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Red blood cells ageing markers: a multi-parametric analysis
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Background. Red blood cells collected in citrate-phosphate-dextrose can be stored for up to 
42 days at 4 °C in saline-adenine-glucose-mannitol additive solution. During this controlled, but 
nevertheless artificial, ex vivo ageing, red blood cells accumulate lesions that can be reversible or 
irreversible upon transfusion. The aim of the present study is to follow several parameters reflecting 
cell metabolism, antioxidant defences, morphology and membrane dynamics during storage.

Materials and methods. Five erythrocyte concentrates were followed weekly during 71 days. 
Extracellular glucose and lactate concentrations, total antioxidant power, as well as reduced and 
oxidised intracellular glutathione levels were quantified. Microvesiculation, percentage of haemolysis 
and haematologic parameters were also evaluated. Finally, morphological changes and membrane 
fluctuations were recorded using label-free digital holographic microscopy.

Results. The antioxidant power as well as the intracellular glutathione concentration first increased, 
reaching maximal values after one and two weeks, respectively. Irreversible morphological lesions 
appeared during week 5, where discocytes began to transform into transient echinocytes and finally 
spherocytes. At the same time, the microvesiculation and haemolysis started to rise exponentially. 
After six weeks (expiration date), intracellular glutathione was reduced by 25%, reflecting increasing 
oxidative stress. The membrane fluctuations showed decreased amplitudes during shape transition 
from discocytes to spherocytes. 

Discussion. Various types of lesions accumulated at different chemical and cellular levels during 
storage, which could impact their in vivo recovery after transfusion. A marked effect was observed 
after four weeks of storage, which corroborates recent clinical data. The prolonged follow-up period 
allowed the capture of deep storage lesions. Interestingly, and as previously described, the severity 
of the changes differed among donors.

Keywords: red blood cell, storage lesion, membrane fluctuation, digital holographic microscopy, 
antioxidant.

Introduction
During storage, red blood cells (RBCs) accumulate 

metabolic, oxidative and physiological lesions1-4 
that can be reversible or irreversible following 
transfusion5. Several studies assessed the adverse 
effects of transfusing long-term stored RBCs in humans 
and dogs6-8. Recently, Goel et al. demonstrated in a 
retrospective study that transfusion of RBCs of more 
than 35 days was associated with an increased length 
of stay in hospital, morbidity and mortality, especially 
for high-risk patients9. However, recent randomised 
trials, such as the Age of Blood Evaluation (ABLE)10, 
the Red Cell Storage Duration study (RECESS)11, and 
the Informing Fresh versus Old Red Cell Management 
(INFORM) trial12 suggested that patients transfused 
with short- or long-term stored RBCs have similar 
clinical outcomes13.

Storage at 4 °C not only prevents bacterial 
expansion, it also slows down RBC metabolism, thus 
limiting consumption of nutrients and accumulation 
of waste products14,15. For example, inhibition of 
the glycolytic enzyme phosphofructokinase at 
low temperature and low pH (when extracellular 
lactate level builds up)16 results in rapid depletion 
of the oxygen-haemoglobin (Hb) affinity regulator 
2,3-diphosphoglycerate (DPG)17. The membrane Na+/K+ 
pumps are also known to be inactivated at 4 °C, leading 
to loss of potassium and accumulation of intracellular 
sodium18. In a recent study, Paglia et al. proposed 8 
extracellular compounds as biomarkers to describe the 
different metabolic phases during storage19.

The RBCs packed in gas permeable blood bags 
are continuously exposed to oxygen. Consequently, 
when oxidative stress exceeds antioxidant defence, 

© SIM
TI S

erv
izi

 Srl

All rights reserved - For personal use only 
No other use without premission



240

Bardyn M et al

Blood Transfus 2017; 15: 239-48  DOI 10.2450/2017.0318-16

oxidative injuries such as proteins oxidation and 
lipids peroxidation accumulate20-26. After four weeks 
of storage, it was hypothesised that the proteasome 
becomes unable to degrade accumulating cross-linked 
oxidised proteins which bind to the intracellular 
side of the membrane3,15,21,22,27-29. RBC metabolism 
is also impacted by oxidative stress. For example, 
oxidation was shown to modulate enzymatic activity 
of glyceraldehyde 3-phosphate dehydrogenase, thus 
re-routing glucose oxidation through the glycolysis or 
pentose phosphate pathway (PPP)24,30. Accumulation of 
cytosolic peroxiredoxin-2 at the inner cell membrane 
was proposed as a marker of oxidative stress in RBCs31.

To eliminate altered proteins, lipids and other 
deleterious compounds, stored RBCs release 
phospholipids-rich, CD47-positive microvesicles 
(MVs)28. Among other proteins, extensively oxidised 
Hb at key functional residues was found in MVs 
during storage32. MV accumulation in the blood bags33 
has a haemostatic effect in transfusion recipients34,35. 
In addition, membrane loss by microvesiculation 
is an irreversible process during which biconcave 
RBCs progressively become echinocytes and finally 
spherocytes36,37. High membrane surface-to-volume 
ratio, as well as dynamic adenosine triphosphate 
(ATP)-dependent membrane-cytoskeleton remodelling, 
which are both decreased during storage, give their 
deformability to the RBCs allowing them to pass through 
small capillaries and deliver oxygen to peripheral 
organs/tissues38-40. RBCs that are poorly deformable 
and/or express senescent markers, such as increased 
externalised phosphatidylserine or decreased CD47 
levels, are retained by the macrophages in transfusion 
recipient spleen and removed from circulation41,42.

Ultimately, RBCs that are too extensively damaged 
lyse in the blood bag, releasing their cytosolic content43. 
Haemolysis biomarkers were recently discovered by 
proteomics analysis of erythrocyte concentrate (EC) 
supernatant44. Transfusion of long-term stored RBCs 
exhibiting a high percentage of haemolysis leads to 
an increase of the level of non-transferrin bound iron 
in the circulation of the patient45. In addition, cell-free 
Hb accumulates in the spleen, the kidney and/or the 
liver of the transfusion recipient46-48. This might induce 
transfusion-related complications such as increased 
inflammation and predisposition to infections49,50.

Since morphological damage is related to biochemical 
lesions, our study aims at better characterising and 
quantifying storage lesions by looking at multiple ageing 
hallmarks all together. Therefore, 5 different ECs were 
followed during 71 days. Some metabolic parameters 
such as glucose consumption and extracellular lactate 
accumulation were quantified. Antioxidant power (AOP) 
was determined via the electrochemical pseudo-titration 

of water-soluble antioxidants51,52 in the ECs as well as the 
measurement of the intracellular glutathione. Percentage 
of haemolysis and degree of microvesiculation were also 
assessed. Finally, digital holographic microscopy (DHM) 
was used to follow the changes of RBC morphology and 
the levels of dynamic cell membrane fluctuations (CMF), 
a parameter related to cell health state53.

Material and methods
Preparation of the erythrocyte concentrates

The 5 ECs came from healthy donors (2 women 
and 3 men) who donated whole blood (refer to Online 
Supplementary Content). The products were prepared at 
the blood center of the Interregional Blood Transfusion 
SRC (Epalinges, Switzerland) as follows: 450±50 mL 
of whole blood were collected and mixed with 63 mL 
citrate-phosphate-dextrose (CPD) anticoagulant. The 
pouches were centrifuged to separate blood components, 
and a semi-automated pressure applied to distribute 
the blood fractions into sterile inter-connected blood 
bags (Fenwal, Lake Zurich, IL, USA). Finally, the 
erythrocytes were filtered to remove residual leukocytes 
and 100 mL of saline-adenine-glucose-mannitol 
(SAGM) additive solution were added. The 5 ECs 
(final volume of 275±75 mL and haematocrit [HCT] of 
0.6±0.1 v/v) were stored at 4 °C and monitored during 
71 days. Five mL of each sample were collected using 
a sampling site weekly during 71 days (twice during 
week 1, 2 and 4).

Intracellular glutathione
Quantification of intracellular reduced and oxidised 

glutathione (GSH and GSSG) was performed according 
to the protocol proposed by Giustarini et al.54 with small 
modifications. This assay is based on GSH reaction 
with Ellman's reagent (5,5'-dithio-bis-[2-nitrobenzoic 
acid], [DTNB]) that produces TNB quantifiable by 
spectrophotometry at 412 nm. GSSG is recycled into 
GSH in the presence of glutathione reductase and 
reduced nicotinamide adenine dinucleotide phosphate 
(NADPH). Two mL of each EC were collected for 
the analysis, from which 750 μL were transferred 
into an empty tube for total glutathione quantification 
and 750 μL in a second tube containing 225 μL of 
the derivatising agent N-ethylmaleimide (NEM 300 
mM, Sigma-Aldrich, Steinheim, Germany) for GSSG 
measurement. NEM is added to prevent oxidation 
of GSH into GSSG during the acid deproteinisation 
step. Samples were centrifuged at 10,000 g, 38 sec., 
4 °C and supernatant was discarded. RBCs were then 
washed twice in 2 volumes of 1× phosphate buffered 
saline (PBS) (Laboratorium Dr. G. Bichsel, Interlaken, 
Switzerland). RBC pellet was resuspended in 1 
volume of 1×PBS, and a Sysmex (KX-21N, Sysmex, 
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Horgen, Switzerland) measurement was performed 
to determine intracellular Hb concentration of each 
sample for normalisation. Two aliquots of 400 μL were 
transferred in new tubes, centrifuged as before, and 
supernatant was discarded. The samples were stored 
as dry pellets of RBCs at −80 °C until analysis. The 
rest of the analysis followed the procedure described 
in the protocol. 

Haematologic, antioxidant power and microvesicle 
analyses

Approximately 500 μL samples were withdrawn 
from each ECs for haematologic, AOP and MVs 
analyses. Haematologic data were recorded with 
Sysmex automated haematology analyser. AOP of ECs 
was measured electrochemically using an Edelmeter 
potentiostat (EDEL-for-Life, Lausanne, Switzerland)51. 
A few microlitres (approximately 3 μL) of EC sample 
were loaded in a disposable screen-printed electrode 
chip and linear sweep voltammetry was recorded 
by the apparatus. AOP is reported in nW (1 nW 
being equivalent to the antioxidant activity of 1 μM 
of ascorbic acid in PBS). MVs were quantified by 
flow cytometry (FACScalibur flow cytometer with 
CellQuest pro software, BD Biosciences, Franklin 
Lakes, NJ, USA)21,33. Briefly, 5 μL of EC were mixed 
with 5 μL of FITC anti-human CD47 antibody (BD 
Biosciences, San Jose, CA, USA) and incubated 20 
min. at room temperature under agitation. Before 
analysis, TrucountTM tubes (BD Biosciences, Franklin 
Lakes, NJ, USA) that contain a known amount of 
fluorescent beads enabling quantitation were filled with 
400 μL of 0.9% NaCl (Laboratorium Dr. G. Bichsel) 
and 5 μL of labelled sample. The different populations 
in the sample were discriminated according to their 
size (forward scatter [FSC]), granularity (side scatter 
[SSC]) and fluorescence. Small (<1 μm) and CD47-
positive events were considered as MVs.

Haemolysis, glucose and lactate quantitation in 
supernatants

Two and a half mL of EC samples were centrifuged 
at 2,000 g, 10 min. at 4 °C. The supernatants were 
collected for haemolysis measurement and stored at −80 
°C for further analyses (extracellular glucose and lactate 
concentrations). RBCs were further processed for DHM 
analysis. The concentration of Hb in the supernatant for 
haemolysis quantitation was determined according to 
the Harboe method with the 3-point Allen correction55. 
Absorbance at 415, 380 and 450 nm was recorded with 
a spectrophotometer (NanoDrop 2000c, Thermo Fisher 
Scientific, Wilmington, Delaware, USA).

Extracellular concentrations of glucose and lactate 
were measured in supernatant samples using commercial 

colorimetric assays56. Glucose was quantified using a 
Biochain assay (kit Z5030025, BioChain, Newark, CA, 
USA) and lactate concentration with a BioVision assay 
(kit II, K627-100, BioVision, Milpitas, CA, USA).

Digital holographic microscopy experiments
Red blood cells were washed twice with 0.9% NaCl 

and spun down at 2,000 g, 10 min. at 4 °C. At the end 
of the washing step, RBCs were resuspended in 1 
volume of NaCl 0.9%. Six hundred μL of each sample 
were taken into 1.5 mL tube, centrifuged as before, 
supernatants were discarded, and two volumes of 
HEPA 10 mM glucose (refer to Online Supplementary 
Content) were added on RBC pellets (Sysmex analysis 
was performed to determine the RBC concentration). 
RBCs were further diluted and seeded at a density of 
75,000 cells in 100 μL per well (3 wells per EC) in 
a 96-well imaging plate (BD Falcon, Big Flats, NY, 
USA) coated with 0.1 mg/mL Poly-L-ornithine (Sigma-
Aldrich). The plate was centrifuged at 140 g, 2 min. 
at room temperature to speed up the sedimentation 
process. During image acquisition, the plate was placed 
in a plate incubator set at 37 °C with high humidity 
and 5% CO2. 

The microscope used was a DHM® T1000 (Lyncé e 
Tec SA, Lausanne, Switzerland) equipped with a 
motorised microscope stage (Mä rzhä user Wetzlar GmbH 
& CO. KG, Wetzlar, Germany), an incubator system 
(LCI Live Cell Instrument, Seoul, South Korea), and 
Leica 20×/0.40 NA and 40×/0.75 NA objectives (Leica 
Microsystems GmbH, Wetzlar, Germany). Quantitative 
phase images (20× magnification, 4 images/well) and 
short movies (40× magnification, 10 sec., 20 images/sec.) 
of RBCs were acquired to analyse RBC morphology and 
membrane fluctuations, respectively. DHM is a non-
invasive label-free interferometric microscopy technique 
which provides a quantitative measurement of the phase 
or optical path length (OPL, related to the morphology 
and Hb content of RBC)57-60. It is a 2-step process where 
a hologram consisting of a 2D interference pattern is 
first recorded on a digital camera and the quantitative 
OPL images are reconstructed numerically using a 
specific algorithm. The phase information in DHM 
is quantitatively related to the optical path difference 
(OPD), expressed in terms of cell biophysical parameters 
as described in the following equation:

OPD(x,y) = d(x,y) × (ncell(x,y) − nm)

where d(x,y) is the cell thickness, ncell(x,y) the mean 
z-integrated intracellular refractive index (a property 
mainly linked to the protein concentration of cells60) 
at the (x,y) position and nm the refractive index of the 
surrounding culture medium61. 

(1)
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Concretely, as far as RBCs are concerned, the value 
of the intracellular refractive index results primarily 
from Hb concentration and is considered as constant. 
DHM system uses a low intensity laser as light source 
for specimen illumination and a digital camera to 
record the hologram. Here, the 684 nm laser source 
delivers roughly 200 μW/cm2 at the specimen plane; 
that is some six orders of magnitude less than intensities 
typically associated with confocal fluorescence 
microscopy. With that amount of light, the exposure 
time is only 0.4 ms.

Red blood cell morphology analysis with digital 
holographic microscopy

Quantitative phase images were analysed in two 
ways. First, a population analysis (yielding a single 
output per image) was performed by automatic 
calculation of the standard deviation of the OPD 
distribution (SD-OPD) value during the reconstruction 
of the images, it has the advantage of being directly 
available without further analysis enabling high-
throughput screening. The raw OPD images are 
thresholded with a fixed threshold value (slightly above 
background level to discard noisy pixels) to create the 
"cell mask", all the pixel OPD values that are within the 
mask are plotted in a histogram. The standard deviation 
of the distribution of OPD values is then calculated 
and averaged for the 4 images and used to quantify 
morphological changes occurring in RBCs. 

Single-cell analysis was also performed using 
CellProfiler (Broad Institute, www.cellprofiler.org, 
2.1.0 rev 0c7fb94) and CellProfiler Analyst (2.0 
r11710)62. CellProfiler was first used to identify, 
segment and measure different parameters of the 
individual RBCs such as their area, size, intensity and 
granularity. CellProfiler Analyst (CPA) then uses these 
features during the supervised machine learning to 
classify RBCs in one of the four class that was defined: 
"stomatocytes", "discocytes", "echinocytes" and 
"spherocytes". An additional "errors" class was added 
to eliminate objects resulting from segmentation errors.

Red blood cell membrane fluctuations with digital 
holographic microscope

DHM phase images from each time-frame of the 
recorded movies were first registered using the StackReg 
ImageJ plugin63 (to cancel the spatial displacement of 
RBCs) and then, using ImageJ64, manually segmented 
into individual RBCs to measure membrane fluctuations 
at the single-RBC level. Membrane fluctuations 
amplitude were measured on individual cells according 
to Rappaz et al.65 (refer to Online Supplementary 
Content). Fluctuations were computed for the four 
different shapes of RBC.

Data were analysed and plotted with Prism 7 software 
(GraphPad PRISM, La Jolla, CA, USA). Mean values for 
the 5 ECs were calculated with errors bars corresponding 
to the mean ± standard deviation. One-way ANOVA 
with Greenhouse-Geisser correction was performed to 
compare values at different storage time.

Results and discussion
Storage lesions appeared at different time points during 

the 71 days of follow up. Mean values for several ageing 
parameters at day 1, 29, 43 and 71 are presented in Table I.

Routine haematologic data
Haematologic parameters (Figure 1A) evolved 

similarly for all ECs at the exception of EC 5. Mean RBC 
corpuscular volume (MCV), initially of 89.5±4.3 fL, 
gained on average 5.1 fL at day 43 and 7.9 fL at day 71 
(not including EC 5). Sizes of RBCs in the population 
became more heterogeneous during storage, as indicated 
by an increasing deviation of RBC distribution width 
(SD-RDW), a parameter providing information about 
the anisocytosis.

Extracellular glucose and lactate concentrations
The extracellular glucose (initial concentration of 

481±33 mg/dL) was progressively consumed by the 
cells during storage, as indicated by the decline in 
concentration (Figure 1B, left). At day 52, a plateau 
value was reached at 180±29 mg/dL and did not decrease 
further. During the 71 days of storage, RBCs consumed 
on average 64% of the available glucose. In contrast, 
lactate, a glycolysis end product increased (Figure 
1B, right). Mean lactate concentration increased from 
6.6±1.0 mM at day 1 to reach a plateau at 36.5±3.3 mM 
at day 36 (5.6-fold increase).

Antioxidants
The global AOP in the 5 ECs increased during 

the first week of storage following blood collection 
(baseline mean AOP of 71.4±5.3 nW), reaching a 
maximal value (81.8±8.1 nW) at day 4. Then, the 
AOP decreased gradually until day 22 (65.5±6.3 nW) 
and remained stable until the end of follow up (Figure 
1C, left). This behaviour, as recently demonstrated52, 
suggests that RBCs are impacted by blood processing. 
This response can be passive (RBCs equilibrating with 
their new environment by releasing waste products 
and other molecules) or active. Uric acid is one of the 
antioxidant molecule excreted by the RBCs that is 
responsible for the increase of AOP52. This end-product 
of purine metabolism is present at concentrations close 
to its limit of water solubility in the blood plasma 
(120-450 μM) and is able to neutralise a broad range 
of ROS66. 
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Table I - Main red blood cell parameters followed during storage.

Day 1 Day 29 Day 43 Day 71

RBCs, T/L 6.47±0.46 6.34±0.51 6.34±0.51 6.51±0.48

MCV, fL 91.6±6.0 97.8±11.9 99.7±12.2 100.8±8.3**

SD-RDW, fL 48.2±1.8 54.0±7.7 55.6±8.5 58.8±13.3

Glucose, mg/dL 481.4±33.0 254.0±31.5** 211.1±34.4** 174.1±37.1**

Lactate, mM 6.57±0.96 32.66±3.42** 37.24±3.64** 35.95±3.87**

MVs, 1/μL 3,628±1,047 7,980±832++* 15,860±4,219** 258,654±106,413*

% haemolysis 0.079±0.017 0.233±0.062* 0.441±0.135** 3.817±1.391**

AOP, nW 71.4±5.3 62.3±9.2++ 61.4±5.6* 62.2±6.5

GSH, μmol/g Hb 5.27±0.42+ 5.46±0.62 4.08±0.33* 2.21±0.38**

GSSG, nmol/g Hb 28.2±5.2 35.0±4.9* 27.3±4.4 178.0±118.7

SD-OPD, nm 49.6±6 46.6±2.2* 55.5±6 86.8±8.9**

% stomatocytes 30.0±14.4 18.0±4.2 13.7±3.7 6.7±2.7

% discocytes 64.0±13.6 69.7±4.8 60.0±7.0 20.8±8.4*

% echinocytes 5.8±1.8 10.8±7.0 15.7±7.0 14.2±5.7

% spherocytes 0.1±0.1 1.5±0.8* 10.6±5.9* 58.3±13.0**

CMF discocytes, nm 30.4±3.5+ 29.5±2.9 29.9±3.1 29.0±2.9

CMF spherocytes, nm 32.1±4.1+ 27.5±3.2 28.1±3.4 27.9±3.4

Mean values of 5 ECs ± standard deviation. Measures taken at day 4+ instead of day 1 or day 31++ instead of day 29. 
*p<0.05, **p<0.01 compared to day 1. RBC: red blood cells; MCV: mean RBC corpuscular volume; SD-RDW: RBC distribution width; MVs: microvesicles; 
AOP: antioxidant power; GSH: intracellular reduced glutathione; GSSG: intracellular oxidised glutathione; SD-OPD: standard deviation of the optical 
path difference distribution; CMF: cell membrane fluctuations.

Similarly to the AOP, intracellular concentration 
of GSH increased during the first two weeks of 
storage from 5.27±0.42 μmol/g Hb at day 4 to 
6.35±0.39 μmol/g Hb at day 15 (Figure 1C, right). It 
then dropped to 4.08±0.33 μmol/g Hb after 43 days 
and 2.21±0.38 μmol/g Hb after day 71 of storage. In 
the 5 ECs, GSSG levels remained low until day 43 
(28.2±5.2 nmol/g Hb at day 1, 27.3±4.4 at day 43) 
and increased drastically up to 178.0±118.7 nmol/g 
Hb at day 71 (refer to Online Supplementary Content). 
These values were quite variable among donors. 
These results correlate with the increased metabolic 
activity observed by our group and others between 7 
and 14 days of storage, followed by its decrease due 
to lactate-associated drop of pH3,67. As glycolysis is 
progressively inhibited by low temperature and pH, 
glucose is consumed via the PPP, producing NADPH. 
This metabolite is the co-factor of the glutathione 
reductase responsible for the recycling of GSSG 
into GSH, a major thiol-based antioxidant in RBCs. 
However, the PPP does not produce enough NADPH 
to sustain recycling of glutathione all along the 
storage. Additionally, glutathione de novo synthesis 

is ATP-dependent and is therefore impaired when the 
stocks of intracellular ATP are depleted. 

The loss of metabolites and antioxidants defenses 
correlates with the accumulation of oxidised biomolecules 
and the apparition of irreversible lesions20-22,27,68.

Microvesicles and haemolysis
Microvesiculation and haemolysis followed the 

same trend. The number of MVs in the ECs increased 
first linearly from day 1 (3,628±1,047 MVs/μL) 
to day 36 (8,591±971 MVs/μL, 2.4-fold increase), 
before increasing exponentially between day 43 
(15,860±4,219 MVs/μL, 4.4-fold increase) and day 
71 (258,654±106,413 MVs/μL, 71.3-fold increase) 
(Figure 1D, left). Similarly, mean haemolysis percentage 
(0.079±0.017% at day 1) (Figure 1D, right) increased 
linearly until day 36 (0.28±0.06%, 3.5-fold increase), 
before raising exponentially. Mean haemolysis was 
of 0.44±0.14% (5.6-fold increase) at day 43, and of 
3.82±1.39% (48.3-fold increase) after 71 days of 
storage. The exponential release of MVs as well as the 
haemolysis, are probably reflecting the accumulation 
of waste products inside the cell and apparition of 
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Figure 1 - Red blood cells (RBC) aging markers for erythrocyte concentrates (ECs) 1-5 stored during 
71 days.

 (A) Haematologic data (RBC count, mean RBC corpuscular volume [MCV] and RBC distribution 
width [SD-RDW]); (B) metabolic (glucose and lactate concentrations); (C) antioxidant (global 
antioxidant power [AOP] and intracellular reduced glutathione [GSH] concentration); (D) 
microvesicles (MVs) and haemolysis; data for ECs 1-5 stored during 71 days.

 Individual (symbols) and mean values (dotted line) are presented ± standard deviation.
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irreversible lesions at the level of the cytoskeleton and 
plasma leading together to the destabilisation of the RBC 
membrane (it is to be mentioned that cell debris coming 
from haemolysed RBCs could be wrongly detected as 
MVs by the flow cytometer). Again, it is interesting to 
notice that the measured values were quite different 
among the 5 ECs.

Morphology analysis with digital holographic 
microscopy
Population and single-cell analysis of red blood cell 
morphology

All ECs at the exception of EC 5 had a similar 
SD-OPD at the beginning of the storage. The baseline 
mean SD-OPD was 49.6±6.0 nm at day 1. SD-OPD 
value remained stable until day 29, and then increased 
to reach 55.5±6.0 nm at day 43 and 86.8±8.9 nm at day 
71 (Figure 2A, left). Increasing SD-OPD value was 
strongly correlated to the transformation of discocytes 
into transient echinocytes and finally spherocytes in 
the ECs (refer to Online Supplementary Content). At 
day 1, RBCs were mostly discocytes (64.0±13.6%) or 
stomatocytes (30.0±14.4%) (Figure 2A, right). Until day 

29, stomatocytes transformed into discocytes, together 
these two cell types represented approximately 95% of 
the population. Population of discocytes started to drop 
linearly from day 36. After 29 days, spherocytes that 
represented less than 1% of the population at the beginning 
of storage started to appear in ECs. From this point, the 
percentage of spherocytes also increased linearly in the 
sample to reach 10.6±5.9% at day 43 and 58.3±13.0% 
at day 71. Echinocytes are a transitional intermediate 
between discocytes and spherocytes, explaining why 
their number did not increase. Morphological changes 
followed biochemical alterations, thus suggesting 
causative events. EC 5 morphology differed widely 
(refer to Online Supplementary Content), whereas it was 
not the case for other parameters like the MV count or 
haemolysis level. Discrepancies in RBC "storability" 
could be linked to the donors' characteristics such as its 
age (EC 5 was the youngest donor), lifestyle or genetic 
background69-71.

Membrane fluctuations
Morphological classes of RBCs can be distinguished 

based on their CFM map (Figure 2B). For instance, 

Figure 2 - DHM analysis of red blood cells (RBC) for erythrocyte concentrates (ECs) 1-5 stored during 71 days. 
 (A) Morphology of RBC population (standard deviation of the optical path difference distribution, SD-OPD) and single-

cell (CellProfiler and CellProfiler Analyst); (B) cell membrane fluctuations (CMF) map for different classes of RBCs, and 
(C) CMF changes for discocytes (left) and spherocytes (right). Twelve images (3 wells per EC and 4 images per well) and 
3 movies (1 per well) were acquired for each EC. Mean values are presented ± standard deviation.
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discocytes present a symmetric fluctuation in their 
center and their ring while echinocytes have a 
decreased center fluctuation. Interestingly, when RBCs 
become spherocytes, fluctuations in the central area 
are no longer observed. In stomatocytes there is an 
asymmetric fluctuation in membrane surface related to 
the asymmetrical shape of the RBC. The CMF values 
can be ranked in the following order (by decreasing 
order of CMF amplitude): stomatocyte, discocyte, 
echinocyte, spherocyte. As expected the spherocytes 
exhibited the lower CMF values which corroborates their 
loss of flexibility72. Stomatocytes that have a loose part 
enable an important fluctuation in this region. Finally, 
the functional state (i.e. discocytes) exhibits the highest 
CMF.

A general analysis shows a constant decrease of 
the CMF during the storage. CMF of discocytes is 
decreasing while RBCs are getting older (Figure 2C, 
left). They lost 10% of their CMF at the expiration 
date. Regarding spherocytes, after a decrease phase, a 
plateau was reached at day 18 (Figure 2C, right). The 
decrease of CMF is interesting as it is measured on a 
changing population (discocytes that change their shape 
to spherocyte are no longer included in the discocyte 
CMF analysis), thus suggesting that not only the shape 
of the RBCs is responsible for the decreasing CFM but 
that other aspects such as cell metabolism and membrane 
integrity are also involved in this physiological change.

One of the important result from the CMF fluctuations 
analysis is that even when RBCs keep an intact discocyte 
shape, their fluctuations amplitude decreases,  
suggesting that aging not only induces morphological 
changes from discocytes to spherocytes, but also alter the 
state of the RBCs that keep their discocyte shape. During 
the first 3 weeks of storage and following the main 
metabolism lesions, RBCs lost a part of their fluctuations 
capacity. Several mechanisms could participate to it such 
as phosphorylation events that are dependent of energy 
metabolism73.

Conclusions
RBCs accumulate a broad range of lesions during 

storage under standard blood transfusion practice. Of 
particular interest is the sequence of events that leads 
to the storage lesions with 2 cornerstones and 3 zones68. 
Some of these lesions are irreversible once transfused 
in the patient. Extensively damaged RBCs are rapidly 
cleared from the circulation of the transfusion recipient, 
therefore decreasing the beneficial impact of the 
treatment42. Worse, the accumulation of free iron and 
Hb as well as MVs could lead to adverse transfusion 
reactions45,49,50. It raises questions concerning transfusion 
practices related to the age of ECs and are in agreement 
with the retrospective clinical study of Goel et al. 

showing that the risks (morbidity, mortality or length 
of stay in hospital) associated to the transfusion of ECs 
older than 28 or 35 days are higher compared to those 
21 days or younger9. 

As already stated, important differences appeared 
when looking at ECs ageing markers individually71,74. 
For example, it was demonstrated that RBCs from donors 
exhibiting high levels of plasma uric acid antioxidant 
aged better than those having low-levels of uric acid66. 
Inter-donor variability is linked to sex, age, ethnic groups, 
blood group, weight, genetic background and lifestyle75. 
Biomarkers offer unique tools to assess RBC health 
state. AOP can be an easy-to-monitor single parameter 
allowing a quick glance at the cell state. Furthermore, 
combining multiple easy-to-obtain parameters providing 
different information like AOP (yielding information on 
oxidative stress), percentage of spherocytes (yielding 
information about morphological perturbation), and CMF 
(yielding information on membrane state) could greatly 
help quantify RBC ageing and help discard prematurely 
old RBC pouches before transfusion.
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