint sample.

https://doi.org/10.1371/journal.pone.0178432.g010

Fig 11. Demonstration of how to generate a noised palmprint image.

https://doi.org/10.1371/journal.pone.0178432.g011
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Fig 12. Demonstration of the effects of different settings in FABEMD: (a) experiments without

illumination compensation, and (b) experiments with illumination compensation.

https://doi.org/10.1371/journal.pone.0178432.g012
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larger. When K is 4, the results tend to be optimal. In addition, it is observed that the accuracy

by using d1 as the window size is slightly higher than that by using d2.

Table 1 lists the recognition accuracies with different parameters in the weighted Fisher cri-

terion. Here, k is the sample number in the nearest neighbors for calculating the contribution

factor and δ indicates the spread of Gaussian. It can be inferred that the value of k has a great

influence on the recognition accuracy. As shown in Table 1, in the given range, a larger k usu-

ally yields a higher recognition accuracy. When k = 6 and δ = 5, it produces the highest recog-

nition accuracy.

Fig 13 shows the performance of the tensor-based extreme learning machine with different

number of hidden nodes. It is obvious that the recognition accuracy has a growing trend as the

number of hidden nodes increases progressively. It converges to the optimal accuracy when

the values of ~N 1 and ~N 2 are large enough. In our experiments, we set ~N 1 ¼ 18 and ~N 2 ¼ 15,

respectively.

Table 1. Recognition results with different parameters in the weighted Fisher criterion.

RA (%)

δ = 4 δ = 5 δ = 6 δ = 7 δ = 8

k = 3 68.00 68.67 70.03 67.77 70.53

k = 4 87.33 82.97 85.00 86.64 85.33

k = 5 93.67 92.34 91.80 93.00 91.67

k = 6 98.87 99.50 98.53 97.23 97.23

https://doi.org/10.1371/journal.pone.0178432.t001

Fig 13. Performance of tensor-based extreme learning machine with different number of hidden nodes.

https://doi.org/10.1371/journal.pone.0178432.g013
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4.3 Results analysis of the proposed method

Each spectral band may capture some specific and complementary palm features, providing

different information for palmprint recognition. Table 2 illustrates the quantitative results of

the proposed method tested with different combinations of the four spectral bands. Some find-

ings can be obtained from the table. In terms of palmprint recognition based on a single spec-

tral band, the Red and NIR bands achieve higher recognition accuracies than the Blue and

Green bands. This is because the images captured at Red and NIR spectral bands contain some

additional palm vein information, which plays an important role in classifying the images

sharing similar palm lines. In addition, it can be observed that the recognition accuracy of fus-

ing multiple spectral bands is higher than that of any single band. While for multispectral

fusion, the more bands in fusion do not always achieve a better recognition accuracy. For

example, the accuracy of the combination between Red and NIR is 99.47%, which is higher

than the result of fusing Blue, Green and NIR bands. We can also find that the performance of

the proposed method is seldom affected by the uneven lighting condition.

In order to verify the effectiveness of the proposed fusion strategy, a comparison was made

with the sum rule based and the Fisher criterion based image fusion. The results are reported

in Table 3. It is evident that for any fusion combination, the proposed weighted Fisher crite-

rion consistently and significantly outperforms both the two comparison methods.

Another comparison was made by using different classifiers. The KNN, ELM and TELM

were compared in terms of recognition accuracy and computational time. Table 4 depicts the

recognition accuracies with different fusion combinations. It can be found that the TELM

yields the highest recognition accuracy. For any spectral band combination, the result of

TELM is much higher than that of ELM. So we can conclude the TELM is an effective

improvement of ELM. Compared with KNN, the TELM also maintains an obvious advantage.

As for the computational cost shown in Table 5 (Here, the time is referred to as the computa-

tional time for the entire database), it can be seen that the TELM costs the least computational

time. In comparison with ELM, the TELM tends to be optimized with fewer hidden nodes,

resulting in much less computational time. Although the KNN does not need a training pro-

cess, it executes a matching operation with each reference sample when classification, making

Table 2. Recognition results by different combinations of the spectral bands.

Fused spectral bands RA (%)

Original Data Noised Data

Blue 96.73 96.33

Green 96.93 96.33

Red 97.80 97.37

NIR 97.67 97.03

Blue, Green 99.30 99.13

Blue, Red 99.30 99.23

Blue, NIR 99.10 99.00

Green, Red 99.43 99.30

Green, NIR 99.47 99.13

Red, NIR 99.47 99.50

Blue, Green, Red 99.67 99.47

Blue, Green, NIR 99.27 99.00

Blue, Red, NIR 99.47 99.27

Green, Red, NIR 99.57 99.50

Blue, Green, Red, NIR 99.93 99.50

https://doi.org/10.1371/journal.pone.0178432.t002

Multispectral palmprint recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0178432 May 30, 2017 17 / 22

https://doi.org/10.1371/journal.pone.0178432.t002
https://doi.org/10.1371/journal.pone.0178432


it the most complicated to be calculated. Overall, the TELM outperforms both the KNN and

ELM.

In order to further evaluate the proposed fusion rule and classification method, some

Cumulative Match Characteristic curves were generated by using the sum rule, the Fisher cri-

terion, the weighted Fisher criterion for image fusion and the TELM, the KNN, the ELM for

classification, respectively. Seen from Fig 14, we can find that the proposed method (weighted

Fisher criterion + TELM) has the highest rank-1 recognition accuracy. At the same time, it is

more towards the upper left corner of the plots compared with the other methods. So we can

Table 3. Performance comparison with different fusion rules.

Fused spectral bands RA (%)

Sum Rule Fisher Criterion Weighted Fisher Criterion

Blue, Green 93.27 97.87 99.13

Blue, Red 93.47 98.40 99.23

Blue, NIR 93.27 97.80 99.00

Green, Red 93.77 98.47 99.30

Green, NIR 93.60 97.93 99.13

Red, NIR 93.43 98.60 99.50

Blue, Green, Red 93.17 98.43 99.47

Blue, Green, NIR 93.30 98.10 99.00

Blue, Red, NIR 93.37 98.13 99.27

Green, Red, NIR 93.77 98.47 99.50

Blue, Green, Red, NIR 93.87 98.63 99.50

https://doi.org/10.1371/journal.pone.0178432.t003

Table 4. Performance comparison with different classifiers.

Fused spectral bands RA (%)

KNN ELM TELM

Blue, Green 97.10 78.53 99.13

Blue, Red 97.37 75.03 99.23

Blue, NIR 95.70 75.73 99.00

Green, Red 98.57 73.67 99.30

Green, NIR 98.03 72.40 99.13

Red, NIR 98.63 72.37 99.50

Blue, Green, Red 97.97 75.40 99.47

Blue, Green, NIR 96.75 76.87 99.00

Blue, Red, NIR 97.63 74.27 99.27

Green, Red, NIR 98.70 75.43 99.50

Blue, Green, Red, NIR 98.03 75.77 99.50

https://doi.org/10.1371/journal.pone.0178432.t004

Table 5. Computational time of different classifiers.

Methods Training Time (s) Testing Time (s) Total Time (s)

KNN - 118.88 118.88

ELM 51.41 13.95 65.36

TELM 14.43 2.54 16.97

https://doi.org/10.1371/journal.pone.0178432.t005
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conclude that the weighted Fisher criterion based image fusion and the TELM classifier are

superior to all the other methods, which is quite consistent with the results reported in Tables

3 and 4.

Table 6 shows the comparison results with some state-of-art multispectral palmprint recog-

nition methods, including an image-level fusion method, a matching score-level fusion

method and a quaternion matrix based method. We can find that the performance of the

method in [25] degrades seriously when the palmprint images are noised with uneven illumi-

nation. Although the methods in [11] and [21] are rarely affected by the illumination change,

they can’t provide a recognition accuracy as high as ours. The proposed method can attain the

highest recognition accuracy under even or uneven illumination conditions among the four

methods.

Table 7 gives the average execution time for each step when using the proposed method to

recognize the identity of a single multispectral palmprint sample. It should be noted that the

results for image fusion and palmprint classification are the testing time with the fusion coeffi-

cients and the TELM model calculated in advance. Actually, these parameters only need to be

computed once and the corresponding computational times are meaningless. As shown in the

table, the proposed method is fast enough for real-time applications.

Fig 14. Performance comparison of different fusion and classification methods in terms of

Cumulative Match Characteristic curves.

https://doi.org/10.1371/journal.pone.0178432.g014

Table 6. Performance comparison with different multispectral palmprint recognition methods.

Methods RA (%)

Original Data Noised Data

Image-level fusion by DWT [11] 99.03 98.53

Matching score-level fusion by line orientation code [21] 99.43 98.70

QPCA+QDWT [25] 98.83 65.63

Our proposed method 99.93 99.50

https://doi.org/10.1371/journal.pone.0178432.t006
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5 Conclusions

In this paper, we have investigated an illumination-invariant multispectral palmprint recogni-

tion method. It combined the information across multiple spectral bands (Blue, Green, Red

and NIR) by performing a fusion at image level. Each image captured at a single spectral band

was decomposed into several BIMFs and a residue using FABEMD. Then the residue was used

to estimate the illumination condition of the palmprint, based on which the BIMFs were

adjusted. To guarantee the final recognition accuracy of images in the fusion space as high as

possible, a weighted Fisher criterion considering the different contributions of image samples

was proposed to find the fusion coefficients. Furthermore, an improved extreme learning

machine based on tensor decomposition was utilized for feature extraction and classification.

It occupied a higher-order singular value decomposition technique to determine the input

weights of a single-hidden-layer feedforward neural network, which could fully maintain the

structure features of two-dimensional signals. Experiments carried out on the PolyU multi-

spectral palmprint database under different illumination conditions showed that our proposed

method could achieve very competitive results with great robustness against illumination

variation.
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