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ABSTRACT
In recent years, long non-coding RNAs (lncRNAs) have attracted the attention of researchers with their
involvement in all facets of life. LncRNAs are transcripts of more than 200 nucleotides which lack defined
protein coding potential. Although they do not code for proteins, a large number of them are involved in
regulating gene expression and translation. The presence of numerous lncRNAs in the human genome has
prompted us to investigate the contribution of these molecules to human biology and medicine. In this
review, we present the potential role of lncRNAs interlinked to different human diseases and genetic
disorders. We also describe their role in cellular differentiation and aging and discuss their potential
importance as biomarkers and as therapeutic agents.
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Introduction

The notion that most RNAs act as an intermediate message
between DNA and protein has been questioned by the dis-
coveries of new roles for RNAs. It is estimated that > 90 %
of the human genome undergoes transcription, however
only 2 % of it codes for proteins.1 This results in a large
number of RNAs, which do not get translated into proteins.
This non-protein coding portion of the genome can be
arranged in a variety of categories of non-coding RNAs
including transfer RNA (tRNA), ribosomal RNA (rRNA),
small nucleolar RNA (snoRNAs), microRNA (miRNAs),
small interfering RNA (siRNA), repeat associated siRNA
(rasiRNAs) and piwi interacting RNA (piRNAs).2 Although
non-coding transcripts such as tRNAs, rRNAs, and spliceo-
somal RNAs have a wide range of functions and are critical
components of cellular machinery, the existence of large
pool of non-coding RNAs was initially assumed to be tran-
scriptional noise.3,4 However, mounting evidences have
shown that various non-coding RNAs are involved in dis-
crete cellular functions and participate in different regula-
tory pathways, including chromosomal architecture, in
cellular development and differentiation. With the recent
advancement in transcriptomic studies, a new class of non-
coding RNAs, long non-coding RNAs (lncRNAs) has
attracted the focus of scientific community. Many of these
lncRNAs have been shown to play specific roles in normal
cell functions and diseases.4

In this review, we focus on lncRNAs and discuss their role in
pathophysiology of different diseases, and the medical implica-
tions of the use of lncRNAs as diagnostic biomarkers or as the
basis for novel therapies.

Long non-coding RNA

H19 and Xist are among the first characterized lncRNAs.5,6

Since then, a large number of studies involving DNA tiling
arrays,7 next-generation sequencing,8 and transcriptomic stud-
ies9-11 have identified thousands of lncRNAs that have been
cataloged in various databases such as NONCODE, GENCODE
and lncRNAdb.12-14 LncRNAs are generally defined as RNA
transcripts with more than 200 nucleotides lacking a clear open
reading frame.15 However, some ncRNAs smaller than 200
nucleotides such as BC1 and snaR have been classified in some
studies as lncRNAs.14 Additionally, some lncRNAs e.g. lncRNA
pncr003:2L in Drosophila are known to code small proteins and
peptides.16,17 Since the size definition is purely based on con-
ventional threshold of RNA purification techniques and has no
biochemical, structural or functional basis, an alternative defi-
nition of lncRNAs has been proposed as ncRNAs that function
either as primary or spliced transcripts, independent of existing
known classes of small ncRNAs.14 In recent years, there has
been dramatic rise in discovery of lncRNAs. To assist in inter-
preting their function, lncRNAs have been classified based on
their length, genomic location of their transcription, association
with other functional DNA elements and their subcellular
localization.18,19 The simplest classification of lncRNAs is based
on their transcription site relative to other genes with different
classes described below.

Intergenic lncRNAs and intronic lncRNAs

The transcription sites for intergenic lncRNAs (also called as
lincRNAs: long intergenic non-coding RNAs) are located
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between 2 non-overlapping protein-coding genes. On the other
hand, intronic lncRNAs are lncRNAs whose transcripts arise
from introns of protein-coding genes.

Sense and antisense lncRNAs

Nearly 70 % of sense transcripts have been reported to have
complimentary antisense transcripts.20 Transcription of sense
lncRNAs occurs from the same strand of genes that code for
protein. These may cover the whole genes or only a fraction of
the genes. Antisense lncRNAs (also called as natural antisense
transcripts; NAT) are transcribed from the antisense strand
overlapping with exonic or intronic region of protein coding
genes or cover the entire gene sequence through the introns.

Enhancer and promoter associated lncRNAs

LncRNAs transcribed starting at enhancers are termed
enhancer ncRNAs (eRNA). These lncRNAs are involved in
forming chromatin loops with promoters that then promotes
transcription initiation.21 Transcription of promoter associated
lncRNAs (PALR) overlaps the 50-end of protein coding region
comprising the promoter region and first exon or intron.22

Functions of long non-coding RNA

LncRNAs play critical roles in regulation of protein coding genes,23

stem cell pluripotency and differentiation,24 allelic expression,25

cell cycle control,26 apoptosis and senescence.27 LncRNAs can be
present in nucleus, cytoplasm and also in mitochondria.28,29

LncRNAs present in different subcellular locations regulate expres-
sion of protein coding genes via different mechanisms e.g., control-
ling chromatinmodification, transcription, and translation.

Chromatin modification

In mammalian cells, tissue specific gene expression is con-
trolled by DNA or chromatin modifications. These modifica-
tions are performed by a limited number of enzymes (DNA
methyltransferases, histone methyltransferases, acetylases,
deacetylases etc.) and chromatin-modifying complexes (Poly-
comb-group and Trithorax-group), many of which lack affinity
for particular DNA sequences.30 Various non-coding RNAs
including lncRNAs form a network of epigenetic modulators
by providing platforms for assembly of these enzymes and
chromatin remodeling complexes and guiding them to specific
genomic sites (Fig. 1A).31 For example, the HOX transcript
antisense RNA (HOTAIR), an lncRNA transcribed from the
HOXC locus interacts with polycomb chromatin remodeling
complex PRC2 to induce a repressive chromatin state by silenc-
ing transcription across 40 kb of the HOXD locus in trans.15

LncRNAs have also been shown to activate transcription by
recruiting chromatin-modifying complexes like H3K4 trime-
thyltransferase MLL1 complex and by activating specific
enhancer regions by changing 3-D chromatin conformation.32

Transcriptional regulation

Different cells experience widespread transcription initiation at
enhancers and promoters, however, protein expression takes
place in tissue specific manner predicting a major role for
lncRNAs associated with these regions (eRNA and PALR)
(Fig. 1B).23,33 LncRNAs transcribed from the promoter regions
may recruit RNA binding proteins and regulate their function
during transcription.34 For example, expression of lncRNAs
associated with the cyclin D1 gene promoter is induced by
DNA damage signals. Here, lncRNAs act cooperatively to con-
trol the activity of RNA binding protein TLS that eventually
hinders the histone acetyltransferase activities of CReB binding
protein and p300 to silence the expression of cyclin D1.34 The
ability of lncRNAs to employ RNA binding proteins to gene
promoters greatly increases the transcriptional regulatory
machinery.34 LncRNAs also act as co-factors to control activity
of transcription factors. In mice, the lncRNA Evf2 transcribed
from a conserved distal enhancer controls the binding and
action of the transcription factor D1X2 to this enhancer result-
ing in up-regulation of adjacent protein-coding genes.35

Post-transcriptional regulation

Many genes express antisense lncRNAs, which can overlap with
key elements in mRNA to regulate various steps in mRNA
processing (Fig. 1C).36 For example, an intron in the 50
untranslated region of the zinc finger Hox mRNA Zeb2 con-
tains an internal site for ribosome entry, which is required for
systematic translation of Zeb2 protein. Antisense lncRNA
Zeb2NAT overlaps 50 splice site of this intron, thus preventing
its splicing by spliceosomes leading to accumulation of Zeb2.37

LncRNAs can also inhibit the expression of some specific
proteins by forming RNA duplex with the mRNAs.38 Anneal-
ing of lncRNA can target protein effecter complexes to the
mRNA transcript in a way similar to the targeting done by the
RNA-induced silencing complex (RISC) to mRNAs by siRNAs.
For example, to achieve X-chromosome inactivation, lncRNAs
Xist and Tsix form an RNA duplex which is processed to small
RNAs in Dicer dependant manner.38 Some lncRNAs can also
act as precursor for miRNAs, e.g. H19/miR-675.39

Medical implications

LncRNAs have versatile contributions to various cellular func-
tions. Mutations or aberrant expressions of lncRNAs may result
in cellular dysfunction leading to disease state. Genome-wide
association studies (GWAS) have revealed that a large number
(88%) of disease associated SNPs reside outside protein coding
sequences.40 Of these, 45% SNPs belong to intronic region and
43% SNPs belong to intergenic region of human genome. Many
recent studies have implicated lncRNAs in the pathogenesis of
various other diseases like Alzheimer’s disease, Huntington’s dis-
ease, psoriasis, diabetes and cardiovascular diseases.41-44 The
emerging roles of lncRNAs in diverse disease conditions have
paved a new arena to design novel diagnostics and therapeutics.
Comparative profiling of lncRNAs isolated from different body
fluids such as serum, plasma, urine or sputum can serve as a
potential method for early detection of various diseases. For
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example, identification of lncRNA PCA3 in urine is being used
for clinical detection of prostate cancer.45

The current strategies to treat diseases mostly rely on inhibi-
tory drugs. However, to treat certain diseases upregulation of
gene expression would be desirable. For example, certain neuro-
logical disorders in early stages can be treated with elevated
expression of neuro-protective growth factors. In such cases,
lncRNAs provide excellent targets for therapeutic agents.46 In the

following sections of this review, we will describe what is known
about the orchestrating role of lncRNAs in disease pathogenesis,
diagnosis and their potential as therapeutic agents and targets.

Development and endocrine glands

LncRNAs play important roles in normal endocrine physiology
and development (Table 1) (Fig. 2).47 Several studies have

Figure 1. Different mechanisms of functions associated with lncRNAs. They serve in (A) Chromatin modulation, (B) Transcriptional activation and suppression, (C) as post
transcriptional machinery, (D) miRNA decoy element and (E) as protein inhibitor (Modified from Cheetham et al. 2013 Br J Cancer, 108:2419-25).
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demonstrated the role of lncRNAs in pancreatic b-cell physiol-
ogy and diabetes.42,48 Transcriptome analysis of human pancre-
atic b-cells revealed a total of 1128 lncRNAs, some of which
showed higher expression on addition of glucose to the b-cell
culture. One of these lncRNAs, HI-LNC25 controls the expres-
sion of GLIS3 that encodes a transcription factor and regulates
expression of insulin and other islet specific transcription fac-
tors.42 Comparative analysis of transcriptomes of individuals
with and without type-2 diabetes mellitus (T2DM) revealed
493 lncRNAs of which 54 lncRNAs showed expression level
correlated to the levels of HbA1c, indicating a direct association
with the disease status.48 The regenerative capacity of b-cells in
mouse pancreas decreases with age due to up-regulation of the
Cdkn2a locus. The lncRNA ANRIL (Antisense Non-coding
RNA in the INK4 Locus) is involved in regulation of glucose
homeostasis in adult mice by suppressing the expression of
Cdkn2a locus that promotes cell division of pancreatic
b-cells.49,50 Other lncRNAs that may be involved in T2DM are
naPINK1 and KCNQ1OT1 (See Table 1).51,52

Adipose tissues release a number of chemicals including leptin,
which regulates appetite and adiponectin, which helps in regulating
various metabolic processes such as glucose metabolism and fatty
acid oxidation.53,54 In a recent study, a sum of 175 lncRNAs
showed differential expression during adipogenesis. Among them,
a group of 10 lncRNAs, named as lncRAP 1–10, were shown to
have the capacity to bind the adipogenic transcription factors
PPARg and C/EBPa, and seemed to be required for proper adipo-
cyte differentiation.55 Another lncRNA steroid receptor RNA acti-
vator 1 (Sra1) binds and coactivates PPARg in mice. The mice
knock-out for Sra1 locus showed resistance to develop obesity and
glucose intolerance with high-fat diet.56

During pregnancy, mammary glands are expanded under
the control of hormones estrogen and progesterone. The
lncRNA Gb7 or Pinc (Pregnancy induced non-coding RNA) is
persistently up-regulated after treatment with estrogen and
progesterone in rats. The spliced variants of Pinc, mPinc1.0 and
mPinc1.6, show over-expression in the lobulo-alveolar structure
of mammary glands during pregnancy, repressed during

Table 1. LncRNAs expressed in various endocrine tissues. The list represents lncRNAs involved in endocrine function and diseases. Other lncRNAs that are involved in can-
cer of these tissues are listed in Table 2.

Organ lncRNA Function Disease association Ref.

Mammary Gland Pinc Family Lobuloalveolar differentiation - 57

Adipose Tissue Sra1 Activates PPARg to induce adipogenesis Obesity 56

lncRAP Family Adipogenesis Obesity 55

Blnc1 Thermogenic adipocyte differentiation - 122

PU.1 AS Blocks translation of PU.1 mRNA and promotes adipocyte differentiation Obesity 123

naPINK1 Inhibits expression of PINK1 leading to mitochondrial dysfunction Obesity, Diabetes 51

Adrenal Gland SRA1 Regulates steroidogenesis - 60

Pancreas ANRIL Controls expression of Cdkn2a and promotes b-cell proliferation Diabetes 49

HI-LNC25 Regulates level of GLIS3 mRNA Diabetes 42

KCNQ1OT1 Regulates expression of CDKN1C that controls islet proliferation Diabetes 124

H19 Regulates expression of IGF2 Gestational Diabetes 125

MEG3 Unknown Diabetes 126

Pineal Gland lncSN family Regulates circadian rhythm - 59

Figure 2. LncRNAs secreted from various endocrine tissues. Tissues are labeled in bold and the involved lncRNAs are also noted. (Modified from Knoll et al. 2015 Nat Rev
Endocrinol, 11:151–60)47.
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lactation and again upregulated after involution.57 The interac-
tion of mPinc with PRC2 suggests a role in maintaining repres-
sive chromatin state. In mice, another lncRNA zinc finger
antisense 1 (Zfas1) shows down-regulation between pregnancy
and lactation and upregulation during lactation and involution.
Zfas1 also serves as tumor suppressor and a potent biomarker
for breast cancer.58

Pineal gland regulates circadian rhythm by secreting melato-
nin in accordance with the season and time of day. The tissues
from the pineal gland in rat express 112 lncRNAs referred to as
lncSNs (lncRNAs, Section on Neuroendocrinology) whose
expression oscillates throughout the day. A large fraction (59%)
of lncSNs showed higher expression during night.59 In depth
analysis of 8 lncSNs showed that their expression was regulated
in the suprachiasmatic nuclei of neurons, patterns that were
continued in constant darkness indicating their circadian
nature.

In adrenal glands, the nuclear receptor NR0B1 coactivates or
corepresses another nuclear receptor Steroidogenic factor 1
(SF-1) in a dosage dependent manner.60 The coactivation of
SF-1 by NR0B1 is enhanced by non-coding RNA steroid recep-
tor RNA activator (SRA) resulting in activated expression of
melanocortin 2 receptor (MC2R) (also known as adreno-corti-
cotropin hormone (ACTH) receptor). The knockdown of
SRA1, a variant of SRA in human adrenocortical cells resulted
in reduced expression of steroidogenic acute regulatory protein
(StAR) and MC2R suggesting a role for the lncRNA SRA in ste-
roidogenesis and adrenal function.60

Besides their roles in maintaining development and physiol-
ogy of endocrine glands, many lncRNAs are involved in cancer
of endocrine glands.47 The lncRNA HOTAIR and long stress
induced non-coding RNAs (LSINCTs) show overexpression in
breast cancer. The lncRNA MEG3 is a tumor suppressor
expressed in pituitary glands. LncRNAs PTCSC3, NAMA and
AK023948 show deregulation in thyroid cancers. Two
lncRNAs, PCGEM1 and PRNCR1, show over-expression in
prostate cancer. PCAT1, a member of a group of 121 lncRNAs
identified as prostate cancer associated lncRNA transcripts
(PCATs), functions as a transcriptional suppressor in complex
with PRC2 leading to inhibition of various tumor suppressor
factors such as BRCA2, CENPE and CENPF.47

Cardiovascular disease

Recent studies have shown the influence of lncRNAs in the
development of the fetal heart, which involves precise control of
gene expression to guide differentiation from pluripotent cells
into mesodermal and cardiac cell types. Besides specific proteins,
a large number of non-coding RNAs play a part in cellular dif-
ferentiation. Tissue specific expression of the lncRNAs, Brave-
heart (Bvht) and Fendrr are associated with early development
of the heart in mouse.61,62 These lncRNAs in association with
PRC2 regulate expression of genes involved in cardiogenesis.
They also control the activity of various transcription factors for
mesodermal differentiation.43 Although lncRNAs were initially
thought to be non-protein coding sequences, some of them do
encode small functional peptides.17 In Drosophila, lncRNA
pncr003:2L is translated into 2 polypeptides sarcolamban A and
B with 28 and 29 amino acid residues, respectively. These

peptides share conserved sequences and structures in different
species including humans. These peptides regulate Ca2C uptake
by SERCA2, thereby influencing muscle contraction in heart.16

Mutations in these lncRNAs result in congenital cardiac diseases.
Besides contributing to cardiogenesis, non-coding RNAs are

involved in various cardiovascular disorders. A number of
GWAS have linked cardiovascular diseases with SNPs in non-
coding regions in human genome.63-65 The lncRNA ANRIL
located at chromosome 9p21 is associated with a GWAS hot-
spot for age related diseases such as Alzheimer’s disease, coro-
nary disease, type 2 diabetes, endometriosis, glaucoma and
cancer.66,67 ANRIL transcription takes place in coronary
smooth muscle cells, vascular endothelial cells, and monocyte
derived macrophages. The transcript levels of elevated expres-
sion of ANRIL are directly correlated to the severity of athero-
sclerosis.68 Myocardial infarction-associated transcript (MIAT),
a 9 kb long lincRNA is expressed in the nuclei of developing
neural cells and has also been implicated in retinal cell fate
specification. Several variants of MIAT are associated with
higher susceptibility to myocardial infarction.69 A SNP (exon 5
11,741 G >A) in MIAT region allows enhanced transcription
of this lincRNA. A MIAT variant that has been implicated in
splicing regulation shows higher expression in retinal cells in
diabetes. Knocking down MIAT led to improvement in retinal
microvascular dysfunction caused by diabetes mellitus.70 These
results showed thatMIAT is involved in pathological angiogen-
esis and represents a therapeutic target against neovascular
diseases.

The involvement of miRNAs in regulation of cardiac specifi-
cation and differentiation has been well studied. LncRNAs may
serve as decoy or competitive endogenous RNAs (ceRNAs) for
miRNAs and thus indirectly regulating gene expression
(Fig. 1D).71 A recent study showed that a small non-coding
RNA miR-489 targets the myeloid differentiation primary
response gene 88 (Myd88) to antagonize cardiac hypertrophy.71

The cardiac hypertrophy related factor (CHRF) acts as a ceRNA
for miR-489 leading to up-regulation of Myd88 and thereby car-
diac hypertrophy.

Although circulatory lncRNAs have been used as a bio-
marker for cancer; the utility of lncRNAs as biomarkers for car-
diovascular diseases is largely unknown. Kumarswamy et al.
(2014) found an association between an lncRNA and heart dis-
ease.72 They discovered differential regulation of the mitochon-
drial lncRNA uc022bqs.1 (LIPCAR) at different stages of
myocardial infarction in plasma of patients as compared to
healthy subjects. With the large number of lncRNAs expressed
in human genome, the possibility to identify new biomarkers
for the diagnosis of cardiovascular diseases is wide open.

Cell differentiation, apoptosis and cancer

Research in recent years has revealed a major contribution of
lncRNAs to almost all phases of life. They are involved in regu-
lating cell cycle, cellular differentiation and cell death. Different
environmental changes, stresses, infections, life style changes
and aging influence the delicate balance of various biomole-
cules in the cell leading to perturbed cellular physiology and
disease. Cancer is a disease of disturbed cellular division and
death. Several lncRNAs have been implicated in the cancer
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pathophysiology with some of them providing strong targets as
biomarkers for diagnosis of diseases and as therapeutic targets
to treat the diseases (Table 2).73

MALAT1 is one of the first lncRNAs to be associated with
human lung cancer.74 Since then it has been implicated in the
cancer of various other organs including lung, liver, kidney,
colon, breast, pancreas, bladder and many more.75 MALAT1,
which is involved in control of alternative splicing by modulat-
ing the phosphorylation of SR proteins, shows normal expres-
sion in various healthy tissues but is up-regulated in cancerous
cells. Silencing MALAT1 results in impaired cellular mobility
and hence has been linked with cancer metastasis.76 The
lncRNA HOTAIR is highly expressed in various cancerous tis-
sues including liver cancer, breast cancer and colon cancer.
Overexpression of HOTAIR retargets polycomb repressive
complex 2 (PRC2) to new sites in genome including various
tumor suppressor genes leading to altered H3K27 methylation,
which in turn promotes proliferation and metastasis of cancer-
ous cells (Fig. 3A).77,78 High levels of HOTAIR are associated
with relapse for liver carcinoma patients.79 Similar to HOTAIR,
lncRNA ANRIL is also associated with several cancer types
including acute lymphoblastic leukemia, nasopharyngeal carci-
noma, glioma, breast cancer and basal cell carcinoma. ANRIL
over-expression represses the expression of the INK4B–ARF–
INK4A locus genes containing 3 tumor suppressor genes by
recruiting PRC1 and PRC2, resulting in cancer proliferation.66

A number of lncRNAs are activated by the tumor suppressor
p53 in response to DNA damage (Fig. 3B).78 The tumor sup-
pressor p53 up-regulates lncRNA lincRNA-p21 by binding at
its promoter. The lncRNA lincRNA-p21 interacts with hetero-
geneous nuclear ribonucleoprotein K (hnRNP-K) and represses
the expression of multiple genes in the p53 pathway and p53
mediated apoptosis.80 Another p53 induced lncRNA PANDA
(P21-associated ncRNA DNA damage activated) down-regu-
lates pro-apoptotic genes by interacting with the transcription
factor NF-YA.81 The lncRNA H19 and the H19 derived miR-
675 are over-expressed in human colorectal cancer cells,
whereas they show normal expression in surrounding tissues.39

LncRNA H19 regulates the expression of several genes within
the imprinted gene network, a cluster of genes whose expres-
sion depends on the parent contributing them. These genes,
including H19 itself and insulin like growth factor 2 (IGF2), are
involved in growth, proliferation and apoptosis. The lncRNA
H19 forms a ribonucleoprotein complex with methyl-CpG–
binding domain protein 1 (MBD1), which interacts with his-
tone lysine methyltransferases to induce methylation of ICRs
resulting in repression of genes in this locus.82 Furthermore,
downregulation of lncRNA H19 leads to lower levels of p57
and decreases tumor growth.83

Since several lncRNAs are tissue or cell specific andmay control
the progression of many diseases, they are considered biomarkers
for disease diagnosis and as therapeutic targets.84 The prostate can-
cer associated lncRNA prostate cancer gene 3 (PCA3) is routinely
used as a urine test to diagnose prostate cancer risk.45 LncRNA
PCGEM1 is expressed in a tissue-specificmanner in prostate glands
and displays enhanced expression in high risk groups.85 Another
cancer related biomarker lncRNA UCA1 (urothelial carcinoma
associated 1), which can be detected in urine, shows high sensitivity
and specificity for bladder carcinoma.86 Other promising bio-
markers for different cancer types include AA174084 found in gas-
tric juice of gastric cancer patients, MALAT1- derived fragment
detected in plasma of prostate cancer patients, HULC in plasma of
hepatocellular carcinoma patients.87-89 In a successful attempt to
treat H19-driven cancer cells, a plasmid preparation BC-819
(DTA-H19) that carries the diphtheria toxin under control of the
H19 regulatory sequence was used as an intratumoral injection
resulting in reduced tumor size.90 These studies suggest the poten-
tial of lncRNAs as biomarkers in cancer diagnosis and targets for
treatment.

Immunity and autoimmune diseases

Immunity is the most organized cellular defense of the body
against pathogenic agents. It requires correct development, dif-
ferentiation and activation of immune cells. Th1 helper cells are
the major immune cells involved in adaptive immunity against

Table 2. LncRNAs associated with carcinogenesis.

LncRNA Disease association Function in Oncogenesis Functional mechanism Ref.

UCA1 Bladder cancer Oncogene/ Biomarker Promotes cell proliferation and metastasis 86,127

GAS5 Breast cancer Tumor suppressor inhibits expression of glucocorticoid receptor, induces apoptosis 128

Zfas1 Breast cancer Tumor suppressor Regulates alveolar development and epithelial cell differentiation 58

KCNQ1OT1 Colorectal cancer Unknown Imprinting defects 129

linc-p21 Colorectal cancer Tumor suppressor hnRNP-K mediated gene repression 80

PTENP1 Hepatocellular carcinoma Tumor suppressor decoy oncomirs targeting PTEN 130

aHIF Multiple cancer Biomarker Unknown 131

ANRIL Multiple cancer Oncogene Inhibits the expression of tumor suppressor genes 132

H19 Multiple cancer Tumor suppressor controls expression of multiple genes involved in growth,
proliferation and apoptosis

133

HOTAIR Multiple cancer Oncogene PRC2 mediated methylation of various genes 77

HULC Multiple cancer Oncogene/ Biomarker modulates expression of p18 to inhibit apoptosis 116

MALAT1 Multiple cancer Oncogene controls RNA splicing, promotes cellular mobility 74,76

MEG3 Multiple cancer Tumor suppressor Inhibits tumor growth 134

PANDA Multiple Cancer Oncogene Regulates apoptosis 81

PCA3 Prostate cancer Biomarker Silencing expression of tumor suppressor gene PRUNE2 45,135

PCGEM1 Prostate cancer Oncogene promotes cell proliferation 85

PRNCR1 Prostate cancer oncogene Promotes cancer cell proliferation in association with PCGEM1 136

PCAT1 Prostate Cancer,
Hepatocellular carcinoma

Oncogene/ Biomarker Inhibits expression of tumor suppressor, promotes cell proliferation 137,138

PTCSC3 Thyroid Cancer Tumor suppressor Decoy miR-574-5p 139
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various pathogens. Hundreds of lncRNAs have been identified in
CD8C T cells from human and mouse spleen suggesting their
importance in lymphocyte differentiation and activation.91 The
lincRNA TMEVPG1 (also named as NeST) in CD8C T-cells has
an important role in controlling Theiler’s virus infection.
TMEVPG1 along with T cell specific transcription factors T-bet/
Stat can up-regulate expression of IFN-g recruiting H3K4me3 to
the ifng gene through interaction with the WDR5 subunit of
H3K4 methyltransferase.92 An lncRNA lncDC, which is uniquely
expressed in dendritic cells, binds with STAT3 signaling mole-
cule in cytoplasm suggesting a role for lncRNAs in direct control
of cellular differentiation and function.93

B-lymphocytes, originating from bone marrow have function
in generating antibodies and presenting pathogenic antigens to
other immune cells. In the production of antigen receptors, mul-
tiple non-coding RNAs have been implicated in regulating vari-
able, diversity and joining [V(D)J] recombination by bringing

VH region close to DJH region.94,95 Natural killer cells kill virus
infected cells and tumors with proteins like perforin and pro-
teases. Cytotoxic activity of these cells is regulated by many cell
surface class I MHC receptors, such as killer cell immunoglobu-
lin-like receptor (KIR). Many KIR genes transcribe antisense
lncRNAs that in some cases have been shown to reduce the
expression of KIR proteins by overlapping with exon 1 and 2 of
genes coding those.96 Macrophages are another class of immune
cells that are involved in removal of microbes and other damaged
cells from the body by phagocytosis. PTPRJ or CD148, a tyrosine
phosphatase with known tumor suppressor activity, is expressed
abundantly in macrophages in response to LPS or TLR ligands
but down-regulated in response to CSF-1. The lncRNA ptprj-as1
expressed antisense to the ptprj gene and is co-regulated in
response to TLR ligands or CSF-1.97 Another non-coding RNA
lincRNA-Cox2 or Ptgs2 shows overexpression in dendritic cells
after stimulation with TLR4.98 In a recent study, a total of 159

Figure 3. Misexpression of different lncRNAs in cancer that modulate different pathways with diversified mechanisms (A) a group of lncRNAs (e. g. HOTAIR, ANRIL and
others) modulate chromatin structure and organization in cis or in trans (PRC2) to alter their expression (B) A group of lncRNAs induced p53 regulated pathway. The
lncRNA once activated modulated via different protein partners. (Modified from Niland et al. 2012 Front Genet 3:25)78.
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lncRNAs showed induction or suppression in THP1 macro-
phages treated with Pam3CSK4 in comparison to their expres-
sion in non-treated cells.99 In particular, the expression of TNF-
a was shown to be regulated by lncRNA linc1992 or THRIL
(TNFa and hnRNPL Related Immunoregulatory LincRNA) by
interacting with the heterogenous nuclear ribonucleoprotein L
(hnRNPL) and binding its promoter. Interestingly, THRIL has
been found to be associated with Kawasaki disease, an acute
inflammatory disease of childhood.99

Related to the role of non-coding RNAs in regulating the
development and activity of different immunological cells, they
also have shown their role in various autoimmune diseases
(Table 3). Autoimmune thyroid diseases (AITD), Graves’ dis-
ease and Hashimoto’s thyroiditis, are caused by infiltration of
the T-cell in the thyroid gland leading to production of anti-
thyroid autoantibodies. A SNP Ex9b-SNP10, located in intron
9 of ZFAT gene and promoter region of a non-coding tran-
script small antisense transcript of ZFAT (SAS-ZFAT), shows
association with high risk group of AITD.100 The T-allele of
this SNP results in dysregulated B-cell function by up-regulat-
ing SAS-ZFAT and down-regulating truncated ZFAT.

The hyper-proliferation of keratinocytes in skin of psoriasis
patients is induced by infiltrating T-lymphocytes at the dermal-
epidermal junction. A non-coding RNA PRINS (Psoriasis sus-
ceptibility-related RNA gene Induced by Stress) has been shown
to be overexpressed in the psoriatic epidermal cells as compared
with healthy skin cells.101 Similarly, another autoimmune disor-
der rheumatoid arthritis (RA) is the result of joint destruction
due to the action of several proteases secreted by T, B, and APC
cells in response to an alteration in the synovial microenviron-
ment by proinflammatory cytokines and chemokines. Expression
of 85 lincRNAs in CD14C monocytes from RA patients is regu-
lated by the proinflammatory chemokines TNF-a and IL-6, and
showed significant upregulation due to anti-TNFa or anti-IL6
treatment.102 Another non-coding RNA lincRNA-p21 showed
reduced expression in RA patients. Treatment of RA patients
with methotrexate inhibited the activity of NF-kB by inducing
expression of lincRNA-p21 that is thought to regulate gene
expression through hnRNP-K mediated repression.80,103 Besides
these diseases, lncRNAs have also been associated with various
other autoimmune diseases such as systemic lupus erythemato-
sus, juvenile idiopathic arthritis, primary biliary cirrhosis,
asthma, celiac disease and inflammatory bowel disease.44,104

Neurological disorders

The onset and progression of many neurological disorders are
affected by dysregulation of lncRNAs and genes that they

regulate. The best characterized example of neurological dis-
eases controlled by lncRNAs is Alzheimer’s disease (AD).
Accumulation of extracellular amyloid-b deposits due to
increased expression of 2 proteases, b-secretase or b-Site APP-
Cleaving Enzyme 1 (BACE1) and g-secretase, results in AD
pathophysiology. An antisense transcript of BACE1 (BACE1-
AS), over-expressed in AD patients, forms a RNA duplex with
BACE1 mRNA to stabilize it resulting in higher level of BACE1
protein.41 Knocking down BACE1-AS resulted in reduced levels
of BACE1-AS and BACE1 lowering the levels of amyloid-b syn-
thesis and aggregation in brain. Thus, BACE1-AS presents a
promising therapeutic target to treat AD.105 In contrast to a
gradual decrease in the expression in the healthy aging brain,
lncRNA BCYRN1/BC200 showed up-regulation in brain of
patients with age related AD. The level of translational regula-
tor BCYRN1/BC200 was directly correlated with the severity of
the disease.106 BC200 RNA interacts with various RNA-binding
proteins that are involved in protein synthesis at postsynaptic
sites in neurons.107 Thus, they have role in modulating protein
synthesis in dendrites and may contribute to synaptodendritic
deterioration in aging brain.

Neurodegenerative disorder spinocerebellar ataxia type 8
(SCA8) that affects muscle and speech coordination is caused
by trinucleotide repeats in protein coding gene ataxin 8
(ATXN8), with CAG repeats resulting in poly-Q protein, and
in an lncRNA gene ataxin 8 opposite strand (ATXN8OS) with
CUG expansion. The lncRNA ATXN8OS interacts with splicing
factor MBNL1 in neurons leading to anomalous splicing of
GABA-A transporter 4 (GABT4) and loss of GABAergic inhibi-
tion in the granular cell layer, which is suggested to contribute
to the SCA8 phenotype.108 In another model of SCA8 patho-
physiology, the lncRNA ATXN8OS was shown to repress the
expression of KLHL1 gene located in close vicinity of
ATXN8.109 Reduction in KLHL1 expression decreases neurite
outgrowth during development of neurons resulting in brain
dysfunction.

Several other lncRNAs have been linked with different cogni-
tive disorders such as schizophrenia, autism spectrum disorders
(ASD), and Angelman syndrome. The lncRNA MIAT that inter-
acts with splicing factors QKI and SRSF1 shows down-regulation
in brain tissues of schizophrenia patients.110 The loss of MIAT
expression was associated with global changes in alternative
splicing as observed for DISC1, a gene associated with schizo-
phrenia. Microarray analysis of brain tissues from ASD patient
revealed 222 differentially expressed lncRNAs. Most of these
lncRNAs were colocalized with protein coding genes associated
with brain development.111 Many neurological diseases such as
Parkinson’s disease, amyolateral sclerosis and AD have defects in

Table 3. LncRNAs involved in immune response.

LncRNA Cell involved Functional mechanism Associated Disease Ref.

PRINS Epidermal Cells Protects cells against stress induced death Psoriasis 101

LincRNA-p21 THP-1 monocytes Decreased expression induces activity of NFkB Rheumatoid arthritis 103

SAS-ZFAT CD19C B cells SNP in SAS-ZFAT promoter region correlates to high risk of autoimmune thyroid disease Autoimmune thyroid disease 100

NeST CD8C T-cells Regulates expression of IFNg by methylation through H3K4 methyltransferase Microbial infection 92

GAS5 T-lymphocytes Interacts with glucocorticoid receptor and suppresses GR-induced transcriptional activity Systemic lupus erythematosus 128

THRIL THP-1 monocytes Regulates expression of TNFa via hnRNPL Kawasaki disease 99

Lnc-DC Dendritic cells Activates transcription factor STAT3 to support cellular differentiation 93

Ptprj-as1 Macrophage Expressed in response to lipopolysaccharide 97
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mitochondria of the affected neurons, indicating possible role for
mitochondrial lncRNAs in neurodegeneration.112

Bio-age

Aging is a biological process during which cells, tissues and
organs undergo progressive deterioration leading to loss of func-
tion, diseases and death. Different lncRNAs are involved in regu-
lation of cellular activity, proliferation, differentiation, quiescence,
senescence, stress response and other functions related to aging
by modulating gene expression.27,113 Cellular aging is associated
with gradual reduction in the length of telomere, which is con-
trolled by telomerase ribonucleoprotein complex formed by the
interaction between protein telomerase reverse transcriptase
(TERT) and the lncRNAs TERC (telomerase RNA component)
and TERRA (telomeric repeat-containing RNA) that contains
telomeric repeats. TERC provide template for synthesis of telo-
meric repeats to prevent premature aging, whereas TERRA sup-
presses telomeric elongation by inhibiting TERT activity
(Fig. 1E). TERC downregulation or TERRA over-expression are
associated with premature aging.27

Several epigenetic factors such as DNA methylation, histone
modification and heterochromatin formation are involved in
the aging process. Several lncRNAs are involved in age related
regulation of these epigenetic alterations. LncRNA X-inactive-
specific transcript (XIST), which is involved in X-chromosome
silencing in females, is downregulated in aging cells.114 The
overexpression of insulin-like growth factor 2 receptor (IGF2R)
in senescent cells, as compared with proliferating cells, indi-
cates its role in longevity. The lncRNA Airn controls the
expression of Igf2r gene by transcriptional interference with its
promoter.115 The other examples of lncRNAs involved in age-
related gene methylation include ecCEBP, pRNA, PAPAS,
PTENpg1-AS and TARID.

A healthy cell maintains a delicate balance of its protein con-
tent. This protein homeostasis is governed by protein biosyn-
thesis, trafficking, and degradation. These processes influence
different aspects of cell cycle, proliferation and senescence lead-
ing to aging. Various non-coding RNAs play important roles in
these processes. Over-expression of lncRNA HULC decreases
the expression of tumor suppressor p18 and inhibits apoptosis
by autophagy and promotes cell proliferation and metastasis in
gastric cancer cells.116,117 The non-coding RNA 7SL interacts
with TP53 mRNA and suppresses translation of p53. The
RNA-binding protein Hur competitively displaces 7SL to
enhance p53 translation, thereby promoting cell cycle arrest
and senescence.118 AS Uchl1, an lncRNA with SINEB2 repeats,
enhances the expression of ubiquitin carboxyl-terminal hydro-
lase-1 (UCHL1) inducing senescence.119 The lncRNA-p21
through translation repressors RCK and FMRP suppresses
expression of b-catenin and JunB, which are involved in cell
proliferation and carcinogenesis.120

During aging various environmental stresses, telomere dys-
function and DNA damage negatively influence the cell cycle
progression leading to senescence. Senescence is induced by
DNA damage in advancing age that elevates the expression of
cell cycle inhibitors, e.g., p53 and p21. The lncRNAs involved in
cell cycle regulation and senescence include MALAT1, H19,
ANRIL, SRA, HEIH, HULC, UCA1, NcRNACCND1 and others.27

Silencing MALAT1 is associated with enhanced senescence and
induced G1/S arrest indicating MALAT1 as a senescence sup-
pressor. The lncRNA HEIH down-regulates the expression of
cyclin-dependent kinase inhibitors p16, p21, p27 and p57 assist-
ing tumor cell growth.121 Cell cycle regulator cyclin D1
(CCND1) associated lncRNA NcRNACCND1 is essential for the
activity of cyclin-dependent kinases, cdk2 and cdk4 for G1/S
transition. Upon exposure to DNA-damaging agents,
NcRNACCND1 forms a nucleoprotein complex with protein
TLS.34 This complex interacts with CCND1 promoter to inhibit
transcription. Thus, lncRNAs are associated with the different
aspects of aging and are involved in almost every process in cell
cycle, proliferation and senescence.

Conclusion

Extensive research in the field of non-coding RNAs and their
roles in maintaining normal physiology as well as in disease
pathogenesis suggest that lncRNAs are an important contribu-
tor to multiple disease traits. However, the answers of many
ncRNAs mediated questions remain uncertain. Although many
GWAS have linked them to different diseases, the actual mech-
anism of disease development is yet to be elucidated. The anno-
tated databases of the lncRNA sequences in human genome are
not complete or inaccurate in many cell types. Complete anno-
tation of lncRNAs in specialized cells of different human organs
is an important basis required for future work. The potential of
lncRNAs as therapeutic targets and as biomarkers for different
diseases warrants further investigation to explore their rele-
vance in disease onset and progression. Therefore, we strongly
expect that further studies of lncRNAs will reinforce the impor-
tance of these novel molecules in human biology and medicine.
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