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Nijmegen breakage syndrome (NBS) is characterised by

microcephaly, developmental delay, characteristic facial

features, immunodeficiency and radiosensitivity. Nbs1,

the protein defective in NBS, functions in ataxia telangiec-

tasia mutated protein (ATM)-dependent signalling likely

facilitating ATM phosphorylation events. While NBS

shares overlapping characteristics with ataxia telangiecta-

sia, it also has features overlapping with ATR-Seckel (ATR:

ataxia-telangiectasia and Rad3-related protein) syndrome,

a subclass of Seckel syndrome mutated in ATR. We show

that Nbs1 also facilitates ATR-dependent phosphorylation.

NBS cell lines show a similar defect in ATR phosphoryla-

tion of Chk1, c-jun and p-53 in response to UV irradiation-

and hydroxyurea (HU)-induced replication stalling. They

are also impaired in ubiquitination of FANCD2 after HU

treatment, which is ATR dependent. Following HU-in-

duced replication arrest, NBS and ATR-Seckel cells show

similarly impaired G2/M checkpoint arrest and an im-

paired ability to restart DNA synthesis at stalled replica-

tion forks. Moreover, NBS cells fail to retain ATR in the

nucleus following HU treatment and extraction. Our find-

ings suggest that Nbs1 functions in both ATR- and ATM-

dependent signalling. We propose that the NBS clinical

features represent the result of these combined defects.
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Introduction

Nijmegen breakage syndrome (NBS) was identified as a

chromosome instability disorder in 1981 (Weemaes et al,

1981). Ataxia telangiectasia (A-T) and NBS are characterised

by chromosome instability particularly involving chromo-

somes 7 and 14, cellular and clinical hypersensitivity to

ionising radiation (IR), characteristic radioresistant DNA

synthesis, humoral and cellular immune defects and marked

cancer predisposition (Taalman et al, 1983; Taylor et al, 1993;

Shiloh, 1997; International Nijmegen Breakage Syndrome

Study Group, 2000). NBS has therefore been described as

an A-T-like disorder (Saar et al, 1997; Wegner et al, 1999).

Despite overlapping features, NBS and A-T are clinically

distinct. NBS patients display microcephaly, developmental

delay and characteristic facial features, while A-T is a neuro-

degenerative disorder with marked and debilitating progres-

sive ataxia. Ataxia-telangiectasia-like disorder (ATLD) is a

further A-T-like disorder. ATLD patients show a mild A-T

phenotype with no microcephaly or developmental delay

(Stewart et al, 1999).

The protein mutated in A-T is ataxia telangiectasia mutated

protein (ATM), a phosphoinositol 3-kinase-like kinase (PIKK)

(Savitsky et al, 1995). ATM is central to the signalling

response to DNA double-strand breaks (DSBs) and phospho-

rylates multiple damage response proteins, including p53,

H2AX, Chk2, RPA, Brca1, BLM, 53BP1, SMC1, Rad17, Rad1

and Rad9 in response to IR (Iliakis et al, 2003; Shiloh, 2003).

As a consequence of these phosphorylation defects, A-T cells

display radiosensitivity and cell cycle checkpoint defects after

exposure to IR (for reviews, see Lavin and Khanna, 1999;

Khanna et al, 2001; Shiloh, 2003). ATM is not activated in the

initial response to UV irradiation or hydroxyurea (HU), an

agent that causes replication stalling.

Nbs1 and Mre11, the proteins deficient in NBS and ATLD,

respectively, function as components of the Mre11/Rad50/

Nbs1 (MRN) complex, which colocalises with g-H2AX at the

site of DSBs (Carney et al, 1998; Varon et al, 1998; Paull et al,

2000). NBS and ATLD cells show impaired IR-induced phos-

phorylation, demonstrating a role for MRN in facilitating

ATM-dependent signalling (Matsuura et al, 1998; Buscemi

et al, 2001; Girard et al, 2002; Kim et al, 2002; Nakanishi et al,

2002; Yazdi et al, 2002; Gatei et al, 2003). Consistent with

such a role, MRN was recently shown to stimulate the kinase

activity of ATM in vitro towards its substrates p53, Chk2 and

histone H2AX, and Nbs1 was shown to directly contact ATM

(Lee and Paull, 2004). Recent data have provided evidence for

a role for MRN as a damage sensor acting upstream of ATM

although there is also compelling evidence for a downstream

role (Carson et al, 2003; Uziel et al, 2003; Horejsi et al, 2004).

Notwithstanding the precise point at which MRN functions,

the requirement of MRN for ATM-dependent phosphorylation

likely underlies the similar radiosensitivity and cell cycle

checkpoint defects of A-T, ATLD and NBS cell lines.

Other studies have provided evidence for a wider role of

MRN. While ATM is nonessential in mice and humans, Nbs1-

and Mre11-defective mice are embryonic lethal (Yamaguchi-

Iwai et al, 1999). The microcephaly and developmental delay

in NBS patients also suggests an additional function for Nbs1.

There is also evidence that Mre11/Rad50/Xrs2 (MRX), the

Saccharomyces cerevisiae homologue of MRN (Haber, 1998),

promotes both nonhomologous end-joining and homologous

recombination (Bressan et al, 1999; Petrini, 1999) although

direct evidence for a role of MRN in these processes in
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mammalian cells has not been forthcoming. Two studies

using yeast have demonstrated that MRX is required for

Mec1/Rad3-dependent S-phase checkpoint activation

although a third study did not observe a role for Rad50 in

the response to HU (D’Amours and Jackson, 2001; Hartsuiker

et al, 2001; Chahwan et al, 2003). Additionally, MRN is

deposited on chromatin in an S-phase-specific manner and

localises to single-stranded DNA (ssDNA) arising in HU-

treated cells (Mirzoeva and Petrini, 2001), and loss of MRX/

MRN components leads to chromosome breakage during

replication (Yamaguchi-Iwai et al, 1999; Costanzo et al,

2001). Taken together, indirect evidence for an additional

role of the MRN complex in the response to DNA damage

in mammalian cells is strong, although the precise function is

still unclear.

Recently, we identified a hypomorphic mutation in ataxia-

telangiectasia and Rad3-related protein (ATR) in two related

Seckel syndrome patients (O’Driscoll et al, 2003). Seckel

syndrome is genetically and clinically heterogenous and we

have designated this subset of Seckel syndrome ATR-Seckel

(O’Driscoll et al, 2004). ATR-Seckel patients have features that

overlap NBS, namely pronounced microcephaly, develop-

mental delay and characteristic facial features (Goodship

et al, 2000). ATR, like ATM, is a PIKK family member and

plays a central role in a parallel damage response pathway

(Bentley et al, 1996; Zou et al, 2002). However, while ATM

responds to the presence of DNA DSBs, ATR appears to be

activated by ssDNA, arising at stalled replication forks or

generated during processing of bulky lesions (Costanzo et al,

2003; Zou and Elledge, 2003). ATR phosphorylates many of

the same damage response proteins as ATM, including Nbs1,

which localises to stalled replication forks (Shiloh, 2001;

Zhou et al, 2002). These findings prompted us to examine

if Nbs1 is also required for ATR-dependent signalling. To

explore further the contribution of ATR signalling to clinical

phenotype, we also examined cell lines from ATLD patients,

who do not display Seckel-like features. Strikingly, we ob-

served similar cellular defects in ATR-Seckel and NBS cell

lines including impaired substrate phosphorylation, impaired

G2/M checkpoint arrest and an impaired ability to restart

replication at stalled replication forks. Our findings strongly

suggest that Nbs1 functions both in ATR- and ATM-dependent

signalling. We propose that NBS clinical features represent

the result of these combined defects.

Results

NBS and ATR-Seckel lymphoblastoid cell lines

are similarly impaired in phosphorylation induced

by replication stalling

We examined phosphorylation of Chk1 and c-jun by Western

blotting in NBS, ATR-Seckel, ATLD and A-T lymphoblastoid

cell lines (LBLs) following treatment with HU and aphidicolin

(APH), respectively, agents that causes replication fork stal-

ling. While Chk1 and c-jun phosphorylation was clearly

observed in treated wild type (WT) (GM1958), A-T

(GM3189) and ATLD1/2 LBLs, it was not seen in an ATR-

Seckel LBL (DK0064) nor in two NBS LBLs (LB112 and

LB195) (Figure 1A). Chk1 and c-jun phosphorylation were

also examined by immunofluorescence (IF) following 2 h

treatment with HU. 30–40% of control, A-T and ATLD LBLs

gave an intense fluorescent signal after HU using either anti-

p-Chk1 or anti-p-c-jun antibodies. In contrast, there was no

increase in positive cells in NBS or ATR-Seckel LBLs

(Figure 1B). These data suggest that NBS cells are impaired

in these two ATR-dependent phosphorylation events follow-

ing replication fork stalling.

Several studies have demonstrated different genetic re-

quirements for the phosphorylation of H2AX by ATM and

ATR compared to other substrates (Ward and Chen, 2001;

Foray et al, 2003; Stiff et al, 2004). We also examined HU-

induced H2AX phosphorylation in NBS cells. In contrast to

the results obtained with Chk1 and c-jun, we observed

normal H2AX phosphorylation in the NBS lines, which was

in contrast to the marked reduction in DK0064 cells

(Figure 1B).

NBS and ATR-Seckel fibroblast cell lines are similarly

impaired in UV-induced phosphorylation events

Previously, we showed that F02-98, an ATR-Seckel fibroblast,

is impaired in the phosphorylation of H2AX, p53, Rad17 and

Nbs1 following exposure to UV (5 J m�2) while showing a

normal ability to phosphorylate the same substrates in re-

sponse to IR (O’Driscoll et al, 2003). For these experiments,

we use plateau phase primary fibroblasts, which have few

(o1%) detectable replicating cells when assessed by BrdU

labelling (data not shown). Under such conditions, activation

of ATR occurs at single strand regions generated by nucleo-

tide excision repair (NER) (O’Driscoll et al, 2003).

Phosphorylation of Chk1, p53 and c-jun was examined 2 h

following exposure to 2, 5 and 10 J m�2 by IF. With all three

substrates, we observed impaired phosphorylation in the two

NBS cell lines (347BR and CZD82CH) similar to that observed

in F02-98 cells (Figure 2A–C). A-T and ATLD cells gave a

normal response. Following IR, we observed decreased p53

phosphorylation in ATLD cells using similar techniques

(Figure 2G). In all cases, residual phosphorylation is ob-

served in the NBS and ATR-defective lines, which is more

marked following exposure to higher UV doses. We also

examined phosphorylation using a recently derived phos-

pho-SQ/TQ antibody, which recognises phosphorylation of

the consensus ATR/ATM motif (Uziel et al, 2003) (Figure 2D).

The ability of these antibodies to recognise ATR-dependent

phosphorylation events is shown by the UV-dose-dependent

increase in fluorescent intensity and the reduced response in

F02-98 cells. The signal was reduced to similar extents in NBS

and F02-98 cell lines. The residual signal could be due to

other stress-induced phosphorylation events since these anti-

bodies are nonspecific.

We also examined H2AX phosphorylation in UV-treated

fibroblasts. We observed a mild reduction in H2AX phosphor-

ylation in both NBS lines in contrast to a more marked

reduction in F02-98 cells (Figure 2E).

To verify that the impaired phosphorylation is due to

diminished Nbs1, we examined NBS-ILB1, a transformed

NBS fibroblast and NBS-ILB1 expressing full-length Nbs1

(NBS-ILB1þNbs1). Expression of Nbs1 cDNA fully comple-

mented the decreased UV-induced phosphorylation of Chk1

and SQ/TQ observed in NBS-ILB1 cells (anti-p53 and c-jun

antibodies were not examined since NBS-ILB1 cells show a

high background signal likely due to their transformed phe-

notype) (Figure 2F). UV-induced H2AX phosphorylation,

although only partly decreased in NBS-ILB1 similar to the

impact observed in NBS primary fibroblasts, was increased
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upon Nbs1 expression. The ability of ATR cDNA to comple-

ment the phosphorylation defect of F02-98 fibroblasts and

DK0064 LBLs has been previously described (O’Driscoll et al,

2003; Alderton et al, 2004).

NBS cells fail to ubiquitinate FANCD2 following

treatment with HU

Recently, it was shown that following treatment with HU and

mitomycin C, ATR phosphorylation of FANCD2 is required for

the ubiquitination of FANCD2 implicating ATR in the Fanconi

aneamia (FA) pathway (Andreassen et al, 2004; Pichierri and

Rosselli, 2004). Thus, decreased FANCD2 ubiquitination is

observed in ATR-Seckel cells. Here, we demonstrate that two

NBS LBLs (LB195 and LB112) show a similar defect in

FANCD2 ubiquitination to ATR-Seckel LBLs (DK0064) follow-

ing exposure to HU (Figure 3). We conclude that Nbs1, like

ATR, plays a role in FANCD2 ubiquitination.

NBS and ATR-defective LBLs fail to arrest at the G2/M

checkpoint following exposure to UV

One consequence of ATR-dependent phosphorylation is acti-

vation of G2/M cell cycle checkpoint arrest. As a procedure to

examine G2/M arrest, we monitored the number of mono-

and binucleate cells in the presence of cytochalasin B at 72 h

post-treatment with different DNA-damaging agents using the

cytokinesis block proliferation index (CBPI) assay (Fenech

and Morley, 1985). Binucleate cells represent cells that have

progressed through the G2/M checkpoint and mitosis but

have failed to divide into daughter cells due to the presence of

cytochalasin B, an inhibitor of cytokinesis. Greater than 50%

of untreated cells are binucleate, demonstrating that they

have progressed through mitosis during the 72 h incubation

(Figure 4A). Following treatment of control LBLs (GM2188

and GM1958) with HU, APH or UV, the percentage of

binucleate cells decreases around two-fold indicating the

presence of a G2/M checkpoint. Similar results were obtained

with an A-T (AO) and ATLD1/2 LBL (Figure 4A and not

shown). No appreciable decrease in the number of binucleate

cells is observed in the two NBS LBLs nor in DK0064 (ATR-

Seckel) cells following exposure to HU, APH or UV, demon-

strating that G2/M arrest following these treatments is ATR

and Nbs1 dependent (Figure 4A).

We also examined the time course of G2/M arrest

by measuring the mitotic index in nocodozole-arrested

cells either untreated or at varying times post UV treatment.

Control (GM2188), A-T (GM3189) and ATLD1/2 LBLs

show a robust UV-induced G2/M checkpoint arrest evident

by a decreased mitotic index (Figure 4B). In contrast, UV

treatment of the two NBS LBLs (LB195 and LB112) and

the ATR-Seckel LBL (DK0064) failed to impact upon the

mitotic index, demonstrating the lack of any appreciable

G2/M arrest.
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Figure 1 NBS LBLs shows reduced Chk1 and c-jun phosphorylation following replication stalling. (A) Control (GM1958), NBS (LB112 and
LB195), ATR-Seckel (DK0064), A-T (GM3189) and ATLD1/2 LBLs were treated with 0.05 and 0.1 mM HU for 2 h and examined by Western
blotting using anti-p-Chk1 antibodies (top panel). The same LBLs were treated with 0.05 and 0.1 mM APH for 2 h and examined by Western
blotting using anti-p-c-jun antibodies. Damage-induced phosphorylation was not observed in NBS or ATR-Seckel cells. (B) The indicated LBLs
were treated with 2 mM HU for 2 h and examined by IF using anti-p-Chk1, p-c-jun and p-H2AX antibodies. Control, A-T and ATLD cells show
approximately 40% positive cells corresponding to the percentage of cells entering S phase during this period. The number of strongly positive
cells using LB112, LB195 or DK0064 cells was markedly reduced using p-c-jun and p-Chk1 antibodies. Results for GM1958 (control) and LB195
(NBS) are not shown but are identical to those obtained with LB197 and LB112, respectively. Using the p-H2AX antibody, the two NBS lines
gave a signal similar to control cells, while ATR-Seckel cells show substantially decreased H2AX phosphorylation.

Nbs1 is required for ATR checkpoint function
T Stiff et al

&2005 European Molecular Biology Organization The EMBO Journal VOL 24 | NO 1 | 2005 201



ATR and NBS cells show impaired recovery

of DNA synthesis at stalled replication forks

Another role of ATR is to maintain the integrity of stalled

replication forks. Consequently, once the block to replication

is removed, DNA synthesis at the stalled fork can rapidly

resume. We examined ATR-Seckel, NBS, A-T and ATLD cells

for recovery of DNA synthesis after replication stalling using

a recently described technique that visualises DNA replica-

tion using fluorescently labelled antibodies specific to halo-

genated derivatives of deoxyuridine (dU) (Dimitrova and

Gilbert, 2000; Feijoo et al, 2001). Replication forks were

marked by pulse labelling with CldU, arrested by treating

with APH for 2 h, and fork progression allowed to restart by

removal of APH in the presence of IdU. Control cells show

extensive replication recovery represented by the overlap of

CldU (red) and IdU (green) labelling (Supplementary Figure

3). This was quantified by measuring the % of CldU-labelled

cells with 480% overlap of CldU and IdU labelling (Figure 5).

Very few cells showed a partial overlay. In both the ATR and

NBS cells, there was a marked decrease in IdU-labelled cells,

demonstrating that replication has not restarted at the stalled

replication forks during the period analysed (Figure 5 and

Supplementary data). A-T and ATLD cells showed a normal

response.

Recovery from replication fork stalling was also dimin-

ished in NBS-ILB1 cells and recovered in cells expressing
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Figure 2 NBS primary fibroblasts are impaired in UV-induced ATR-dependent phosphorylation of Chk1, c-jun and p53. Noncycling primary
human fibroblasts from control (1BR), NBS (347BR and CZD82CH), ATR-Seckel syndrome (F02-98), A-T (AT7BI) and ATLD1/2 patients were
treated with UV as indicated and analysed by IF using the indicated phosphospecific antibodies 2 h post-irradiation. (A) p-Chk1, (B) p-p53,
(C) p-c-jun, (D) phospho-SQ/TQ antibodies and (E) p-H2AX. (F) Results using NBS-ILB1 fibroblasts uncomplemented or complemented with
full-length Nbs1 (p95). (G) Impaired phosphorylation of p-p53 in ATLD1/2 fibroblasts exposed to 1 Gy g-rays. Previously, we observed
decreased a-p53 phosphorylation after IR in NBS cells using similar techniques (Girard et al, 2002). For panels A–F, positive cells showed a
lawn of fluorescence rather than discrete foci as observed using g-irradiation. For panels A, D, E and F, the nuclear fluorescence intensity of
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(DK0064) were treated with 0, 3 and 5 mM HU for 24 h and
examined by Western blotting using anti-FANCD2 antibodies. The
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some cell lines is due to decreased protein levels shown by the
loading control.
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Nbs1. Expression of full-length ATR but not kinase-dead ATR

also restored replication recovery to DK0064 cells (Figure 5).

RPA but not ATR is present at the sites of DNA damage

in NBS cells

To gain mechanistic insight into the role of Nbs1 in ATR

signalling, we examined if the recruitment of RPA, an up-

stream step required for ATR recruitment, was impaired in

NBS cells (Zou and Elledge, 2003). We examined RPA recruit-

ment in noncycling primary human fibroblasts following

exposure to UV. Under normal repair proficient conditions,

incision is the rate-limiting step of NER and the resulting

single strand tract is rapidly filled in (Squires et al, 1982). To

enhance our ability to detect RPA recruitment, we treated

cells with 20 J m�2 UV in the presence of cytosine b-D-

arabinofuranoside (Ara-C) and HU, which inhibits the repair

synthesis but not the excision step of NER. Under these

conditions, chromatin-bound RPA was observed by IF follow-

ing permeabilisation and extraction in UV-irradiated but not

unirradiated cells (Figure 6A). A similar signal was observed

in 347BR (NBS), F02-98 (ATR-Seckel) and ATLD1/2 cells.

Similar results were obtained in LBLs 2 h post-treatment with

HU (Supplementary Figure 2). These experiments were car-

ried out in parallel to the experiments shown in Figures 1 and

2, where phosphorylation of Chk1, p53 and c-jun was seen to

be 3- to 10-fold reduced in NBS and ATR-Seckel cells. Thus,

we conclude that the recruitment of RPA does not require

Nbs1 or ATR. The role of Nbs1 in ATR activation must,

therefore, lie downstream of RPA recruitment and is unlikely

to represent a role in end processing.

Next, we examined whether ATR is localised to the damage

sites in NBS cells. We were unable to detect ATR retention in

control fibroblasts following HU treatment. However, strong

permeabilisation and extraction conditions allowed us to see

the nuclear retention of ATR and RPA as foci in WT LBLs

following HU (Figure 6B). No such foci were visible in

untreated cells (Figure 6B). The ATR foci were visible in

around 30% of the RPA-positive cells most likely due to the

strong extraction conditions employed. The ATR foci showed

near-complete overlap with the RPA foci (Figure 6B). A-T and

ATLD LBLs showed a similar retention of ATR and overlap

with RPA after HU treatment. Strikingly, no retention of ATR

was observed in either of the two NBS LBLs examined. These

data provide strong evidence that Nbs1 is required for

recruitment or retention of ATR after replication fork stalling.

Next we examined whether Nbs1 colocalised to the RPA

(and therefore ATR) foci formed after replication fork stalling.

Following HU treatment and strong extraction of WT LBLs,

we observed an increase in Nbs1 retained in the nucleus with

clearly visible foci evident in around 10–20% of the cells

(Figure 6C). Although the signal was more diffuse than that

obtained with RPA, we observed evidence of colocalisation

with RPA. To examine this response in ATLD LBLs, we first

examined the expression and localisation of Nbs1. Without

extraction, we observed decreased Nbs1 expression that

localised entirely to the nucleus in undamaged cells

(Figure 6D, panels 1–3). Decreased Nbs1 expression in

ATLD is consistent with previous Western blotting analysis
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(Stewart et al, 1999). Following treatment with HU and

extraction, Nbs1 was retained in the nucleus in ATLD cells

(Figure 6, panels 7–9). No retention was observed in un-

treated cells (Figure 6, panels 4–6). The decreased signal

precluded an assessment of colocalisation with RPA.

Discussion

Here, we demonstrate that four NBS cell lines (two fibroblast

lines and two LBLs) show reduced ATR-dependent phosphor-

ylation, fail to effect G2/M arrest after treatment with a range

of agents known to activate ATR and fail to resume DNA

synthesis at stalled replication forks. This phenotype overlaps

with that displayed by a cell line defective in ATR and is not

observed in A-T cells. Thus, we conclude that Nbs1 facilitates

ATR-dependent phosphorylation and G2/M checkpoint arrest

as well as ATM-dependent phosphorylation and checkpoint

arrest. There is further circumstantial evidence that the MRN

complex plays a role after replication stalling. Studies in yeast

have demonstrated a role for MRX in the Rad3/Tel1 signalling

pathway following HU treatment (D’Amours and Jackson,

2001; Chahwan et al, 2003). Additionally, studies in Xenopus

have shown that absence of the Mre11 protein leads to DSB

formation during replication (Costanzo et al, 2001). One

explanation for these latter findings is that MRN functions

in a DSB repair pathway to handle lesions generated at the

replication fork. Our findings here suggest an alternative

model, namely that Nbs1 has a role in ATR-dependent check-
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point signalling. We propose that this is at least one factor

contributing to its role in the response to replication stalling.

It is notable that despite the similar response of NBS and

ATR-deficient cell lines in most assays, H2AX phosphoryla-

tion was only mildly decreased in NBS fibroblasts and

occurred normally in NBS LBLs contrasting with the marked

decrease observed in ATR-Seckel fibroblasts and LBLs.

Although this difference was mild for the fibroblasts, it was

marked for the LBLs and expression of Nbs1 increased H2AX

phosphorylation in the transformed NBS cell line. Previous

studies have also reported different genetic requirements for

H2AX phosphorylation relative to other substrates (Ward and

Chen, 2001; Foray et al, 2003; Stiff et al, 2004). Although the

basis underlying these findings requires further study, it

suggests that ATR may be activated efficiently in NBS cells

but is more important for the phosphorylation of some

substrates versus others. One possible explanation is that

Nbs1 may be more important for non-chromatin-bound sub-

strates compared to H2AX, which is chromatin localised and

thus an early step in the damage response (see below).

In most assays, we observed a strikingly similar response

between the NBS and F02-98 cells, which have a hypo-

morphic mutation that decreases but does not abolish ATR

function. However, residual ATR function is evident after

higher doses. The NBS cell lines analysed harbour the

common founder 675D5 mutation, which allows expression

of a truncated C-terminal polypeptide of Nbs1 (p70) (Maser

et al, 2001). One explanation for residual ATR-dependent

phosphorylation is leakiness of the Nbs1 mutation. An alter-

native explanation is that Nbs1 enhances but is not abso-

lutely required for ATR phosphorylation similar to the

findings for the role of MRN in ATM-dependent phosphoryla-

tion (Lee and Paull, 2004).

To gain mechanistic insight into the role of Nbs1 in ATR

signalling, we examined early steps in the damage response.

We found that Nbs1 colocalises with RPA, which in turn

colocalises with ATR at the damage site. These findings are

consistent with studies showing that after HU Mre11 localises

to the sites of replication stalling and that Nbs1 is phosphory-

lated in an ATR-dependent manner (Mirzoeva and Petrini,

2001; Franchitto and Pichierri, 2002; O’Driscoll et al, 2003).

Indeed, Nbs1 phosphorylation is not observed in ATR-Seckel

cells (O’Driscoll et al, 2003). While RPA is recruited normally

to damage sites in NBS cells, the nuclear retention of ATR was

markedly decreased after replication stalling, suggesting that

Nbs1 functions to recruit or retain ATR. Our finding that

H2AX phosphorylation is only modestly reduced in NBS cells

suggests that ATR may be activated normally but fails to be

retained at the damage site. Based on these findings, we

propose a working model that Nbs1 serves to amplify the ATR

signal by facilitating the retention of ATR at the damage site

whereas the initial localisation and activation of ATR may be

Nbs1 independent. There is mounting evidence that MRN

plays an upstream role in ATM signalling acting as a damage

sensor or activator of ATM although there is also evidence for

a downstream function (Carson et al, 2003; Uziel et al, 2003;

Horejsi et al, 2004) (for a review, see Lavin, 2004).

Interestingly, autophosphorylation of ATM, an early step in

the damage response, is significantly reduced in ATLD1/2 cell

lines and more modestly reduced in NBS cells (Uziel, 2003

#10371). A similar impairment in the nuclear retention of

ATM in response to neocarzinostatin is also observed (Uziel,

2003 #10371). The role of Nbs1 in ATR signalling, therefore,

has clear parallels to its role in ATM signalling although

further work is required to dissect the precise role played in

amplifying the signal from the two PIKKs.

In contrast to the marked defect in ATR signalling in NBS

cell, the ATLD1/2 cell line showed a normal response, which

is distinct from the defect in ATM-dependent signalling ob-

served in ATLD cells (Stewart et al, 1999; Uziel et al, 2003).

Additionally, while the nuclear retention of ATM after radia-

tion is diminished in ATLD cells, ATR remained efficiently

chromatin bound in ATLD cells (Uziel et al, 2003). Consistent

with previous findings, we also observed decreased IR-in-

duced p53 phosphorylation in the ATLD cell line (Stewart

et al, 1999). Our findings, therefore, suggest that there may be

different requirements for components of the MRN complex

for ATM- and ATR-dependent signalling. It is possible that the

mutation in Mre11 in ATLD1/2 results in a separation of

Mre11 function in ATM versus ATR signalling. More interest-

ingly, Mre11 may be dispensable for ATR signalling.

Although, UV-induced ATR activation has been reported to

be replication dependent, we observed UV-induced ATR-

dependent phosphorylation of H2AX and additional sub-

strates in nonreplicating G0/G1 fibroblasts using IF both in

this study and previously (O’Driscoll et al, 2003; Ward et al,

2004). Moreover, this phosphorylation is not observed in

NER-deficient XP-A-deficient cells (O’Driscoll et al, 2003).

We attribute this response to induction of ATR by single

strand gaps generated during NER. Since the incision step is

rate limiting in NER, the single strand gaps generated will be

transient (Squires et al, 1982). The ability to detect such

phosphorylation may be dependent upon the cell type and

conditions employed.

NBS patients are characterised by immunodeficiency,

cancer predisposition, microcephaly, development delay

and characteristic facial features (International Nijmegen

Breakage Syndrome Study Group, 2000). Some, but not all,

of these clinical features overlap with A-T (e.g. immunodefi-

ciency and cancer predisposition) (Shiloh, 1997). Neither A-T

nor ATLD patients manifest the latter three characteristics,

displaying instead progressive neurodegeneration. Strikingly,

microcephaly, developmental delay and characteristic facial

features are also seen in ATR-Seckel patients (Goodship et al,

2000; O’Driscoll et al, 2003). Thus, we propose that these

features of NBS may be a result of impaired ATR signalling,

while impaired ATM signalling and/or defective repair may

contribute to the immunodeficiency observed in NBS. The

distinct clinical features of ATLD and NBS is striking but

unexplained and, we propose, arises either because Mre11

itself or the mutation in the ATLD patients does not impact

upon ATR signalling. An additional syndrome to consider in

this context is FA, which also overlaps clinically with NBS.

Recently, studies have shown that ATR is required for

FANCD2 ubiquitination (Andreassen et al, 2004; Pichierri

and Rosselli, 2004). Since FANCD2 ubiquitination is required

for FA activation, this couples ATR signalling to activation of

the FA pathway (Gregory et al, 2003). Here, we show that

NBS is also required for FANCD2 ubiquitination in response

to replication stalling, strongly suggesting that Nbs1 also

plays a role in the FA pathway. While the radiosensitivity of

NBS cells has been known for many years, it has recently

been shown that NBS cells also display crosslinking agent

sensitivity, a hallmark of FA cells (Nakanishi et al, 2002).
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Several patients who were originally diagnosed as FA patients

but proved upon further analysis to be NBS have recently

been described, further demonstrating the overlap in clinical

features (Nakanishi et al, 2002; Gennery et al, 2004). Our

findings here provide a basis for this overlap.

In conclusion, we provide evidence that cell lines derived

from NBS patients have impaired ATR-dependent signalling,

cell cycle checkpoint arrest and impaired ability to recover

from replication stalling. At a mechanistic level, we provide

evidence that Nbs1 is required for the efficient retention of

ATR at the damage site. This provides a novel function for

Nbs1 and an explanation for the microcephaly and develop-

mental delay, which is characteristic of NBS patients but not

observed in ATLD or A-T patients.

Materials and methods

Cells and cell culture conditions
1BR3, AT7BI and F02-98 are primary fibroblasts from a control, A-T
and an ATR-Seckel patient, respectively. 347BR and CZD82CH are
NBS primary fibroblast lines homozygous for the 675D5 mutation
(Girard et al, 2002). ATLD1/2 has a truncating mutation in Mre11
(Stewart et al, 1999). CZD82CH and ATLD1/2 cells were kindly
supplied by Drs J Hall and M Taylor, respectively. Cells were
cultured in minimum essential medium supplemented with 20%
fetal calf serum (FCS), penicillin and streptomycin. LB197, GM1958
and GM2188 are control EBV transformed lymphoblastoid cell lines
(LBL); AO and GM3189 are A-T LBLs; LB195 and LB112 are NBS
LBLs. DK0064 is an ATR-defective LBL derived from the same
patient as F02-98 cells. LBLs were grown in RPMI medium
supplemented with 15% FCS, penicillin and streptomycin. NBS-
ILB1 cells are transformed NBS fibroblasts from M Zdzienicka. NBS-
ILB1þNbs1 cells are retrovirally complemented with full-length
human Nbs1. WT and p53�/� mouse embryonic fibroblasts were
kindly supplied by D Barnes.

Treatment with DNA-damaging agents
Irradiation was carried out using a UVC source (0.6 J m�2 s�1). APH,
HU, cytochalasin B and Ara-C were purchased from Sigma-Aldrich
(Poole, UK).

Antibodies
a-p53Ser15 (rabbit polyclonal), a-SQ/TQ and a-chk1Ser317 antibodies
were purchased from Cell Signaling Technology (Beverly, MA).
a-H2AXSer139 and a-histone H3Ser10 antibodies were from Upstate
Technology (Buckingham, UK). a-RPA (Ab2, p34 subunit) antibodies
were from Oncogene research products (Darmstadt, Germany).
a-cjunSer63 antibodies were from Santa Cruz (Santa Cruz, CA).
a-FANCD2 antibodies were from Novus Biologicals (Littleton,
Colorado). Anti-rabbit, anti-rat and anti-mouse secondary antibodies
were purchased from Dako (Glostrup, Denmark). a-IdU and a-CldU
antibodies were from Beckton Dickinson (San Jose, CA) and Abcam
(Cambridge, UK). Note that both antibodies are raised against BrdU
but crossreact only with the indicated halogenated nucleotide.

Immunofluorescence
Cells were fixed in 3% paraformaldehyde and 2% sucrose
phosphate-buffered saline (PBS) for 10 min at room temperature
and permeabilised in 20 mM HEPES pH 7.4, 50 mM NaCl, 3 mM
MgCl2, 300 mM sucrose and 0.5% Triton X-100 (Sigma-Aldrich,
Poole, UK) for 2 min at 41C. Coverslips were washed in PBS prior to
immunostaining. Primary antibody incubations were performed for
40 min at 371C at 1:100 dilutions (1:800 for a-g-H2AX) in PBS
supplemented with 2% bovine serum fraction V albumin (BSA)
(Sigma-Aldrich, Poole, UK) and followed by washing in PBS.
Incubations with a-mouse TRITC and FITC or with a-rabbit FITC
secondary antibodies (Sigma-Aldrich, Pool, UK) were performed at
371C at 1:100 in 2% BSA for 20 min. Nuclei were counterstained
with 40,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, Poole,
UK) for 10 min at 41C. Coverslips were mounted in Vectashield
(Vector Laboratories, Peterborough, UK). The error bars represent
the standard deviation of the mean. A minimum of three

experiments were carried out where error bars are shown. When
indicated, fibroblasts were extracted with the standard permeabi-
lisation buffer (0.2% Triton X-100) for 2 min before fixation. LBLs
were extracted either mildly with permeabilisation buffer contain-
ing 0.1% Triton X-100 for 30 s, or more stringently with buffer
containing 0.5% NP-40 for 1 min, followed by standard fixation and
then three washes with this buffer.

Quantification of fluorescence intensity was performed on blind
captured images using standardised capture settings, image
processing and analysis performed on Simple PCI software.
Variations in immunostaining between experiments were controlled
for by standardising to the background in untreated cells. At least
100 cells were quantified for each time point.

FANCD2 ubiquitination
Well-proliferating LBLs were treated continuously for 24 h with 3 or
5 mM HU. Cells were pelleted and washed twice with PBS and then
resuspended in 50 ml PBS. An equal volume of 2� sample buffer
(100 mM Tris–HCl pH 6.8, 4% SDS, 12% b-mercaptoethanol) was
added, the sample vortexed and then boiled for 5 min. Samples
were electrophoresed on a 6% SDS–PAGE gel followed by standard
Western blot analysis.

RPA recruitment
Cells were washed with PBS, then exposed to 20 J m�2 UVC and
incubated at 371C for 1 h in medium supplemented with 100 mM
Ara-C and 1 mM HU. RPA was detected by the standard indirect IF
procedure, except that before PFA fixation the cells were permea-
bilised for 2 min (standard buffer but with 0.2% Triton X-100) and
then washed three times with PBS.

G2/M checkpoint arrest

The CBPI assay. The CBPI procedure was as previously described
with modification (Fenech and Morley, 1985; Gutierrez-Enriquez
and Hall, 2003). In brief, cells were preincubated for 2 h with 0.1 mM
APH, 0.2 mM HU or UV irradiated (2.5 J m�2 UV) and then washed
twice with 10 ml of complete medium. Following incubation for 72 h
in the presence of cytochalasin B (5mg/ml), cells were processed for
IF except that before fixation, they were swollen in 75 mM KCl for
10 min. Carnoy’s fixative (3:1, methanol:acetic acid) was used in
place of PFA. Cells were cytospun onto poly-L-lysine-coated slides in
DAPI/acridine orange (2mg/ml) solution.

Analysis by mitotic index. Cells were exposed to 2.5 J m�2 UV and
incubated overnight in complete medium containing 1.5mM
nocodazole, followed by processing for IF as detailed above. Mitotic
cells were detected by a-histone H3Ser10 antibodies and cells were
counterstained with DAPI.

Replication fork stability assay
The procedure followed was as described previously with modifica-
tion (Dimitrova and Gilbert, 2000; Feijoo et al, 2001). Cells were
labelled with CldU (50mM) for 20 min, pelleted, washed with PBS
and resuspended in complete medium with 10mM APH and
incubated for 2 h. Cells were then preincubated with IdU (50mM)
for 20 min in the presence of 10mM APH. Cells were pelleted and then
swollen in 75 mM KCl for 10 min. This processing time allows fork
reinitiation and IdU incorporation. IF was performed as described
except that after permeabilisation cells were incubated with 2 M HCl
for 30 min to denature the DNA. Cells were blocked for 1 h with 10%
FCS in PBS and then incubated with both primary antibodies
overnight at 41C. The first label was detected with red secondary
antibodies and the second with green secondary antibodies.

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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