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Abstract

Obesity greatly increases the risk for cardiovascular, metabolic, and renal diseases and is one of 

the most significant and preventable causes of increased blood pressure (BP) in patients with 

essential hypertension. This review high-lights recent advances in our understanding of central 

nervous system (CNS) signaling pathways that contribute to the etiology and pathogenesis of 

obesity-induced hypertension. We discuss the role of excess adiposity and activation of the brain 

leptin-melanocortin system in causing increased sympathetic activity in obesity. In addition, we 

highlight other potential brain mechanisms by which increased weight gain modulates metabolic 

and cardiovascular functions. Unraveling the CNS mechanisms responsible for increased 

sympathetic activation and hypertension and how circulating hormones activate brain signaling 

pathways to control BP offer potentially important therapeutic targets for obesity and 

hypertension.
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Introduction

There have been substantial increases in the prevalence of obesity during the last 20–30 

years in the USA and worldwide. More than one-third (34.9 % or 78.6 million) of US adults 

are considered to be obese with body mass index (BMI) of 30 or greater. Obesity rates are 

higher in middle age (40–59 years, 39.5 %) than in younger adults (aged 20–39, 30.3 %) or 

adults aged 60 or above (35.4 %). Even more alarming, however, is the fact that obesity has 
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more than doubled in children and quadrupled in adolescents in the past 30 years. Recent 

estimates indicate that approximately 17 % of adolescents are obese, and even higher rates 

of obesity are observed in African-American, Native American, and Hispanic children [1–3]. 

The annual medical costs associated with obesity are over $190.2 billion in the USA 

(Centers for Disease Control and Prevention).

Being overweight or obese greatly increases the risk for several major diseases including 

hypertension, coronary heart disease, stroke, type 2 diabetes, cancer, and chronic kidney 

disease [4–6]. For example, risk estimates from population studies suggest that weight gain 

may contribute as much as 85 % of the risk for diabetes and 65 to 78 % of the risk for 

essential hypertension [7]. Excess weight gain shifts the frequency distribution of blood 

pressure (BP) towards higher levels. Therefore, obese subjects not classified as being 

hypertensive usually have lower BP when they reduce body weight [4]. There is a nearly 

linear relationship between BMI and BP in population studies, and excess weight gain 

predicts future development of hypertension [4–6]. In addition, weight loss helps prevent 

development of hypertension and reduces BP in most hypertensive individuals [8, 9].

SNS Activation in Obesity-Induced Hypertension

Excess weight gain, when followed by increased visceral adiposity, is associated with 

increased sympathetic nervous system (SNS) activity which has been shown to contribute to 

development of hypertension in obese experimental animals as well as humans [4, 10]. 

Increases in SNS activity in diet-induced obesity develop early after exposure to high-fat 

diets in experimental animals [11, 12] and weight gain in humans is associated with 

increased SNS activity [4, 10]. However, increases in SNS activity in obesity are modest and 

occur only in certain organs and tissues instead of generalized whole-body sympathetic 

activation. For instance, in obese subjects, SNS activities in the kidney and skeletal muscle 

are elevated while cardiac sympathetic activity is minimally increased, or even reduced, 

most likely due to baroreflex inhibition [13, 14].

Increased renal SNS activity in obese subjects contributes to sodium retention, increased 

renin release, impaired renal-pressure natriuresis, and elevated BP [10]. However, SNS 

activation in obese subjects is generally not great enough to directly cause peripheral 

vasoconstriction in most tissues [15]. In fact, blood flow in the kidneys and many other 

tissues as well as cardiac output are often increased in obesity, although the ability to 

vasodilate further during stresses such as exercise may be impaired due to endothelial 

dysfunction and increased vascular stiffness [16]. Also, increased SNS activity in obesity 

appears to vary according to ethnicity and body fat distribution with visceral obesity eliciting 

greater SNS activation than subcutaneous obesity [17].

Brain Centers Involved in Obesity-Induced SNS Activation

The rostral ventral lateral medulla (RVLM) is a key brain center for controlling SNS activity 

[18–20]. This center is modulated by inputs from several other regions of the central nervous 

system (CNS) including the paraventricular nucleus of the hypothalamus (PVN) and the 

spinal sympathetic intermediolateral nucleus (IML). Neurons in the PVN that project to the 
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RVLM display an autorhythmicity which closely correlates with sympathetic discharge rate 

[21, 22]. In addition, the PVN receives extensive neuronal inputs from several other regions 

of the brain, including the arcuate nucleus (ARC), subfornical (SO), and median preoptic 

nuclei, lateral hypothalamus, limbic nuclei, lateral parabrachial nucleus, nucleus tractus 

solitarius (NTS), dorsal motor nucleus of the vagus (DMV), and other areas. Beside the 

PVN, the dorsomedial hypothalamus (DMH), which contains connections with sympathetic 

and parasympathetic systems, is influenced by peripheral afferents via the NTS, the 

parabrachial nucleus, and sympathetic IML [23]. The DMH also interconnects to the lateral 

hypothalamus and the circumventricular organs.

Although the brain areas involved in obesity-induced hypertension have not been fully 

elucidated, hypothalamic (ARC, PVN, and DMH) and hindbrain regions (NTS/DMV, 

RVLM) as well as the IML appear to play a crucial role in mediating increases in SNS 

activity and BP [24–27]. The ventromedial hypothalamus (VMH) plays a major role in 

regulating food intake, and VMH lesions cause severe obesity that have been reported by 

some, but not all, investigators to be accompanied by hypertension and elevated plasma 

norepinephrine [28, 29]. These observations, if correct, suggest that either the VMH may not 

be critical for SNS activation and hypertension associated with obesity. Alternatively, VMH 

neurons may even exert an inhibitory influence on SNS activity and BP since some studies 

suggest that destruction of these neurons may cause SNS activation and hypertension [30].

Several populations of preautonomic neurons located in the caudal hindbrain are critical in 

mediating the effect of cytokines/adipokines, which are increased in obesity, on sympathetic 

outflow [31,32]. Although the hypothalamus and hindbrain areas are importantly involved in 

cardiovascular control in obesity, additional studies are needed to identify specific brain 

circuits that mediate increases in SNS activity and BP in obesity.

Mechanisms of SNS Activation in Obesity

Multiple mechanisms have been proposed to increase SNS activity in obesity, including 

brain oxidative stress, inflammation, impaired baroreflex sensitivity, angiotensin II (Ang II), 

hyperinsulinemia, sleep apnea and hypoxia, hypoghrelinemia, hypoadiponectemia, and 

hyperleptinemia (Fig. 1).

Nagae et al. [33] reported that oxidative stress via NAD(P)H oxidase in the brain, mainly in 

the hypothalamus, contributes to increased SNS activation in obesity-induced hypertension 

in rats fed a high-fat diet. Low-grade CNS inflammation has also been suggested to be 

involved in the pathogenesis of SNS activation and hypertension associated with obesity 

[34]. Previous studies also suggest that an imbalance of nitric oxide (NO) and reactive 

oxygen species (ROS) in the autonomic nuclei in the brain may mediate obesity-induced 

SNS activation and hypertension, contributing to the inflammatory process and progression 

of hypertension [35, 36]. However, there are no studies, to our knowledge, showing that anti-

inflammatory drugs reduce SNS activity and BP in obese subjects.

Obesity is associated with impaired glucose tolerance, insulin resistance, and increased 

plasma insulin. Acute hyperinsulinemia has been reported to cause SNS activation and 
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sodium retention and has been suggested to link obesity with increased BP [37, 38]. 

However, multiple studies have shown that chronic hyperinsulinemia causes peripheral 

vasodilation, but does not elevate BP in dogs or in humans, although some studies suggest 

that high levels of insulin may modestly increase BP in rodents [16]. Administration of an 

insulin antagonist ICV caused a similar small reduction in BP (~3–4 mmHg) in lean as well 

as obese rabbits fed a high-fat diet, but no change in renal SNS activity [12]. Thus, most of 

the available evidence suggests that hyperinsulinemia plays a minor role, if any, in 

stimulating SNS activity and raising BP in obesity.

Ghrelin and adiponectin deficiency have also been suggested to influence BP regulation in 

obesity. Obesity is associated with decreases in plasma adiponectin, which are inversely 

related to insulin resistance. Further, adiponectin knockout mice have severe insulin 

resistance and atherogenesis [38, 39]. However, loss of function adiponectin gene mutations 

do not cause hypertension, although BP may become more salt-sensitive [40]. Ghrelin levels 

are also reduced in obesity and weight loss increases ghrelin levels [41]. However, there 

have been no studies, to our knowledge, that have found an important role for ghrelin or 

adiponectin deficiency in mediating increased SNS activity and hypertension in obesity.

The role of the renin-angiotensin-aldosterone system (RAAS) in obesity has been reviewed 

previously [42, 43••]. Obese subjects often have modest increases in plasma renin activity, 

plasma angiotensinogen, Ang II, and aldosterone [38, 43••]. Although Ang II and 

mineralocorticoid activation contributes importantly to obesity-induced hypertension [16, 

44], there is no compelling evidence that increases in Ang II or aldosterone mediate SNS 

activation in obesity. Instead, increased SNS activity is an important factor in stimulating 

renin release and activating the RAAS in obese subjects [16, 43••].

Baroreflex Dysfunction in Obesity

Although the arterial baroreceptors clearly provide powerful moment-to-moment control of 

BP, their role in long-term BP regulation and in obesity hypertension is unclear. Previous 

studies demonstrated that baroreflex control of SNS activity is impaired in obese subjects, in 

parallel with metabolic abnormalities such as hyperglycemia, dyslipidemia, hyperleptinemia, 

hyperinsulinemia, and elevated BP [4, 45]. However, the role of these multiple metabolic 

abnormalities in causing impaired baroreflex regulation is unclear. In addition, impaired 

arterial baroreceptor function could be, at least partly, secondary to elevated BP in obesity 

hypertension.

Chronic electrical stimulation of the carotid sinus nerves reduces sympathetic activity and 

BP in obese dogs [46], consistent with the hypothesis that strong activation of arterial 

baroreceptors can have significant long-term effects on BP regulation. This finding, 

however, does not necessarily indicate that impaired baroreflexes actually cause obesity 

hypertension. However, increased lability of BP and periodic large increases in BP that 

occur with baroreceptor dysfunction may eventually cause target organ injury, especially 

kidney injury that could contribute to worsening of hypertension. Currently, the importance 

of baroreflex dysfunction in mediating obesity-induced SNS activation and hypertension is 

unclear.
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Obstructive Sleep Apnea and Intermittent Hypoxia in Obesity

Obesity is a major risk factor for obstructive sleep apnea (OSA), and chronic intermittent 

hypoxemia (CIH) caused by OSA has been suggested to cause resistant hypertension though 

SNS activation [47, 48]. Renal denervation not only reduces BP in obese subjects with 

resistant hypertension, but also has been suggested to attenuate OSA in these patients [49].

Even in the absence of OSA, obesity may tend to cause hypoxemia since obese subjects 

have increased metabolic rate and decreased cardiac/blood flow reserve [4, 16]; this 

mismatch between metabolic rate and blood flow is especially evident during exercise. Thus, 

it is possible that chronic hypoxemia may cause chemoreflex activation and subsequent 

sympathoexcitation in obesity. Support for this hypothesis comes from recent studies 

showing that carotid sinus denervation, which eliminates baroreceptor and chemoreceptor 

input to the CNS, reduces BP and ventilation rate in obese dogs [50].

Although the precise CNS mechanism by which hypoxemia increases sympathetic activation 

is unclear, previous studies suggested that in CIH altered PVN activity leads to impairment 

of sympathetic and parasympathetic tone [24]. However, further experiments are needed to 

unravel the CNS areas involved in CIH-induced increase in SNS activation and hypertension 

and the importance of this mechanism in obesity-induced hypertension.

Role of Leptin in Mediating SNS Activation in Obesity

Although multiple factors may contribute to increased SNS activity in obesity, leptin has 

emerged as a key contributor (Fig. 1). Leptin, a peptide hormone secreted by adipocytes in 

direct proportion to adiposity, crosses the blood brain barrier to activate its receptors in 

various regions of the CNS, especially in the hypothalamus and brainstem. Leptin has 

powerful effects to decrease appetite and to increase energy expenditure by increasing SNS 

activity [51, 52, 53••]. The major brain areas of leptin’s actions are ARC, ventromedial, and 

DMH of hypothalamus, NTS, and SO [54••], which are all important areas involved in SNS 

regulation. Leptin is perhaps the body’s most powerful hormonal regulator of energy 

balance; leptin deficiency or loss of function mutations of the leptin receptor (LR) lead to 

early-onset, morbid obesity in humans and experimental animals [55, 56].

Evidence consistent with a role for leptin in contributing to increased SNS activity and 

development of obesity hypertension comes from studies in rodents and humans showing 

that acute infusions of leptin increase renal and muscle SNS activity [57, 58]. Also, chronic 

infusion of leptin in lean normotensive rodents, at rates that raise plasma levels to those 

observed in severe obesity, causes gradual elevation in BP that can be completely abolished 

by intravenous administration of α and β adrenergic receptor blockers [59, 60]. Leptin-

induced elevation in BP in lean animals occurs in parallel with marked reductions in appetite 

and significant weight loss which would normally decrease BP [43••, 61]. Therefore, in the 

absence of these metabolic actions to promote weight loss, leptin’s effects on SNS activity 

and BP may be exacerbated. Leptin’s effects on BP are also exacerbated when nitric oxide 

synthesis is impaired [62] as may occur in obese subjects with endothelial dysfunction.
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Infusion of leptin antagonists reduced renal SNS activity and BP in obese rabbits fed a high-

fat diet [11, 12], suggesting an important role of leptin in obesity-induced SNS activation 

and increased BP. The importance of leptin in linking obesity with hypertension is further 

supported by the observation that mice with leptin deficiency (ob/ob) have severe obesity 

and many characteristics of the metabolic syndrome, including insulin resistance, 

hyperinsulinemia, hyperglycemia, and dyslipidemia, but maintain lower BP and SNS 

activity compared to control mice [63]. In addition, humans with leptin deficiency, although 

exhibiting morbid obesity and many characteristics of the metabolic syndrome [55], are not 

hypertensive and do not have increased SNS activity [64]. Therefore, clinical and 

experimental data are consistent with the hypothesis that leptin may act as an important link 

between obesity, increased SNS activity and elevated BP.

Selective Leptin Resistance in Obesity: Neuronal-Specific Activation of LRs 

and Intracellular Signaling Events

Although plasma leptin is markedly increased in obesity, leptin’s ability to suppress appetite 

is attenuated whereas its effects on SNS activity appear to be sustained, suggesting that 

obesity is associated with resistance to the anorexic but not the SNS effects of leptin [54••]. 

In fact, leptin infusion causes normal or enhanced renal SNS activation and BP responses in 

obese animals fed a high-fat diet compared to lean controls [54••, 65]. The mechanisms by 

which obesity leads to this “selective” leptin resistance have not been fully elucidated but 

clues have recently emerged.

LRs are widely distributed in the brain and deletion of LR signaling in specific neuronal 

populations has produced only modest obesity, failing to recapitulate the severe obesity 

observed when LRs are deleted in the entire brain. Vong and colleagues [66] showed that 

deleting LRs in GABAergic neurons recapitulates most of the obese phenotype observed in 

leptin deficiency; however, GABAergic neurons are widely distributed and it is still unclear 

which neuronal types or brain sites are most important in mediating the effects of leptin on 

body weight homeostasis.

Neurons in the hypothalamus and brainstem clearly play a key role in mediating the actions 

of leptin on SNS activity and BP regulation. For instance, deletion of LRs in the ARC 

significantly reduces the acute effects of leptin to increase renal SNS activity and attenuates 

the rise in BP induced by a high-fat feeding diet [67]. In addition, we demonstrated that 

selective deletion of LRs in proopiomelanocortin (POMC) neurons, located in the ARC and 

in the hindbrain, completely abolished the chronic effects of leptin to raise BP whereas 

leptin’s ability to reduce appetite and to promote weight loss remained intact [68]. These 

findings are consistent with the possibility that POMC neurons may be an important 

component contributor to selective leptin resistance in obesity.

The VMH and DMH as well as extra-hypothalamic centers may also contribute to the acute 

effects of leptin on SNS activity. For example, mice with deletion of LRs only in SO neurons 

had normal brown adipose tissue sympathetic nerve activity (BATSNA) responses to acute 

leptin injection but increases in renal sympathetic activity (RSNA) were abolished [69].
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Hindbrain regions also appear to mediate the acute effects of leptin on SNS activity. 

Microinjections of leptin into NTS increased renal RSNA and acutely raised BP, while 

BATSNA remained unaffected [70]. Together, these findings suggest that several brain 

regions contribute to leptin’s effects on SNS and that these neurons may be differentially 

regulated.

After binding to its brain receptors, leptin increases Janus Tyrosine Kinase 2 (JAK2) activity 

and activates 3 main signaling pathways: (1) latent signal transducers and activators of 

transcription 3 (STAT3) which regulates transcription of leptin target genes, (2) Src 

homology protein 2 (SHP2) which activates mitogen-activated protein kinase (MAPK), and 

(3) insulin receptor substrate 2 (IRS2) which activates phosphatidylinositol 3-kinase (PI3K). 

CNS deletion of each of these signaling pathways results in varying degrees of obesity.

Neuron-specific deletion of STAT3 mimics the obesity and the hyperphagia found in leptin-

deficient animals [71]. However, deletion of STAT3 in the entire CNS may have other effects 

on food intake besides preventing leptin-mediated anorexia. Deletion of SHP2 in forebrain 

neurons also causes early-onset obesity associated with hyperphagia and impaired glucose 

regulation, although obesity and hyperphagia are not as pronounced as with STAT3 deletion. 

SHP2 deletion in forebrain neurons also attenuated leptin’s ability to reduce food intake and 

raise BP [72]. We also found that SHP2 signaling in POMC neurons contributes to the 

chronic BP and glucose-lowering effects of leptin but plays only a modest role in body 

weight regulation [73••], suggesting that SHP2 in POMC neurons may also contribute to the 

effects of leptin on SNS activity and BP. IRS2-PI3K signaling may also mediate leptin’s 

effect on SNS activity and BP. Pharmacological blockade of PI3K abolished the acute effects 

of leptin on RSNA [74]. Recently, we found that IRS2 signaling in the entire brain, and 

particularly in POMC neurons, is essential for the chronic effects of leptin on BP but not for 

leptin’s actions on appetite and glucose regulation [75], suggesting that while IRS2 

contributes only modestly to body weight regulation it has a major role in the effects of 

leptin on SNS activity and BP.

Role of CNS Proopiomelanocortin Pathway in SNS Activation

Mice with melanocortin 4 receptor (MC4R) deficiency are hyperphagic and obese and 

exhibit most of the characteristics of metabolic syndrome that are observed in leptin 

deficiency [76]. Mutations in POMC or MC4R genes also lead to severe early-onset obesity 

and pronounced hyperphagia in humans as well as in rodents [76, 77].

Besides its effects on food intake and body weight regulation, MC4R may also link obesity 

and hyperleptinemia with increased SNS activity and hypertension. MC4R-deficient mice 

are obese but normotensive when compared to lean controls, and they are resistant to the 

pressor effects of chronic leptin administration [76]. MC4R mutations in humans are 

associated with reduced 24-h norepinephrine spillover, reduced diastolic and systolic BPs, 

and reduced prevalence of hypertension compared to obese individuals with normal MC4R 

function [78, 79]. In addition, pharmacological activation of MC4R in humans elevates BP 

[80].

do Carmo et al. Page 7

Curr Hypertens Rep. Author manuscript; available in PMC 2017 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We previously demonstrated that even in non-obese models of hypertension such as 

spontaneously hypertensive rats or hypertension induced by the nitric oxide synthase 

inhibitor (L-NAME), the CNS melanocortin system contributes to the maintenance of 

adrenergic tone and BP [81–83]. In addition, MC4R blockade caused greater BP reduction 

in obese compared to lean Zucker rats [84], suggesting a key role for MC4R in the 

regulation of SNS activity and BP even in obese models that lack normal leptin actions. 

Thus, in humans as well as in rodents, chronic MC4R activation raises BP and the presence 

of a functional POMC-MC4R pathway appears to be necessary for hyperleptinemia and 

other obesity-related factors to increase SNS activity and BP.

Despite evidence that leptin-MC4R pathway is important for weight gain to be associated 

with increased SNS activity and hypertension, the increase in BP measured during chronic 

administration of leptin or MC4R agonists is modest. One potential explanation is that the 

hypertensive effects of leptin and MC4R agonists have been conducted in lean animals and 

that obesity is associated with other factors, such as impaired endothelial and renal NO 

formation, that potentiate the pressor actions of the leptin-MC4R pathway.

Even though the powerful effects of MC4R agonists on body weight and glucose 

homeostasis make them potential anti-obesity agents, the side effects of SNS activation, 

increased BP, and increased heart rate have been major limitations. Therefore, development 

of MC4R agonists capable of triggering the beneficial anorexic and antidiabetic effects of 

MC4R activation without eliciting detrimental effects on cardiovascular function is of great 

interest.

Although the physiological and behavior factors that regulate body weight homeostasis are 

still not well understood, complex interactions of adipokines, gastrointestinal hormones, and 

CNS pathways that control food intake and energy expenditure are clearly involved. The 

most powerful pathways that regulate appetite and other metabolic functions, such as the 

leptin-CNS melanocortin system, also influence SNS activity and BP regulation. 

Unfortunately, in obesity, many of the beneficial metabolic actions of these systems are 

greatly attenuated whereas the harmful effects of SNS activation and increased BP are 

preserved. Understanding the mechanisms involved in the adaptations to obesity may 

provide opportunities to design better therapies for obesity and its associated metabolic and 

cardiovascular disorders.

Conclusions

Obesity is a major contributor to hypertension and cardiometabolic diseases worldwide. 

While obesity-induced increases in BP are multifactorial, SNS activation contributes to renal 

dysfunction and hypertension in obese subjects. The mechanisms linking obesity with SNS 

activation and hypertension are not fully understood, but leptin and activation of the CNS 

melanocortin pathway may play important roles. Abnormal function of the leptin-MC4R 

axis in obesity may lead to impaired control of appetite and other metabolic actions while 

effects on SNS activity and BP are maintained or enhanced. The neural circuits and 

molecular pathways by which the leptin-MC4R controls RSNA and BP independently of its 

effects on food intake and other metabolic functions are still unclear. Better understanding of 
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the molecular pathways and neuronal-specific actions of LR and MC4R in controlling 

appetite, metabolic functions, and SNS activity is critical for the development of anti-obesity 

drugs without deleterious cardiovascular effects.
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Fig. 1. 
The CNS leptin-melanocortin system and hypothalamic and brainstem centers that may 

contribute to the sympathetic nervous system (SNS) activation and hypertension in obesity. 

POMC (proopiomelanocortin), MC4R (melanocortin-4 receptor), SO (subfornical organ), 

ARC (arcuate nucleus), PVN (paraventricular nucleus of the hypothalamus), VMH 
(ventromedial hypothalamus), NTS (nucleus, nucleus tractus solitaries), DMV (dorsal motor 
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nucleus of the vagus), RVLM rostral ventral lateral medulla, IML (intermediolateral 

nucleus)
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