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The potential adverse effects of haemolysis
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Abstract
Haemolysis occurs in many haematologic and non-

haematologic diseases. Transfusion of packed red blood 
cells (pRBCs) can result in intravascular haemolysis, in 
which the RBCs are destroyed within the circulation, 
and extravascular haemolysis, in which RBCs are 
phagocytosed in the monocyte-macrophage system. This 
happens especially after RBCs have been stored under 
refrigerated conditions for long periods. The clinical 
implications and the relative contribution of intra- vs 
extra-vascular haemolysis are still a subject of debate. 
They have been associated with adverse effects in animal 
models, but it remains to be determined whether these 
may be involved in mediating adverse effects in humans. 
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Haemolysis occurs in many haematologic and non-
haematologic diseases and can be defined as the removal 
of senescent or damaged red blood cells (RBCs) from the 
circulation1. Haemolysis also occurs after transfusion of 
stored blood. In particular, there is increasing evidence 
to suggest that increasing the storage period between 
blood donation and transfusion results in a decrease in 
RBC recovery and consequently an increase in post-
transfusional haemolysis2,3. However, the storage time-
related adverse effects and the potential mechanisms 
associated with transfusion-related toxicity remain 
controversial, and the relative contribution of intra- vs 
extra-vascular haemolysis is still under discussion.

In fact ,  haemolysis can be dist inguished 
as intravascular haemolysis, in which the RBCs 
are destroyed within the circulation and release 
free haemoglobin (Hb) and RBC contents into the 
bloodstream, and extravascular haemolysis, in which 
RBCs are phagocytosed in the monocyte-macrophage 
system of organs such as the liver and the spleen4,5. 
To the extent that clinically-relevant adverse effects 
of transfusions exist, it is likely that they are due to a 
combination of intra- and extra-vascular haemolysis, as 
shown by some animals models designed to describe the 
consequences of massive transfusions6. Of course, the 
complex biochemical and structural changes occurring 
during blood storage, and generally referred to as the 
Storage Lesion, can also contribute to these effects.

Intravascular haemolysis 
The primary acute pathophysiological responses to 

extracellular Hb in plasma are increased blood pressure7 

and pro-oxidative toxicity occurring in vascular and 
renal tissues6,8. Pulmonary arterial pressure (PAP) 
was also observed to increase after exposure to free 
Hb9,10. During intravascular haemolysis, some toxic 
compounds typically compartmentalised within RBCs, 
such as haemoglobin and haeme, are released into the 
circulation. The adverse clinical effects associated with 
intravascular haemolysis are thought to be caused by: 
1) extravascular translocation of haemoglobin and other 
RBC content; 2) imbalance between nitric oxide (NO) 
and reactive oxygen species (ROS); 3) platelet and 
haemostatic activation; and (4) haeme, haemoglobin and 
ATP-mediated activation of the innate immune system. 
The scavenger systems to limit the toxicity of the RBC 
contents include soluble plasma proteins, among which 
haptoglobin and haemopexin are considered to be the 
most important.

The first line of defence is haptoglobin, which 
irreversibly binds to the released haemoglobin. The 
resulting complex is rapidly cleared from the circulation 
via receptor-mediated endocytosis (CD-163 scavenger 
receptor11,12) and degraded in the liver, leading to a 
reduction in plasma haptoglobin. Cell-free plasma 
haemoglobin may overwhelm this scavenger system 
causing an intensified consumption of the endogenous 
NO and the formation of methemoglobin, which releases 
free haeme. Haemopexin, an acute phase protein 
primarily expressed in the liver, binds haeme and in 
addition this complex is removed by receptor-mediated 
endocytosis. 

Various adverse effects, such as vascular dysfunction, 
injury, and inflammation, can be caused by the 
presence of free haemoglobin and free haeme in the 
circulation13. The first mechanism causing these effects 
is the imbalance between NO, a critical regulator of 
vasodilation and vascular homeostasis, and ROS. NO 
produced by endothelium and oxyhaemoglobin can 
quickly and irreversibly react, but this process is usually 
limited by compartmentalisation of haemoglobin inside 
the erythrocyte. During intravascular haemolysis, 
haemoglobin circulates in vessels free or in small 
microvesicles that can react faster with NO via the 
NO deoxygenation reaction and iron nitrosylation 
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reactions, as shown in some animal models7,14. In 
particular, it has been shown that more than 0.01 g/dL 
of free haemoglobin in plasma can potently inhibit 
NO-dependent vasodilation in vivo15,16. The decrease 
in NO availability during intravascular haemolysis can 
also be due to other mechanisms. Free haeme can cause 
NO consumption and vasoconstriction by increasing 
adhesion molecule expression and endothelial activation, 
serving as a pro-inflammatory ligand of innate immune 
receptors (e.g., TLR4). This process also promotes 
inflammatory cell recruitment, platelet aggregation, and 
oxidation of low-density lipoprotein17-20. In addition, 
during RBC haemolysis significant concentrations of 
the enzyme arginase 1 are released into the circulation. 
Arginase 1 can metabolise L-arginine to ornithine, 
reducing the available L-arginine which is required for 
NO synthesis by the endothelial NOS (NO synthase) 
enzyme.

Therefore, during intravascular haemolysis, low 
levels of decompartmentalised or cell-free plasma Hb 
can impair NO signalling, reducing its bioavailability and 
producing vasomotor instability, endothelial dysfunction 
and systemic vasocontriction that clinically results in 
an increase in systemic vascular resistance and, as a 
consequence, a rising systolic, diastolic and mean arterial 
blood pressure with a decrease in or either unchanged 
cardiac output8,9,15, and a decreased perfusion to some 
organ systems, such as kidneys21. NO supplementation 
before free Hb exposure seems to attenuate these 
phenomena and the consequent clinical effects9,22.

An increase in ROS production is also observed 
during haemolysis. In fact, free Hb auto-oxidises 
to methemoglobin and participates in a catalytic 
pseudoperoxidase cycle producing ROS. Haeme, which 
contains iron, is also responsible for the production of 
ROS through the Fenton reaction and by other distinct 
signalling pathways23,24. 

During intravascular haemolysis, platelet and 
haemostatic activation can occur. In vitro experiments 
demonstrate that NO inhibits both platelet aggregation 
and endothelial adhesion molecule expression. Thus, 
during intravascular haemolysis, the acute reduction in 
NO bioavailability can lead to the activation of platelets 
and the haemostatic system25,26. Furthermore, NO may 
affect coagulation by inhibiting Factor XIII, enhancing 
clot stability and reducing clot dissolution27. Finally, 
RBCs contain high levels of ADP, the release of which 
can activate platelets via the P2Y receptors28. 

As mentioned before, haeme and haemoglobin can 
mediate the activation of the innate immune system 
causing macrophage and neutrophil migration to the 
lung and the release of DNA neutrophil extracellular 
traps (NETs)29-31 within the lung parenchyma. This 
process induces activation of inflammation and 

thrombosis, through endothelial activation, RBC and 
activated platelet recruitment, and fibrin deposition. 
Haeme may also trigger pro-inflammatory and pro-
thrombotic pathways through the stimulation of 
macrophage and endothelial cell toll-like receptor 4 
(TLR)-4, involving Weibel-Palade body degranulation 
and nuclear factor-kappa B (NF-κB) activation18,19. 
Finally, intravascular haemolysis leads to ATP release, 
which can activate inflammatory pathways leading to 
sterile inflammation32. Therefore, intravascular release 
of RBC content after transfusion of older stored blood 
could contribute to cardiovascular and renal dysfunction, 
as well as inflammation, thrombosis, and enhanced 
susceptibility to infection, in severely ill patients. 

Extravascular haemolysis 
Damaged or aged RBCs accumulate over time within 

stored blood bags. Some degree of acute haemolysis 
occurs after transfusion through phagocytosis by the 
macrophage-monocyte system of the liver or spleen. 
This process is called extravascular haemolysis, and 
it classically occurs to eliminate senescent circulating 
RBCs displaying surface markers that identify them 
as cells requiring removal. During extravascular 
haemolysis, the RBC content is not found in plasma 
because the cell is lysed inside the macrophage. The 
degradation products deriving from this process are 
salvaged and recycled. In particular, the iron derived 
from haemoglobin is either stored intracellularly in 
ferritin deposits or returned to the plasma to be bound 
by transferrin and transported to the erythroid marrow 
for erythropoiesis and to other tissues for re-use. In 
circulation, iron (Fe3+) is carried by transferrin, which 
binds it with high affinity and renders it unable to react 
with ROS and other substances. Furthermore, at a 
steady state, the rate of RBC destruction is equal to the 
rate of red cell production, generating an equilibrium 
between waste production and re-use. However, 
this process is intensified after transfusion, when an 
average of up to 25% of the transfused RBCs can be 
cleared from the circulation according to regulatory 
agency criteria for blood storage3. The majority of the 
storage-damaged RBCs are cleared from the circulation 
very rapidly (within the first hour after transfusion33), 
causing an excessive rate of delivery of haeme-iron to 
reticuloendothelial macrophages. Consequently, the 
rate of release of iron into the circulation can surpass 
the rate of uptake by transferrin, producing circulating 
non-transferrin-bound iron (NTBI)3,34. NTBI is a 
heterogeneous group of iron complexes, mainly Fe3+-

citrate or albumin complexes, which is considered 
potentially toxic. A fraction of NTBI, known as labile 
plasma iron (LPI), is very loosely bound to proteins and 
is highly redox active, and is probably the main cause 
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of iron-mediated oxidative damage35,36. NTBI and LPI 
can also enter many cell types, such as liver, pancreas, 
endocrine glands cells and cardiomyocytes by non-
transferrin dependent pathways, resulting in increased 
labile intracellular iron (LIC)37, a highly reactive form 
of iron. LIC can generate ROS from reactive oxygen 
intermediates, over-riding the cell antioxidant defences 
and compromising cell integrity and causing organ 
damage and failure. Under normal conditions, NTBI and 
LPI should not be found in plasma. However, NTBI can 
be detected in the plasma as soon as transferrin becomes 
more saturated38 , and rises significantly when transferrin 
saturation exceeds 70-80%38-40. 

The full implications of the increased extravascular 
haemolysis after transfusion of stored blood, regardless 
of the chronic or acute nature of the transfusions, 
remain to be determined. However, animal studies 
using mice41 and dogs42 suggest that there is a pro-
inflammatory response following transfusion of older, 
stored RBCs. This can exacerbate an underlying 
systemic inflammatory response syndrome (SIRS)41, 
increase alloimmunogenicity to RBC antigens43, and 
enhances proliferation of certain pathogens3,44,45. Thus, as 
expected, multiple observational studies have suggested 
an association between transfusion of RBC stored for 
longer durations and worse clinical outcomes46 (e.g., 
increases in sepsis, pneumonia, multi-organ failure, 
myocardial infarction, acute renal failure, thrombosis, 
and mortality). However, these studies have significant 
flaws, mainly owing to the difficulty in disentangling the 
contribution of the age of the RBCs from the increased 
underlying disease severity in patients receiving more, 
and therefore older, units of RBCs. Thus, despite the 
completed and ongoing controlled trials designed to 
address these questions, the issue of whether transfusion 
of RBCs stored for a prolonged period is harmful is still 
controversial.
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