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Abstract

This work is motivated by the desire to use image analysis methods to identify and characterize 

images of food items to aid in dietary assessment. This paper introduces three texture descriptors 

for texture classification that can be used to classify images of food. Two are based on the 

multifractal analysis, namely, entropy-based categorization and fractal dimension estimation 

(EFD), and a Gabor-based image decomposition and fractal dimension estimation (GFD). Our 

third texture descriptor is based on the spatial relationship of gradient orientations (GOSDM), by 

obtaining the occurrence rate of pairs of gradient orientations at different neighborhood scales. 

The proposed methods are evaluated in texture classification and food categorization tasks using 

the entire Brodatz database and a customized food dataset with a wide variety of textures. Results 

show that for food categorization our methods consistently outperform several widely used 

techniques for both texture and object categorization.

1. INTRODUCTION

There is a growing concern in the world relative to chronic diseases related to diet. This 

includes obesity, cancer, diabetes, and heart disease. Of the 10 leading causes of death in the 

U.S., 6 are related to diet. Dietary intake, the process of determining what someone eats 

during the course of a day, provides valuable insights for mounting intervention programs 

for prevention of many chronic diseases. The use of a mobile telephones built-in digital 

camera has been shown to provide unique mechanisms for improving the accuracy and 

reliability of dietary assessment [1]. To provide accurate estimates of food energy and 

nutrient intake we are developing image analysis methods to automatically estimate the food 

consumed at a meal from images acquired using a mobile device [2]. Within our image 

analysis scheme, food classification plays a fundamental role.

Usually object classification is a two step process: feature extraction and class assignment. 

Among the features that we are exploring to characterize the visual information of foods, 

texture has emerged as a very important and descriptive feature. This is particularly true 

when color does not provide much discrimination power.
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In general, texture features describe the arrangement of basic elements of a material on a 

surface. In recent years, many local features and kernels have been proposed for texture and 

object classification [5, 26]. Many of these local descriptors are based on the information 

encoded in the gradient orientation. How to effectively model the spatial relationship among 

local features across different instances of the texture class is still an open problem.

Fractal information has also been investigated for texture description, Xu et. al., in [17, 14], 

proposed the usage of multifractal spectrum as an extension of the multifractal analysis [10, 

11]. It provides an efficient framework combining global spatial invariance and local robust 

measurements by capturing essential structure of textures with low dimension. Their 

proposed methods achieve bi-Lipschitz transform invariance, this is invariance against 

translation, rotation, perspective transformation, and texture warping on regular textures. 

Varma et. al. proposed locally invariant fractal features for statistical texture description 

[15], which are also based on multifractal analysis.

In this paper, we propose three texture descriptors suitable for food categorization. Based on 

multifractal analysis theory we propose an Entropy-based categorization and Fractal 

Dimension estimation (EFD), and a Gabor-based image decomposition and Fractal 

Dimension estimation technique (GFD). Our final texture descriptor is based on the 

occurrence rate of the spatial relationship of gradient orientations for different neighborhood 

sizes (GOSDM). A performance comparison between our proposed methods and well-

known texture description approaches is presented for texture classification and object (food 

items) categorization tasks.

2. FRACTAL SIGNATURES FOR TEXTURE CHARACTERIZATION

Fractal representation is an idealization of natural textures. Many self-similar images, e.g. 

textures, are complex entities formed by many structural components that as a whole can 

provide a fractal nature. In 1984 Pentland [6] suggested that images of natural scene can be 

described by fractal information. By representing a grayscale image in a 3-D space, where 

(x, y) denote the 2-D coordinate position and the gray-level intensity denotes the third 

coordinate, Pentland showed that the fractal dimension (FD) closely describes an intuitive 

notion of surface roughness. Maldebrot [7] showed that fractal objects are constant under 

certain types of scale transformations. He suggested that most of the natural phenomenons 

satisfy the power law. This can be written as [7]:

(1)

where I (s) represents the unit measure, in this case the gray-level intensity, s the scale used, 

and D is the fractal dimension (Hausdorff-Besicovitch dimension). In texture representation, 

FD alone does not fully represent a rich description. Different textures may have the same 

FD due to combined differences in directionality and coarseness [7]. These uncertainties can 

be addressed by multifractal analysis [8, 11], where a point categorization is defined on the 

object function based on some criteria. The FD is estimated for every point set according to 
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this categorization. A common criteria for categorization is the probably density function 

estimated from the image intensity [11, 17].

2.1 Entropy Categorization and FD Estimation(EFD)

We propose a multifractal analysis of textures with a texture complexity-based 

categorization.

Entropy [12] is a measure of local signal complexity. Regions corresponding to high signal 

complexity tend to have higher entropy. In general complexity is independent of scale and 

position [13], hence we can categorize a texture by selecting areas with homogeneous 

entropy levels. This approach can be seen as an attempt to characterize the variation of 

roughness of homogeneous parts of the texture in terms of complexity. Given a pixel x and a 

local neighborhood Mp, we can estimate the pixel entropy Hx as:

(2)

where s is the pixel value range, i.e. (s = 0, …, 255), and px,Mp is the probability of a pixel 

value (in Mp). Once the entropy is estimated for all the pixels in the texture image, we 

cluster regions where the entropy function exhibits similar values. For a given entropy υ, ϒυ 
represents the set of pixels {x : x ∈ R2 and Hx ∈ (υ, υ + δ)}, for some arbitrary δ. Once this 

pixel categorization is completed, we estimate dim(ϒυ), the FD for each ϒυ. We used the 

Box-counting dimension to estimate the FD. For a nonempty finite subset S of an Euclidean 

space Rn, the Box-counting dimension would represent the number of boxes of side length ε 
(Nε) covering S [9], i.e.:

(3)

In our case, the subset S represents the gray-level surface of the ϒυ. Taking q × q × q cube 

boxes, Nε is the number of boxes that intersect with the curved surface of the image in order 

to cover ϒυ. For each of the entropy levels we estimate one FDϒυ value. The final texture 

signature is formed by fusing all the FDϒυ into one single feature vector. Figure 1 

summarizes the proposed approach.

2.2 Gabor-Based Image Decomposition and FD Estimation (GFD)

In [14], multifractal spectrum is introduced using wavelet pyramids. Here we propose the 

use of Gabor filterbanks as a categorization criteria for multifractal analysis. An image 

texture can be defined as a local arrangement of image irradiances projected from a surface 

patch of perceptually homogeneous radiances. Bovik et. al. proposed the use of banks of 

Gabor filters to distinguish between irradiance patterns [16]. Our goal is to determine the 

irregularity of the texture elements that differ significantly in their dominant spatial 

frequency.
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Gabor filterbanks consist of Gabor filters with Gaussian impulse responses of several sizes 

modulated by sinusoidal plane waves of different orientations from the same Gabor-root 

filter (a sinusoidal plane wave of some orientation and frequency, modulated by a two-

dimensional Gaussian envelope). They can be represented as [22]:

(4)

where x̃ = a−m (x cos θ + y sin θ), ỹ = a−m (−x sin θ + y cos θ), θ = nπ/K (with K = total 

orientation, and Σ number of scales, n = 0, 1, …, K − 1, and m = 0, 1, …, Σ − 1), and h(·, ·) 

the Gabor-root filter. Given an image I (r, c) of size H × W, the discrete Gabor filtered output 

is given by a 2D convolution

(5)

For each scale and orientation, we estimate the FD of the Igm,n estimating the fractal 

dimension, FDIgm,n. The final descriptor becomes:

(6)

Figure 2 illustrates the multifractal analysis using Gabor filterbanks. For the Gabor 

filterbank implementation we followed the design described in [22] in order to guarantee 

that the adjacent half-peak contours of the Gabor filters touch each other.

3. GRADIENT ORIENTATION SPATIAL-DEPENDENCE BASED TEXTURE 

DESCRIPTIONS

Our final texture signature consists of estimating a set of Gradient Orientation Spatial-

Dependence Matrices (GOSDM) to describe textures by determining the probability of 

occurrence of quantized gradient orientations at a given spatial offset. Several statistics are 

extracted from these matrices forming feature vectors that characterize the textures.

Estimating the GOSDM consists of the following steps: Image gradient estimation, 
dominant orientation calculation, co-occurrence probability estimation, and statistical 
characterization. Figure 3 shows the block diagram to estimate the GOSDM.

3.1 Gradient Estimation

We estimate the gradients of the grayscale version of the image in the horizontal (H) and 

vertical (V) directions using a 5-tap coefficient differentiation filter proposed by Farid and 

Simoncelli [19]:
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where d (·) is a 5-tap differentiation filter and p (·) an interpolator [19].

3.2 Dominant Orientation

The goal is to describe the texture achieving robustness against rotation. This can be 

accomplished by estimating the dominant direction of the texture pattern. We use a 45° 

sliding window that sums the horizontal and vertical responses of the gradient inside the 

window to form a single orientation vector [23]. The largest vector becomes the dominant 

orientation. We, then, map the gradient orientations relative to the dominant orientation and 

quantize them in Θ orientation levels, in our experiments the best results where achieved by 

setting Θ equal to 24. Note that if gradient responses are less than a certain threshold, the 

gradient orientation is not taken into consideration for the dominant orientation estimation.

3.3 Co-Occurrence Probability Estimation

The Gradient Orientation Spatial-Dependence Matrix Pd can be estimated by determining 

the number of occurrences for each pair of gradient orientation values at a distance d from 

each other. The vector d = (r, ϕ) = (r0, …rv; ϕ0, …, ϕw) provides distance and angular 

dependency. For instance, the entry (i, j) of Pd represents the number of occurrences of the 

pair of quantized gradient orientation values θQ (m, n) = i and θQ (m + r · cos ϕ, n + r · sin 

ϕ) = j which are distance d apart. Finally, we normalize the matrix to obtain the probability 

of occurrence between orientation pairs. In Figure 4, there are several examples of GOSDM 

for various food textures.

3.4 Statistical Measurements

In order to reduce the amount of redundant information encoded in the GOSDM while 

preserving their relevance, we estimated a subset of the features proposed in [18]. These are 

Correlation, Angular Second Moment, Entropy, and Contrast. To achieve robustness against 

rotation changes, the final feature vector contains the estimated mean and variance of the 

four statistics among the angular directions (ϕ) for each magnitude value (r) of d considered.

4. EXPERIMENTAL EVALUATION

4.1 Texture Datasets Experiments

To assess the efficiency of the proposed signatures in order to characterize food textures, we 

performed several classification experiments using the Brodatz database [20]. We used the 

entire database, i. e., a total of 111 texture images, each texture sample was divided into 128 

× 128 pixel blocks. For each texture sample there were 25 instances. A total of 2775 texture 

blocks were used in our experiments. In the Brodatz database, there are some perceptually 

similar textures with different labels making it challenging for performance analysis. Also 

several texture samples are very heterogeneous, and thus, difficult to achieve successful 

recognition. (Figure 5.a).
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We built a small food texture database with 25 different food items to evaluate the efficiency 

of our texture descriptors on food textures. For each food item there were 10 texture 

instances obtained from different images and different foods within the same food type, 

providing a richer dataset in terms of intraclass variation than the Brodatz database: (Figure 

5.b).

Our classifier was divided into two stages: a learning stage where texture models were 

learned from the training data, and a classification stage where new testing texture images 

were classified using nearest neighbor (NN). The approach consisted of averaging the 

training features forming one single feature vector per class, and assigning the testing data to 

the closest class based on the euclidean distance metric. We compared our texture 

descriptors with Gabor-like features (Gabor mean and variance) [22], Gray-Level Co-

occurrence Matrix (GLCM) features [18], and Multifractal Spectrum (MFS) model proposed 

in [17]. Figures 6 and 7 show average classification rates vs. number of training instances 

used, for Brodatz and food datasets respectively. For each number of training data, 

experiments were repeated 10 times randomly assigning instances of each class to training 

and testing. In the EFD descriptor, we divided the entropy of the image, into U levels 

depending on the entropy variance within the texture. Best performance was achieved by 

setting U = 16. The entropy for each pixel was obtained from a 16 × 16 pixel neighborhood. 

In the GFD we used a bank of Gabor filters with 4 scales and 6 orientations. Finally, we 

estimated the GOSDMs using an offset equal to 1, 4, 16, …, R/2 where R was the size of the 

texture sample. For each offset magnitude, 4 angular directions were considered 0°, 45°, 90°, 

135°.

4.2 Food Classification Experiments

As discussed earlier, our final goal is food classification. Classical approaches of object 

recognition included extracting global visual characteristics such as color and texture. For 

the purpose of this paper we only use texture-type information from the foods.

Apart from high-level color and texture features, several low-level descriptors based on the 

information encoded in the gradient orientation have been proposed for different computer 

vision tasks [21, 23, 24]. Based on “Bag-of-Features” (BoF) approach [25], Lazebnik et. al. 
proposed a method to represent textures using low-level descriptors [26]. Their approach 

consisted of forming order-less collections of visual words (texture features) in the query 

image and compare them to those found in the training images. Following this model we 

compared our texture descriptors with the following low-level descriptors: SIFT [21], and 

SURF [23].

For these set of experiments we considered 46 different foods, not only texture details as in 

the food dataset introduced before, but entire food segments. (Figure 5.c). The food objects 

were segmented from the scene before feature extraction. In order to analyze the extracted 

features free from any error produced by automatic segmentation, we hand segmented the 

images. In Table 1, the mean and variance of correct classification accuracy is presented 

(assuming no error introduced by segmentation). We ran 10 times the experiments, randomly 

selecting training and testing data each time, 70% of data was labeled as training data, and 

30% as testing. Note that in order to keep consistency with the results presented in Figures 6 
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and 7 we have also included Gabor, GLCM, and MFS performances. Once again EFD, GFD, 

GOSDM, GLCM, Gabor, and MFS features were classified using NN criteria.

5. DISCUSSION AND FUTUREWORK

From the results shown in this paper, we can see that categorization-based fractal features 

perform better than classical texture models that use other statistical information. EFD, 

MFS, GFD consistently have better correct classification rates. Despite the fact that natural 

food textures cannot be defined as pure fractals, their structural components are arranged in 

such a way that follow a fractal-based description.

Taking into consideration both Gabor-based models, GFD and Gabor-like features (1st and 

2nd statistical moments from the energy of the filtered image) [22], we observed that fractal 

information from the filtered response can encode more discriminative power. The 

categorization criteria selected in multifractal analysis has also proven to be an important 

factor in the method’s efficiency. We found that the entropy-based categorization performed 

the best; whereas intensity density (MFS) and Gabor-based categorization (GFD) performed 

very similar.

Finally, the GOSDM method performed far better than GLCM. For consistency purposes, in 

both methods the same statistics were extracted, (Section 3.4). The use of the gradient 

instead of the gray level values of the image is motivated by the robustness of the gradient 

against illumination changes and other distortions.

In our experiments we only considered nearest neighbor rules for the classification scheme. 

The goal of this work was to only measure the impact of the features with very simple and 

intuitive classification rules. Usage of classifiers such as SVM would most likely increase 

the overall classification performance. We wanted to evaluate the discriminative power of 

the features, not the effectiveness of the classifier.

We have observed that in food texture classification tasks any of the so-called global feature 

extraction methods are sensitive to scale selection. Some food textures can be better 

distinguished at very local scales, e.g., cauliflower and popcorn, whereas other food textures 

such as peeled-banana and white bread are better distinguished by using features at larger 

scales.

Modern object recognition approaches, as well as methods proposed in this paper, have 

proven very efficient in identifying discriminative information for challenging textures. The 

question becomes how to extract all the discriminative information without adding 

redundancy into the feature space. In [27], Varma and Zisserman showed that, in general, 

neighborhoods as small as 3 × 3 can lead to very good classification results for textures 

whose global structure is far larger than the local neighborhoods used. However, local 

features tend to be ineffective in the case of (non-linear) illumination changes. Also a major 

drawback of local feature-based strategies is that their classification performance very much 

rely on the sampling strategy, i.e, dense sampling (do we extract local information from 

many pixels?), or sparse sampling (do we extract local information only from few 

“keypoints”?). Most keypoint detection models focus on obtaining points based on their 
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invariance against rotation, scale, or affine transformations, which may not be enough for 

textures with similar local neighborhoods but different spatial layouts and with no 

characteristic scale. Also the repetitiveness rate of such points across different instances of 

the object is still an open problem. Our results (Table 1) show that global features can be as 

efficient, if not more, as local features when extracting structural information of textures for 

object categorization. In order to achieve a significant increase in food texture discrimination 

power, further research efforts should gear toward finding a convergence between optimal 

scale selection in global feature extraction and optimal salient point detection in local feature 

extraction.

6. CONCLUSIONS

In this paper we have introduced three texture descriptors. Based on multifractal analysis 

theory we proposed an entropy-based categorization and fractal dimension estimation 

method (EFD), and Gabor-based image decomposition and fractal dimension estimation 

method (GFD). Our third texture descriptor is based on the spatial relationship of gradient 

orientations (GOSDM). We have compared our three descriptors with well-known texture 

descriptor methods in a widely used benchmark for texture classification, and in a food 

texture dataset. We have shown that for food categorization our methods can outperform 

them. We have also evaluated the proposed descriptors on a general food database, and 

shown that EFD and GFD performed similarly, in some cases better, than popular 

descriptors used in category-level object recognition such as SIFT and SURF.
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Figure 1. 
Entropy-Based Multifractal Analysis Block Diagram (EFD).
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Figure 2. 
Gabor-Based Multifractal Analysis Block Diagram (GFD).
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Figure 3. 
The GOSDM Block Diagram.
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Figure 4. 
Examples of GOSDMs for various textures. Original textures (left) and their corresponding 

GOSDM (right). Note that all images are converted to gray scale in our classification 

scheme.
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Figure 5. 
Several texture and food samples used in the experiments. (a) Brodatz dataset. (b) Food 

texture dataset. (c) Entire food object.

Bosch et al. Page 14

Proc Eur Signal Process Conf EUSIPCO. Author manuscript; available in PMC 2017 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Classification rate vs. number of training images for GLCM, Gabor, MFS, EFD, GFD, and 

GOSDM features using the Brodatz database.
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Figure 7. 
Classification rate vs. number of training images for GLCM, Gabor, MFS, EFD, GFD, and 

GOSDM features using the Food database.
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Table 1

Classification Accuracy Rates for Food Classification Experiments (70% training data, and 30% testing) 

using: SIFT+BoF, SURF+BoF, GLCM+NN, GOSDM+NN, Gabor+NN, GFD+NN, MFS+NN, and EFD+NN.

Feature type Classification Mean Classification Std. Dev.

SIFT+BoF 75.3% 1.5

SURF+BoF 71.8% 1.2

GLCM+NN 57.7% 1.9

Gabor+NN 55.2% 1.5

MFS+NN 74.3% 2.1

EFD+NN 79.2% 2.1

GFD+NN 72.2% 1.3

GOSDM+NN 65.3% 1.9
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