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Article-level assessment of influence and 
translation in biomedical research
George M. Santangelo*
Office of Portfolio Analysis, Division of Program Coordination, Planning, and Strategic Initiatives,  
National Institutes of Health, Bethesda, MD 20892

ABSTRACT  Given the vast scale of the modern scientific enterprise, it can be difficult for 
scientists to make judgments about the work of others through careful analysis of the en-
tirety of the relevant literature. This has led to a reliance on metrics that are mathematically 
flawed and insufficiently diverse to account for the variety of ways in which investigators 
contribute to scientific progress. An urgent, critical first step in solving this problem is replac-
ing the Journal Impact Factor with an article-level alternative. The Relative Citation Ratio 
(RCR), a metric that was designed to serve in that capacity, measures the influence of each 
publication on its respective area of research. RCR can serve as one component of a multi-
faceted metric that provides an effective data-driven supplement to expert opinion. Devel-
oping validated methods that quantify scientific progress can help to optimize the manage-
ment of research investments and accelerate the acquisition of knowledge that improves 
human health.

The modern biomedical research enterprise is a complex ecosys-
tem, encompassing topics as diverse as social psychology and phys-
ical chemistry. Optimizing the management of biomedical research 
projects, including the >70,000 awards made by the National Insti-
tutes of Health (NIH) each year, requires a deep understanding of 
this complexity on both a qualitative and quantitative level. Admin-
istrators in academia face a similar challenge as they pursue the 
most promising opportunities when hiring faculty and making capi-
tal investments. As decision makers have increasingly turned to 
metrics for assistance in pruning these large and elaborate decision 
trees, the ongoing use of inadequate metrics has fomented numer-
ous protests (van Diest et al., 2001; Colquhoun, 2003; Cherubini, 
2008; Papatheodorou et al., 2008; Bertuzzi and Drubin, 2013; 
Cagan, 2013; Eisen et al., 2013; Schekman, 2013; Alberts et al., 
2014; Casadevall and Fang, 2014, 2015; Casadevall et al., 2016; 
Collins and Tabak, 2014; Ioannidis and Khoury, 2014; Pierce, 2014; 

Begley and Ioannidis, 2015; Bowen and Casadevall, 2015; Fang and 
Casadevall, 2015; Berg, 2016; Bohannon, 2016; Callaway, 2016; 
Lariviere et al., 2016). Widespread concern about the use of flawed 
metrics derives not only from an awareness of their limitations but 
also from the reality that careers, and ultimately perhaps the scien-
tific enterprise at large, are at stake.

GETTING BEYOND JOURNAL IMPACT FACTOR: 
VALIDATED METRICS CAN MAKE A POSITIVE 
CONTRIBUTION
The Journal Impact Factor (JIF) is one example of a statistically 
flawed measurement of citation activity that has seen broad adop-
tion over the past few decades as a proxy for both the quality and 
impact of research publications. The technical shortcomings of JIF 
as a metric have been amply documented (Price, 1976; Seglen, 
1997; Nature, 2005, 2013; Alberts, 2013; Cagan, 2013; Johnston, 
2013; Misteli, 2013; Pulverer, 2013; Van Noorden, 2014; Berg, 2016; 
Bohannon, 2016; Callaway, 2016; Hutchins et al., 2016; Lariviere 
et al., 2016). Most importantly, JIF is mathematically invalid because 
it is calculated as the average number of times the entire collection 
of articles in a given journal is cited, but in reality, citations follow a 
log-normal rather than a Gaussian distribution (Stringer et al., 2008). 
This means that two articles in the same journal—indeed, even in 
the same issue of that journal—can differ in citation activity by up to 
three logs. Field-specific differences, both in citation activity and in 
access to high-profile publication venues, further invalidate the use 
of JIF to assess the influence of a scientist’s research at the article 
level. JIF is also of little or no value in comparing research outputs 
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manual inspection when assessing contributions from a group of 
applicants to their chosen fields of research. This is especially true 
because many of these same experts, in addition to judging grant 
applications and vetting potential future colleagues, are regular re-
viewers of submissions to a variety of journals and conferences and 
are also occasionally called upon to review promotion and tenure 
dossiers. Indeed, the time and effort occupied by this portion of the 
typical workload of principal investigators, which makes a marginal 
contribution to their own career advancement and is done out of a 
sense of duty, may have helped to stimulate the widespread adop-
tion of JIF as a proxy for quality.

Beyond these logistical realities, exclusive reliance on expert 
opinion has its own methodological drawbacks. Although metrics 
should never be used as a substitute for human judgment, the latter 
is far from perfect and can succumb to a wide variety of conscious 
and subconscious biases (for an excellent discussion of bias in peer 
review, see Lee et al., 2013). In addition to gender bias—the more 
favorable treatment of men in peer review (Wenneras and Wold, 
1997; Budden et al., 2008; Larivière et al., 2013; Urry, 2015; Lerback 
and Hanson, 2017; Overbaugh, 2017)—potential biases include 
prestige bias—the “benefit of the doubt” given to scientists who 
have gained a cumulative advantage by benefiting from greater and 
greater prestige as they disproportionately garner a larger and 
larger share of limited resources (sometimes called the “Matthew 
effect”; Merton, 1968; Peters and Ceci, 1982; Bornmann and Daniel, 
2006); affiliation bias—favoritism based on semiformal or informal 
relationships between applicants and reviewers that are not 
addressed by conflict of interest rules (Wenneras and Wold, 1997; 
Sandström and Hällsten, 2008); content-based bias—preference for 
those who study similar problems and/or belong to a similar “school 
of thought” (Ferber, 1986; Travis and Collins, 1991; Lee and Schunn, 
2011); and confirmation bias—the tendency to favor ideas and/or 
evidence that reinforces, rather than challenges, one’s views (Ernst 
et al., 1992; Nickerson, 1998). Well-designed and thoroughly tested 
metrics have the potential to expose bias where it exists and may 
therefore ultimately play an important role in assisting experts who 
might otherwise, however unintentionally, continue to apply those 
biases systematically when reviewing the work of others. Ironically, 
one of the most commonly held prestige biases might be the out-
sized esteem conferred on those who publish in high-JIF journals at 
the expense of scientists who publish work of equal or greater value 
elsewhere (Eisen et al., 2013; Eyre-Walker and Stoletzki, 2013).

A MATHEMATICALLY SOUND, VALIDATED ALTERNATIVE: 
THE RELATIVE CITATION RATIO
As captured in the aphorism “you can’t replace something with 
nothing,” reliance on JIF as a proxy for quality might continue unless 
decision makers are convinced that there is a valid alternative. At 
the NIH, we therefore sought to develop such an alternative. Before 
any new metric can serve in this role, it must at a minimum be both 
statistically and bibliometrically sound and lend itself to careful 
interpretation within a broader context. The only valid way to assess 
the influence of publications is at the article level. Replacing journal-
level with article-level assessment would place the many highly in-
fluential articles that appear in JIF < 28 journals on an equal footing 
with those in JIF ≥ 28 journals. 

To judge fairly whether an individual article is well or poorly cited, 
it is necessary to identify other works in the same field with which it 
can be compared. Our metric, the Relative Citation Ratio (RCR), 
uses an article’s co-citation network—that is, the other articles that 
appear alongside it in reference lists—to define its unique and 
customized field. An important advantage of this method of field 

of developed and developing nations or different types of institu-
tions because meaningful apples-to-apples assessments require an 
article-level metric that includes a benchmarking step.

That JIF is an inappropriate tool for selecting winners in the 
intense competition for status and resources is highlighted by the 
observation that everything published in journals with a high JIF 
(≥28), taken together, accounts for only a small fraction of the most 
influential articles (Bertuzzi, 2015; Hutchins et al., 2016). (Note that 
influence, not impact or quality, is what citation activity measures; 
more about that later.) Awareness of the flaws in JIF and the accom-
panying prisoner’s dilemma (Axelrod and Hamilton, 1981; Erren 
et al., 2016), in which scientists failing to pursue publication in high-
JIF journals run the very real risk of being outcompeted by their 
peers, date at least as far back as 1997, and so do suggestions for 
combatting what was already by then a growing problem (Seglen, 
1997). Despite this long-standing criticism, JIF has persisted in the 
absence of a quantitative approach that is a collectively agreed-
upon alternative.

What method could replace JIF as a means of evaluating scien-
tific productivity? Some have argued that the only acceptable 
solution is a return to the tradition of making career-determining 
judgments by relying exclusively on expert opinion, supplemented 
in the time-honored manner by peer recommendations, informal 
discussions, and other subjective criteria. Although this would seem 
to be an ideal solution, there are many circumstances in which it is 
unworkable in practice. Decision makers sometimes lack the band-
width to review thoroughly the entire corpus of publications relevant 
to a given decisional task, whether they are considering a large co-
hort of applicants for an open faculty position, developing a funding 
opportunity announcement, or reviewing applications in a peer 
review meeting. Exponential expansion of the number of entries in 
PubMed over the past few decades, culminating in the current rate 
of more than one million publications per year (Figure 1), can repre-
sent a serious challenge to experts who wish to rely exclusively on 

FIGURE 1:  Exponential expansion of the number of articles in 
PubMed (1982–2015). (A) Blue-filled circles, all articles; pink-filled 
circles, NIH-funded articles. (B) Percentage of articles in PubMed 
authored by NIH awardees.
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Fong, 2012), and citing more recent articles or reviews rather than 
the original report of a scientific advance. The concept of influence, 
broader and more neutral than the lens through which citations are 
now commonly viewed, also provides important context for under-
standing how RCR should be interpreted—as an indicator of the 
value that the relevant academic audience places on transmission of 
the information contained in one or more publications.

It is also important to keep in mind that citations follow a power 
law or log-normal distribution (Wang et al., 2013), meaning that as a 
researcher explores the literature, some of the articles that match his 
or her area of interest are far more visible than others. Consequently 
the choice of which article to cite is at least partly informed by the 
choices that other researchers previously made. The results of a 
landmark study on the relationship between quality and success in a 
competitive market illustrate the importance (and potential for bias) 
that is inherent in these early choices; winners are neither entirely 
random nor entirely meritocratic, and success is strongly influenced 
by intangible social variables (Salganik et al., 2006). This means that, 
although highly influential publications are as a rule important and 
of high quality, the converse is not necessarily true. RCR is therefore 
designed to contribute to decision making, not as a substitute for 
human judgment, but as one component of a multifaceted ap-
proach that places expert opinion at the center of assessments of 
scientific productivity. As we say at the NIH, bodies of work that have 
higher or lower RCR values than the benchmarked median value of 
1.0 should be “flagged for inspection” and interpreted in the 
broader context of a diverse set of parameters. Note also that, given 
the inherent noise and intangible variables that affect the output of 
individuals, NIH decision makers are using RCR and other parame-
ters only to measure the outputs of groups of researchers, not to 
assess individuals for the purpose of making funding decisions.

NEXTGEN PORTFOLIO ANALYSIS: USING RCR AS ONE 
COMPONENT OF A DIVERSE METRIC
Others have also highlighted the value of developing multifac-
eted assessments. For example, Ioannidis and Khoury (2014) in-
corporated just such a diverse set of parameters into a metric 
that they termed PQRST (productivity, quality, reproducibility, 
sharing of data and other resources, and translation. Of course, 
productivity goes beyond merely totting up the number of article 
in a portfolio. Therefore one way to adapt their innovative idea is 
to replace P with I (influence), yielding IQRST; RCR (or weighted 
RCR; Hutchins et al., 2016) can be used as the I component of the 
metric. Certain aspects of R and S might also be amenable to 
quantitation (Schimmack, 2014; Olfson et al., 2017). By its very 
definition, Q requires a qualitative (i.e., human) judgment. T, for 
translation, can also be measured by quantifying citations by 
clinical trials or guidelines, with two caveats. First, several years 
must elapse to obtain a sufficient signal. Second, this is a mea-
sure of direct translation; it does not detect the equally important 
occurrences of extended translation, defined as a series of cita-
tions that connect basic research with impact on human health. 
For this reason, Weber (2013) proposed the “triangle of biomedi-
cine” to identify and visualize extended translation (Figure 3). We 
are working to adapt this framework into a tool to analyze a se-
lected portfolio of articles and track its progress toward transla-
tion. Development of this and other metrics can contribute to 
NextGen data-driven decision making by funders of biomedical 
research.

A further advantage of effective article-based metrics is that they 
can be validly extended to compare collections of articles. Figure 4 
shows a real-world example of the use of article-based metrics to 

normalization is that it leverages the collective experience of pub-
lishing scientists, who are the best judges of what relevance one 
article has to another. RCR also time-normalizes by considering cita-
tion rates rather than raw citation counts and, unlike any other avail-
able metric, uses a customizable benchmark to allow comparisons 
between specific peer groups (Figure 2; Hutchins et al., 2016). Ex-
tensive testing and validation has demonstrated that the RCR 
method meets the requirements that should be demanded of any 
metric before it is adopted as a component in data-driven decision 
making: RCR values are calculated in a transparent fashion, bench-
marked to peer performance, correlated with expert opinion, scal-
able from small to large collections of publications, and freely acces-
sible (publicly available through our web-based iCite tool (icite.od.
nih.gov; Hutchins et al., 2016), with open-source code (https://
github.com/NIHOPA/Relative-Citation-Ratio-Manuscript).

Because even thoroughly tested and validated metrics can be 
misused, it is exceedingly important to define what they do and do 
not measure. As currently applied to scientific publications, it is a 
daunting challenge to measure, let alone to predict, the impact of 
specific advances in knowledge. For this reason, we do not say that 
RCR values measure the impact, but rather the influence of each 
article relative to what is expected, given the scope of its scientific 
topic. Redefining citations as a measure of influence is important 
because it addresses valid and often-expressed concerns about the 
variety of ways in which authors cite the work of others; examples 
include citing a report that the citer disagrees with or considers 
flawed, adding citations to please a journal editor (Wilhite and 

FIGURE 2:  Using co-citation networks to calculate RCR. (A) Schematic 
of a co-citation network. The red circle represents a reference article 
(RA); blue circles represent articles citing the RA, and orange circles 
represent articles cited by the RA. The co-citation network of the RA 
is represented in green and is defined as the collection of articles 
cited by articles that also cite the RA. (B) Examples of co-citation 
network growth over time. The growth of the networks of articles 
co-cited (green circles) in articles that also cite representative RAs (red 
circles) published in 2006 (three examples from top to bottom). From 
left to right in each row, the co-citation networks expand between 
2006 and 2011. (C) Normalizing article citation rates to calculate RCR. 
Expected citations rates are generated by benchmarking NIH-funded 
article citation rates to the citation rates for articles in their co-citation 
network (field citation rate). RCR is calculated by dividing the article 
citation rate of each article by its expected citation rate. This figure 
was adapted from Figures 1 and 3 of Hutchins et al. (2016).
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assess a large number of publications in two distinct but related 
areas of biomedical research—basic cell biology and neurological 
function. We randomly sampled 2000 NIH-funded articles from the 
20 journals in which NIH investigators from these fields most 
frequently published their work between 2007 and 2012. As we 
showed recently, although practitioners in those fields do not have 
equal access to high-JIF journals (Tables 1 and 2 and Figure 4A), the 
distribution of the respective article-level RCR values is statistically 
indistinguishable (Hutchins et al., 2016). This comparison is illus-
trated in treemaps of the randomly selected articles from Tables 1 
and 2. Although there are a comparable number of highly influential 
articles in both areas of science (those in the top quintile, RCR > 
2.39; Figure 4B), there is a striking difference in the extent to which 
the research exhibits direct translation to clinical trials or guidelines 
(Figure 4C). Combining these measurements of I and T (Figure 4D) 
shows just how poorly JIF represents the broadly disseminated con-
tributions that typify progress in biomedical research.

This analysis was repeated for all NIH-funded publications in 
2012. Overall, as expected from our previous work (Hutchins et al., 
2016), only 8% of the most influential PubMed articles in 2012 (top 
quintile, RCR > 2.39) were published in high-profile journals (JIF ≥ 
28). The treemaps in Figure 5 illustrate this for the journals ranked 
from 1st to 21st in terms of having published the most articles au-
thored by NIH investigators in 2012 (Table 3). Again, the inadequacy 
of the JIF metric (Figure 5A) as a way to represent the research that 
is either most influential (Figure 5B) or directly translates into clinical 
work (Figure 5C) is apparent. The data for three journals that pub-
lished similar numbers of NIH-funded articles in 2012—Clinical Can-
cer Research, Cell, and Science—provide a revealing example. The 
combined number of influential and clinically relevant articles is 
comparable for all three journals (Figure 5D), despite the approxi-
mately fourfold lower JIF of Clinical Cancer Research (Table 3). This 
modified approach therefore both balances the measurement of 
influence by doing so at the article level and appropriately credits 
the expected larger number of clinically relevant articles in the 
lower-JIF journal.

USING THE SCIENTIFIC METHOD TO PROMOTE THE 
ADVANCEMENT OF SCIENCE
The goal of replacing journal-level with article-level assessments is 
actively being pursued at the NIH. Recent analyses conducted by 
the NIH Office of Extramural Research and the National Institute of 
General Medical Sciences have used the RCR method to measure 
outcomes of awarded grants (Basson et al., 2016; Dorsey, 2016; 
Lauer, 2016a,b). The NIH will continue to promote the shift to arti-
cle-level assessments in partnership with the scientific community, 
including collaborators at other domestic and international funding 
agencies, private foundations, and academic institutions, as part of 
an ongoing effort to implement data-driven decision making that 
improves the shared stewardship of research investments. Indeed, 
use of RCR has already spread outside of the NIH; the Wellcome 
Trust in the United Kingdom and Fondazione Telethon in Italy have 
now adopted RCR as part of their suite of portfolio analysis tools 
(Naik, 2016). Although the scope of this effort traverses the bound-
aries of biomedical research, the wisdom of the Hippocratic Oath 
provides a guiding principle: first, do no harm. When comparing 
portfolios of research investments, it is critical to ensure that those 
comparisons are “apples to apples.” For example, as shown in 
Figure 4, when measuring at the journal level, we get the wrong 
answer; although NIH-funded studies of neurological function and 
cell biology appear in two very different sets of journals, at the 
article level, one is at least as influential as the other. Similarly, the 

FIGURE 3:  Capturing indirect translation with Griffin Weber’s triangle 
of biomedicine. Sample visualization of indirect translation leading to 
the development of Voraxaze, a Food and Drug Administration–
approved drug used to treat toxic plasma methotrexate concen
trations in patients with impaired renal function. The vertices of the 
triangle correspond to cellular/molecular (bottom left), animal (bottom 
right), and human (top) research.

FIGURE 4:  Comparison of I and T for NIH-funded articles in the areas 
of cell biology and neurological function from 2007 to 2012. These 
treemaps compare several metrics for the 20 journals in which 
NIH-funded cell biologists (left) and neurobiologists (right) publish 
their work most frequently. Each rectangle within the map represents 
one of the journals (numbered 1–20; see Tables 1 and 2 for lists of the 
journals), and its size is proportional to the number of NIH-funded 
publications in that journal. The rectangles are shaded from light blue 
to dark blue, based on increasing values of the corresponding journal 
for four different metrics: (A) JIF, (B) number of articles with an RCR in 
the top quintile, (C) number of articles cited by a clinical trial or 
guideline, and (D) the sum of articles with an RCR in the top quintile 
and articles cited by a clinical trial or guideline. Relative values can be 
assessed by comparing the darkness of the blue shading. For 
example, rectangle 1 under Neurological function (representing the 
journal NeuroImage) has a relatively low JIF (light blue) but a relatively 
high number of publications with RCR in the top quintile (dark blue).
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Ranka Journal
Number of 

publicationsb 2012 JIF
Percentage of publications 

with RCR > 2.39c
Percentage of publications 

cited by CT/CGd

1 J Biol Chem 341 4.7 11.1 5.6
2 Proc Natl Acad Sci USA 215 9.7 34.4 7.4
3 Mol Biol Cell 150 4.8 11.3 6.0
4 PLoS One 141 3.7 8.5 5.0
5 J Cell Biol 122 10.8 35.2 5.7
6 Cell 109 32.0 65.1 11.0
7 Curr Biol 106 9.5 21.7 3.8
8 Dev Biol 95 3.9 3.2 2.1
9 Development 95 6.2 9.5 1.1
10 Mol Cell 78 15.3 42.3 6.4
11 Dev Cell 70 12.9 31.4 5.7
12 Science 64 31.0 70.3 7.8
13 J Cell Sci 63 5.9 11.1 6.3
14 Nature 63 38.6 69.8 20.6
15 Nat Cell Biol 53 20.8 39.6 11.3
16 PLoS Genet 50 8.5 10.0 2.0
17 Mol Cell Biol 49 5.4 18.4 10.2
18 Dev Dyn 48 2.6 0.0 0.0
19 Invest Ophthalmol Vis Sci 47 3.4 14.9 23.4
20 Cell Cycle 41 5.3 7.3 0.0

aRank indicates the relative frequency with which NIH-funded cell biologists published their work in the given journal.
bTwo thousand articles were randomly selected from among the NIH-funded cell biology articles in the given 20 journals.
cNumber of articles in the top quintile of RCR values.
dNumber of articles cited by a clinical trial (CT) or clinical guideline (CG).

TABLE 1:  Cell biology journals (2007–2012).

Ranka Journal
Number of 

publicationsb 2012 JIF
Percentage of publications  

with RCR > 2.39c
Percentage of publications 

cited by CG/CTd

1 NeuroImage 228 6.3 39.5 54.4
2 J Neurosci 153 6.9 53.6 62.7
3 Neuropsychologia 133 3.5 19.5 57.1
4 J Acoust Soc Am 125 1.6 11.2 18.4
5 Psychopharmacology (Berl) 125 4.1 20.8 47.2
6 PLoS One 115 3.7 20.9 37.4
7 Biol Psychiatry 111 9.2 58.6 69.4
8 Cognition 99 3.5 18.2 43.4
9 J Cogn Neurosci 92 4.5 31.5 52.2
10 Brain Res 90 2.9 14.4 44.4
11 J Speech Lang Hear Res 89 2.0 13.5 34.8
12 J Neurophysiol 85 3.3 30.6 51.8
13 Psychol Sci 81 4.5 38.3 56.8
14 Dev Sci 74 3.6 33.8 51.4
15 Proc Natl Acad Sci U S A 74 9.7 59.5 64.9
16 Psychiatry Res 73 2.5 21.9 42.5
17 Neurology 71 8.2 54.9 40.8
18 Cereb Cortex 63 6.8 52.4 69.8
19 Behav Brain Res 62 3.3 14.5 17.7
20 Exp Brain Res 57 2.2 7.0 40.4

aRank indicates the relative frequency with which NIH-funded neurobiologists published their work in the given journal.
bTwo thousand articles were randomly selected from among the NIH-funded neurobiology articles in the given 20 journals.
cNumber of articles in the top quintile of RCR values.
dNumber of articles cited by a clinical trial (CT) or clinical guideline (CG).

TABLE 2:  Neurobiology journals (2007–2012).
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Ranka Journal
Total number 

of publications JIF
Percentage of publications 

with RCR > 2.39b
Percentage of publications 

cited by CG/CTc
Percentage 

I + Td

1 PLoS One 4792 3.7 10.9 12.5 23.4
2 J Biol Chem 1916 4.7 12.9 5.2 18.1
3 Proc Natl Acad Sci USA 1752 9.7 36.4 13.1 49.5
4 J Neurosci 928 6.9 30.4 15.1 45.5
5 J Virol 703 5.1 14.8 10.8 25.6

6 Blood 697 9.1 33.0 39.3 72.3
7 J Immunol. 695 5.5 13.1 15.3 28.4
8 J Am Chem Soc 685 10.7 31.5 0.1 31.6
9 Biochemistry 552 3.4 6.7 1.1 7.8
10 Biochim Biophys Acta 458 4.4 23.1 7.9 31.0
11 NeuroImage 432 6.9 38.9 35.2 74.1
12 Nature 430 38.6 83.5 37.4 120.9
13 Nucleic Acids Res 427 8.3 24.6 5.4 30.0
14 Cancer Res 369 8.7 32.0 23.3 55.3
15 Invest Ophthalmol Vis Sci 366 3.4 20.8 20.2 41.0
16 PLoS Genet 365 8.5 19.2 7.7 26.9
17 Clin Cancer Res 351 7.8 33.9 45.3 79.2
18 Cell 347 32.0 76.7 15.6 92.3
19 Science 341 31.0 69.2 19.9 89.1
20 PLoS Pathog 313 8.1 33.9 15.7 49.6
21 J Clin Invest 284 12.8 49.6 33.1 82.7

aRank indicates the relative frequency with which NIH awardees published their work in the given journal.
bNumber of articles in the top quintile of RCR values.
cNumber of articles cited by a clinical trial (CT) or clinical guideline (CG).
dNumber of articles of high influence (RCR > 2.39; I) plus the number that exhibited direct translation (cited by a clinical trial or guideline; T). Note that a given 
publication may have high influence and a citation from a clinical trial or guideline, so percentage I + T can be >100%.

TABLE 3:  All journals (2012).

FIGURE 5:  Measuring I and T for all NIH-funded articles in 2012. 
Rectangles are as described in the Figure 4 legend. The number in 
each rectangle corresponds to the list of journals in Table 3 (ranked by 
the relative frequency with which NIH-funded scientists published 
their work in that journal).

effectiveness of new funding initiatives cannot be properly analyzed 
without carefully determining the most appropriate methods and 
control groups. When samples sizes allow, propensity score match-
ing should be used to eliminate confounding variables that can lead 
to erroneous conclusions. Another caveat is that, as is true for both 
clinical trials and preclinical research, these studies must be effec-
tively powered by using sufficiently large sample sizes. Fortunately, 
improvements in computational methodology and database man-
agement now readily permit such large-scale analyses; calculation 
of RCR values for 24 million articles (Hutchins et al., 2016) took less 
than 1 day to complete. In short, the hallmarks of the scientific 
method, including due diligence in selecting the appropriate ques-
tions, methods, controls, and standards of analysis, are just as es-
sential when attempting to analyze research portfolios and/or track 
scientific advances.

FUTURE DIRECTIONS
This new area of research that can inform decision making, some-
times termed “science of science,” is understandably of great in-
terest to science funders and stakeholders alike. From the policy 
and program management perspective, it has the exciting poten-
tial to guide decisions by revealing overlapping investments, de-
tecting emerging areas, and demarcating research gaps. In doing 
this work, it is essential not to lose sight of the fact that the most 
impactful advances in science, those that result in paradigm shifts 
(Kuhn, 1962), are by their very nature anecdotal, and the resulting 
ripple effects are difficult to track effectively. Indeed, effective 
tracking of what Kuhn called “normal science” has the potential to 
optimize the distribution of research investments in a way that 



Volume 28  June 1, 2017	 Quantifying article influence  |  1407 

increases the likelihood that paradigm-challenging research can 
flourish.

As founders of a new field of research that can take full advan-
tage of the rapid proliferation of ever more sophisticated computa-
tional resources and methodologies, science-of-science scholars are 
poised to make seminal discoveries that at a minimum can reveal 
features of normal science and how it progresses. It is increasingly 
straightforward to develop new methods of analysis, build powerful 
algorithms, and share them globally. The quality of a wide variety of 
data fields, including research awards, publications, citations, pat-
ents, drugs, and devices, to name but a few, continues to improve, 
as does the interoperability of the databases and systems that 
house them. Stewards of research resources have a duty to explore 
the resulting new opportunities in support of data-driven decision 
making whenever strong evidence indicates that the use of such 
methodologies provides an undistorted lens through which to view 
research investments and the resulting productivity and/or impact. 
That said, there must be strong evidence that any new methodol-
ogy has undergone the most rigorous testing to validate its capacity 
to distinguish between “fool’s gold” and real discoveries. It is also 
crucial to implement such new tools wisely, understanding that no 
single metric or approach tells the whole story and using the out-
puts of science-of-science research only to supplement, never to 
replace, human judgment. The summative result of these efforts will 
be a bright future for the scientific enterprise as we strive together 
to optimize the rate of scientific discovery and demonstrate the 
value of investments in research and the resulting impact on human 
health and beyond.
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