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Abstract

The molecular mechanisms by which the endothelial barrier becomes compromised during 

lipopolysaccharide (LPS) mediated acute lung injury (ALI) are still unresolved. We have 

previously reported that the disruption of the endothelial barrier is due, at least in part, to the 

uncoupling of endothelial nitric oxide synthase (eNOS) and increased peroxynitrite-mediated 

nitration of RhoA. The purpose of this study was to elucidate the molecular mechanisms by which 

LPS induces eNOS uncoupling during ALI. Exposure of pulmonary endothelial cells (PAEC) to 

LPS increased pp60Src activity and this correlated with an increase in nitric oxide (NO) 

production, but also an increase in NOS derived superoxide, peroxynitrite formation and 3-

nitrotyrosine (3-NT) levels. These effects could be simulated by the over-expression of a 

constitutively active pp60Src (Y527FSrc) mutant and attenuated by over-expression of dominant 

negative pp60Src mutant or reducing pp60Src expression. LPS induces both RhoA nitration and 

endothelial barrier disruption and these events were attenuated when pp60Src expression was 

reduced. Endothelial NOS uncoupling correlated with an increase in the levels of asymmetric 

dimethylarginine (ADMA) in both LPS exposed and Y527FSrc over-expressing PAEC. The 

effects in PAEC were also recapitulated when we transiently over-expressed Y527FSrc in the 

mouse lung. Finally, we found that the pp60-Src-mediated decrease in DDAH activity was 

mediated by the phosphorylation of DDAH II at Y207 and that a Y207F mutant DDAH II was 

resistant to pp60Src-mediated inhibition. We conclude that pp60Src can directly inhibit DDAH II 

and this is involved in the increased ADMA levels that enhance eNOS uncoupling during the 

development of ALI.
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1. Introduction

In acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) the integrity of 

the separation between the alveolus and the pulmonary circulation is compromised either by 

endothelial or epithelial injury or more commonly both. This damage leads to increased 

vascular permeability, alveolar flooding, and surfactant abnormalities [1]. ALI/ARDS can 

occur in response to a number of insults that either directly, or indirectly, produce lung 

injury. The most common indirect insult leading to ALI is the release of lipopolysaccharide 

(LPS) from the outer bacterial cell wall producing gram negative sepsis [2]. However, 

despite significant investigations, the mechanisms underlying the development of ALI/

ARDS are still unresolved and the therapies are predominantly supportive.

Recent studies have suggested that endothelial injury in a variety of cardiovascular diseases 

is linked to increased levels of the amino acid, asymmetric dimethylarginine (ADMA) [3–7]. 

ADMA is derived from hydrolysis of methylated proteins [3–7]. The synthesis and 

degradation of ADMA can become dysregulated and can result in increased levels of 

ADMA [3–7]. ADMA is metabolized via hydrolytic degradation to L-citrulline and 

dimethylamine by the enzyme dimethylarginine dimethy-laminohydrolase (DDAH) [7]. 

There are two isoforms of DDAH: I and II [8,9]. The important isoform in the endothelium 

is thought to be DDAH II [6,10]. We have previously shown that during the development of 

LPS-induced ALI there is a significant increase in ADMA in the mouse lung, and this is due 

to decreased activity, but not expression, of DDAH II [11]. Further, increasing the expression 

of DDAH II in the pulmonary endothelium of the lung reduces the development of ALI in 

the LPS-exposed mouse [12]. ADMA increases superoxide generation from eNOS and 

higher levels of peroxynitrite and protein nitration [11–13]. Peroxynitrite appears to play a 

role in the pathogenesis of LPS-lung injury and elevated levels of 3-NT have been identified 

in the lung and BAL fluid in ALI [11,14,15]. The importance of eNOS and protein nitration 

in the development of ALI has also been shown by the protection afforded eNOS knockout 

mice that correlated with a reduction in the nitration-mediated activation of RhoA [16]. 

RhoA and Rho-associated kinase directly catalyze myosin light chain (MLC) 

phosphorylation, or act indirectly via inactivation of MLC, phosphatase to induce cell 

contraction and endothelial barrier disruption [17,18].

Despite data demonstrating the involvement of the DDAH/ADMA axis in the development 

of ALI in the mouse lung, the mechanism by which LPS attenuates DDAH activity is 

unresolved. One of the earliest effects of LPS binding to its receptor, TLR4 is the activation 

of the subclass A of the Src Family Kinases (SFK), pp60Src. LPS-mediated activation of 

pp60Src increases endothelial paracellular permeability [19]. In addition, pp60Src inhibition 

attenuates LPS-induced endothe-lial barrier disruption [20]. We have previously shown a 

link between ADMA, eNOS uncoupling, and the nitration-mediated activation of RhoA [21] 

while prior studies have shown that pp60Src can activate RhoA [22]. However, pp60Src has 
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also been shown to stimulate eNOS activity through an Akt1-mediated phosphorylation at 

Ser1177 [23]. Ser1177 phosphorylation is thought to stimulate eNOS catalytic activity by 

increasing electron flow through the protein [24]. Based on these two opposing facts we 

developed a hypothesis that pp60Src signaling induces eNOS uncoupling by both increasing 

ADMA levels, through the inhibition of DDAH II, and stimulating eNOS catalytic cycling 

through Ser1177 phosphorylation. Our data indicate that pp60Src does inhibit DDAH II 

activity through a single phosphorylation at Y207 and that this increases cellular ADMA 

levels and eNOS derived superoxide. In addition, the phosphorylation of eNOS at Ser1177 is 

stimulated and NO levels also increase, leading to an increase in peroxynitrite generation 

and protein nitration. Thus, the role of pp60Src in protein nitration involved in the 

development of ALI requires both the activation of eNOS and its uncoupling.

2. Materials and methods

2.1. Cell culture

Primary cultures of ovine PAEC were isolated as described previously [25]. Cells were 

maintained in DMEM containing phenol red supplemented with 10% fetal calf serum 

(Hyclone, Logan, UT), antibiotics, and antimycotics (MediaTech, Herndon, VA) at 37 °C in 

a humidified atmosphere with 5% CO2–95% air. Cells were utilized between passages 8 and 

12. Between 7 and 8 isolates of PAEC were used to carry out the experimental procedures.

2.2. Animal studies

Adult male C57BL/6NHsd mice (7–8 weeks; Harlan, Indianapolis, IN) were used in all 

experiments. All animal care and experimental procedures were approved by the Committee 

on Animal Use in Research and Education of the Augusta University. Mice were injected 

intraperitoneally with Escherichia coli 0111:B4 lipopolysaccharide (LPS; 6.75×104 EU/gm 

body wt, Sigma-Aldrich, St. Louis, MO) prepared in 0.9% saline. The control mice received 

vehicle (0.9% saline), as previously described [11]. Mice were euthanized 12 h after LPS 

injection, and the lungs were flushed with ice-cold EDTA-PBS, excised, snap-frozen in 

liquid nitrogen, and stored at −80 °C until used.

2.3. In vivo over-expression of constitutively active pp60Src

In vivo, polyethyleneimine derivative transfection reagent (in vivo-jetPEI) was used to 

deliver the plasmids, pAd/CMV/V5-DEST-Y527FSrc cDNA or pDST-luciferase, to the 

mouse lung endothelium as described previously [12]. Briefly, 40 μg of each plasmid were 

incubated with glucose and the jetPEI reagent (Polyplus-transfection Inc, New York, NY), as 

per manufacture's instruction for 15–30 min following which the cDNA-jetPEI complexes 

were injected into the tail vein.

2.4. Measurement of peroxynitrite and protein nitration levels

The formation of peroxynitrite was determined by the peroxynitrite dependent oxidation of 

dihydrorhodamine (DHR) 123 to rhodamine 123 in the presence of PEG-catalase (100U, 30 

min), as described previously [12]. Protein nitration was measured via a dot blot procedure, 

as previously described [12].
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2.5. DDAH activity assay

Total DDAH activity was determined using a radioactive assay to measure the conversion of 

L-[3H]-NMMA to [3H]-L-citrulline. Briefly, 20 mg of tissue samples in 125 μl of ice cold 

0.1 M sodium phosphate buffer (SPB, pH 6.5) were sonicated and centrifuged at 10,000g for 

10 min at 4 °C. Similarly, ovine PAEC grown on 10 cm dishes were harvested in 1 ml of ice 

cold SPB and centrifuged at 10,000g for 10 min at 4 °C. The supernatant was removed and 

125 μl of ice cold fresh SPB was added to the pellet followed by sonication and 

centrifugation at 10,000g for 10 min at 4 °C. The homogenates were analyzed in duplicate 

(50 μl), while the remainder was used for protein concentration using the BCA protein assay. 

To the supernatant, a reaction mixture was added containing 0.1 M SPB and 0.1 μCi/ml of 

L-[3H]-NMMA (specific activity: 1.48–2.96 TBq/mmol) (PerkinElmer, Santa Clara, CA) in 

a final volume of 100 μl and incubated for 1 h at 37 °C. The reaction was terminated by 

placing the tubes on ice for 5 min and diluting the reaction with 2 ml of ice cold SPB. The 

samples were then passed through 1 ml of activated Dowex AG50W-8X cation exchange 

resin to remove un-metabolized L-[3H]-NMMA followed by a rinse with 1 ml SPB. The 

eluted fractions were mixed with 10 ml of scintillation fluid (ScintiVerse BD Cocktail, 

Fisher Scientific, Pittsburgh, PA) and quantified using a liquid scintillation counter. A 

reaction mixture containing L-[3H]-NMMA in the absence of enzyme was added to the 

Dowex column to determine background counts. DDAH activity is defined as the amount of 

L-[3H]-NMMA degraded per hour per mg protein.

2.6. Measurement of ADMA levels

ADMA levels were analyzed by high-performance liquid chromato-graphy (HPLC) as 

published previously [11,12]. The crude fraction of cell lysate or lung lysate were isolated 

using a solid phase extraction column and subsequently, ADMA was separated using pre-

column derivatization with ortho-phthaldialdehyde (OPA) reagent (4.5 mg/mL in borate 

buffer, pH 8.5, containing 3.3 μl/mL β-mercaptoethanol) prior to injection. HPLC was 

performed using a Shimadzu UFLC system with a Nucleosil phenyl reverse phase column 

(4.6×250 mm; Supelco, Bellefonte, PA), equipped with an RF-10AXL fluorescence detector 

(Shimadzu USA Manufacturing Corporation). ADMA levels were quantified by 

fluorescence detection at 450 nm (emission) and 340 nm (excitation). Mobile phase A was 

composed of 95% potassium phosphate (50 mM, pH 6.6), 5% methanol and mobile phase B 

was composed of 100% methanol. ADMA was separated using a pre-gradient wash of 25% 

mobile phase B (flow rate 0.8 mL/min), followed by a linear increase in mobile phase B 

concentration from 20% to 25% over 7 min followed by a constant flow at 25% for 10 min 

and another linear increase from 25% to 27% mobile phase B over 5 min followed by 

constant flow at 27% mobile phase B for another 7 min. Retention time for ADMA was 

approximately 28 min. ADMA concentrations were calculated using standards and an 

internal homoarginine standard. The detection limit of the assay was 0.1 μmol/L.

2.7. Expression and purification of endothelial NOS

Wildtype human eNOS and an S1177D eNOS mutant were expressed and purified from 

E.coli as previously described [26,27]. NO and superoxide generation from these proteins 

was determined as previously described [28].
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2.8. Detection of NOX

Nitric oxide (NO) generation were measured in the media collected from PAEC over-

expressing dominant negative (K295M) or constitu-tively active (Y527F) pp60Src in 

response to LPS using an NO-sensitive electrode with a 2-mm diameter tip (ISO-NOP 

sensor, WPI) connected to an NO meter (ISO-NO Mark II, WPI) as described previously 

[29]. NO levels in the lung lysate were determined by indirect method of measuring the 

levels of nitrite as previously described [30]. Briefly, samples were deproteinized by adding 

cold ethanol to the sample (1:4 v:v) and then concentrated using a speed-vac. Potassium 

iodide/ acetic acid reagent was prepared fresh daily. This reagent was added to a septum 

sealed purge vessel and bubbled with nitrogen gas. The gas stream was connected via a trap 

containing 1N NaOH, to a Sievers 280i Nitric Oxide Analyzer (GE). Deproteinized samples 

were injected with a syringe through a silicone/Teflon septum. Results were analyzed by 

measuring the area under curve of the chemiluminescence signal using the Liquid software 

(GE).

2.9. Determination of superoxide levels

NOS-derived superoxide levels were estimated by electronic paramagnetic resonance (EPR) 

assay using the spin-trap compound 1-hydroxy-3-methoxycarbonyl-2,2,5,5-

tetramethylpyrrolidine HCl (CMH , Axxora LLC, Farmingdale, NY) in the presence of 

ethylisothiourea (ETU, 100 μm, 30 min, Sigma-Aldrich), as previously described [11].

2.10. Generation of a specific DDAH II pY207 antibody

The DDAH2 phospho-tyrosine Y207 specific antibody was raised against a synthetic peptide 

antigen (MAV LTD HPY(PO4) ASL TLP DDA), where Y(PO4) represent phosphotyrosine. 

The peptide was used to immunize rabbits. DDAH2 tyrosine phosphorylation-reactive rabbit 

antiserum was first purified by affinity chromatography. Further purification was carried out 

using immunodepletion using the non-phosphorylated peptide, MAVLTDHPYASLTLPDDA 

resin chromato-graphy, after which the resulting eluate was tested for antibody specificity by 

ELISA, and immunoblotting. Relative phosphorylation was determined by stripping and 

reprobing blots with an antibody specific for DDAH II.

2.11. Western blot analysis

PAEC were treated with LPS for 4 h and solubilized with a lysis buffer containing 1% Triton 

X-100, 20 mM Tris. pH 7.4, 100 mM NaCl, 1 mM EDTA, 1% sodium deoxycholate, 0.1% 

SDS, and protease inhibitor cocktail (Pierce). Insoluble proteins were precipitated by 

centrifugation at 13,000 rpm for 10 min at 4 °C, and the supernatants were then subjected to 

SDS-PAGE on 4–20% polyacrylamide gels and transferred to a PVDF membrane (Biorad). 

The membranes were blocked with 5% nonfat dry milk or 5% BSA in Tris-buffered saline 

containing 0.1% Tween (TBST). The primary antibodies used for immunoblotting were anti-

pp60Src Cell Signaling (1:1000), (Danvers, MA), anti-phospho Y416 pp60Src (1:1000; Cell 

Signaling Technology), β-actin (1:5000, Sigma), phospho-Ser1177 eNOS, and anti-eNOS 

(1:1000, BD Biosciences) and custom made DDAH II (1:500) and 3NT-Y34-RhoA (1:1000) 

[16] antibodies. Membranes were then washed with TBST three times for 10 min, incubated 

with the appropriate secondary antibody coupled to horseradish peroxidase, washed again 
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with TBST as described above, and the protein bands visualized with ECL reagent (Pierce) 

using a Kodak 440CF image station.

2.12. Adenoviral-mediated overexpression of pp60Src mutants

Constitutively active (Y527F) and dominant negative (K295M) pp60Src mutants were 

overexpressed using an adenoviral construct as we have previously described [31]. For these 

studies, an MOI of 200:1 was used. An adenoviral construct expressing green fluorescent 

protein (GFP) was used as a transduction control.

2.13. siRNA-mediated down-regulation of pp60Src

PAEC were transfected with the appropriate small interfering RNA (siRNA) using HiPerFect 

transfection reagent (Qiagen, Valencia, CA) as described previously [32]. Briefly, the day 

before transfection, 1.5×105 cells were seeded in each well of a six-well plate and fresh 

DMEM containing serum and antibiotics added. On the day of transfection, the medium was 

changed to one without antibiotics. For each well, 6 μl of a 10-μM siRNA stock of pp60Src 

(Santa Cruz) or the control (a scrambled siRNA with no known homology to any human 

gene) was diluted into 100 μl of DMEM without serum (to give a final siRNA concentration 

of 30 nM). To this was added 12 μl of HiPerFect transfection reagent. The solution was 

vortexed, incubated for 10 min at room temperature, and added drop-wise to the cells. As the 

siRNA's utilized were designed against human mRNA sequences their ability to silence 

pp60Src was validated by Western blot analysis 48 h after transfection (Fig. 2A). The cell 

culture medium was changed for fresh complete DMEM. LPS was then added at final 

concentration 500 EU/ml, the cells were lysed 2– 4 h later, and the lysates were analyzed by 

immunoblotting.

2.14. Immunoprecipitation analysis

For each immunoprecipitation, cell lysates or tissue lysates were subjected to a pre-clearing 

step in which the lysates were incubated with a protein G Plus/Protein A agarose suspension 

(Calbiochem) for 30 min at 4 °C. The agrose beads were then pelleted and the lysate 

removed to a fresh tube and incubated with anti-DDAH II or pp60Src antibodies overnight at 

4 °C followed by the addition of the protein G Plus/Protein A agarose suspension for 1 h at 

4 °C. The immune complexes were washed three times with the lysis buffer and boiled in 

SDS-PAGE sample buffer for 5 min. Agarose beads were pelleted by centrifugation, and the 

protein supernatants were loaded and run on 4–20% polyacrylamide gels, followed by 

transfer of the proteins to nitrocellulose membranes. The membranes were blocked with 2% 

BSA in Tris-buffered saline containing 0.05% Tween 20 (TBST) for 2 h at room 

temperature, incubated with anti-phosphotyrosine antibody (Calbiochem) for 2 h at room 

temperature, washed three times with TBST (room temperature, 10 min), and then incubated 

with a horseradish peroxidase-conjugated secondary antibody (Pierce). The reactive bands 

were visualized with the SuperSignal West Femto maximum sensitivity substrate kit (Pierce) 

using a Kodak 440CF image station. The same blot was reprobed with anti-DDAH II or 

pp60Src antibody to normalize for the levels of catalase immunoprecipitated in each sample.
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2.15. Measurement of endothelial barrier function

The integrity of PAEC monolayers was characterized using an electrical cell-substrate 

impedance sensing (ECIS) instrument (Applied BioPhysics, Troy, NY) as previously 

described [21]. Cells were plated in 8-well ECIS arrays (Applied BioPhysics) in DMEM 

supplemented with 10%-FBS (50,000 cells per well). Eighteen hours later, cells were 

transiently transfected with control or c-Src-specific siRNA's using HiPerFect (Qiagen) 

transfection reagent. Sixty hours post-transfection, the cell culture medium was changed for 

fresh complete DMEM, and the cells were used in Transendothelial Electrical Resistance 

(TER) assay. Initial resistance at the onset of our experiments was 1400–1700 in array wells, 

and then all wells were normalized to 1. 4000-Hz AC signal with 1-V amplitude was applied 

to the EC monolayers through a 1-M-Ω resistor, creating an approximate constant-current 

source (1 μA). After a baseline measurement, the cells were treated with E. coli LPS (50 

EU/ml) or vehicle. Changes in TER were recorded in real time. Control curves (LPS-

untreated cells) were normalized to 1 in order to eliminate any temporal effects. To take into 

account the deviations from control curves, data obtained from LPS-treated cells were 

normalized using the original control curves to adjust for the temporal effects that may be 

present in controls.

2.16. Statistical analysis

Statistical calculations were performed using the GraphPad Prism V.4.01 software. The 

mean ± SE was calculated for all samples, and significance was determined by either the 

unpaired or paired t-test or ANOVA. For ANOVA, Newman–Keuls post hoc testing was also 

utilized. A value of P < 0.05 was considered significant.

3. Results

3.1. Effect of pp60Src on NO signaling in pulmonary arterial endothelial cells

The exposure of PAEC to LPS for 4 h significantly increased pp60Src activity as measured 

by increase in its phosphorylation at Y416 (Fig. 1A). LPS also increased nitric oxide (NO) 

generation in PAEC, which was attenuated by the over-expression of a dominant negative 

pp60Src mutant (AdK295MSrc, Fig. 1B). The increase in NO generation correlated with an 

LPS-mediated increase in the phosphorylation of eNOS at Ser 1177, which was suppressed 

by overexpression of AdK295MSrc (Fig. 1C). The increase in pSer1177 appeared to be Akt-

dependent as LPS-induced the phosphorylation of Akt at Ser473, indicative of Akt activation 

and this was blocked by AdK295MSrc over-expression (Fig. 1D). However, LPS also 

increased eNOS-derived superoxide suggesting that the enzyme was becoming uncoupled 

(Fig. 1E). Again, AdK295MSrc over-expression attenuated the LPS mediated increased in 

NOS-derived superoxide (Fig. 1E). These changes in NO and superoxide led to an increase 

in cellular peroxyni-trite levels (Fig. 1F) and total protein nitration (Fig. 1G) which were 

reduced by the over-expression of AdK295MSrc (Fig. 1F and G). When pp60Src expression 

was attenuated using an siRNA approach (Fig. 2A) this reduced both the LPS-mediated 

increase in pS1177eNOS (Fig. 2B) and NOS-derived superoxide levels (Fig. 2C). Silencing 

pp60Src expression also prevented the LPS-mediated increase in RhoA nitration (Fig. 2D) 

and attenuated the disruption of the endothelial barrier (Fig. 2E).
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3.2. Stimulating pp60Src activity in the mouse lung induces eNOS uncoupling

To verify in vivo our data in PAEC, we transiently over-expressed a constitutively active 

pp60Src mutant (Y527FSrc) mutant in the mouse lung endothelium using the jet-PEI 

technique we have recently described [12]. This resulted in a ∼2-fold increase in pp60Src 

protein levels (Fig. 3A) and a significant increase in lung pp60Src activity as determined by 

increased pY416Src levels (Fig. 3B). The increase in pp60Src activity resulted in a 

significant increase in NO levels (Fig. 3C) and p-Ser1177 eNOS (Fig. 3D). Similar to PAEC, 

not only did Y527FSrc over-expression in the mouse lung increase NO levels it also 

appeared to cause an increased in uncoupling of eNOS as indicated by an increase in NOS-

derived superoxide (Fig. 3E). As with PAEC, this increase in NO and superoxide resulted in 

increased peroxynitrite levels (Fig. 3F) and protein nitration (Fig. 3G).

3.3. An S1177D eNOS mutant protein is uncoupled

To further explore the role of eNOS phosphorylation at S1177 in regulating NO and 

superoxide generation we utilized purified wildtype and a phospho-mimic S1177D eNOS 

mutant. NO and superoxide generation was monitored under conditions that stimulate 

maximal velocity of the enzyme [28]. The S1177D mutant generates significantly more NO 

than wildtype eNOS (Fig. 4A). However, this mutant also produces significantly more 

superoxide as well (Fig. 4B) and overall the coupling index, determined by dividing the 

levels of NO by the amount of superoxide generated in each protein, is actually lower in the 

S1177D mutant. This suggests that the activation of eNOS by phos-phorylation at S1177 

leads to increased catalytic cycling but also enhances eNOS uncoupling.

3.4. LPS increases ADMA levels by attenuating DDAH activity

We have previously shown that LPS increases the endogenous eNOS uncoupler, ADMA in 

the mouse lung by attenuating DDAH activity [13]. As in the mouse lung [11], LPS did not 

change DDAH II protein levels in PAEC either in the absence or presence of AdK295MSrc 

(Fig. 5A). However, LPS did significantly reduce DDAH activity (Fig. 5B) and increase 

cellular ADMA levels (Fig. 5C). These changes were attenuated by the over-expression of 

AdK295MSrc implicating pp60Src in the mechanism by which LPS inhibits DDAH activity. 

To further investigate the mechanism by which pp60Src inhibits DDAH activity we treated 

PAEC with LPS and used immuno-precipitation analyses to determine if there was a specific 

interaction of pp60Src with DDAH II, the predominant endothelial isoform [6,10]. Our data 

indicate that in PAEC, LPS stimulates the interaction of pp60Src with DDAH II (Fig. 6A) 

and this correlates with an increase in pY-DDAH II (Fig. 6B). Similarly, in the LPS exposed 

mouse lung, there is a significant increase in the interaction of pp60Src with DDAH II (Fig. 

6C) and pYDDAH II levels (Fig. 6D).

3.5. Over-expression of a constitutively active pp60Src mutant mimics the effects of LPS on 
DDAH activity

To further demonstrate the functional significance of pp60Src in attenuating DDAH activity, 

we overexpressed a constitutively active pp60Src mutant in PAEC using an adenovirus 

containing Y527FSrc (AdY527FSrc, Fig. 7A). This over-expression increased pY416 

pp60Src levels, indicating increased pp60Src activity (Fig. 7B) but again did not change 
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DDAH II protein levels (Fig. 7C). As with LPS, AdY527FSrc over-expression increased the 

interaction of pp60Src with DDAH II (Fig. 7D), pY-DDAH II levels (Fig. 7E), decreased 

DDAH activity (Fig. 7F) and increased ADMA levels (Fig. 7G). Thus, the stimulation of 

pp60Src signaling is sufficient to mimic the effects of LPS on the DDAH/ ADMA axis. 

Similarly, overexpression of Y527FSrc in the mouse lung did not significantly alter DDAH 

II protein levels (Fig. 8A). However, the interaction of DDAH II with pp60Src was 

significantly increased (Fig. 8B) as was pY-DDAH II (Fig. 8C). These changes correlated 

with a decrease in DDAH activity (Fig. 8D) and an increase in ADMA levels (Fig. 8E).

3.6. pp60Src mediates its inhibitory effect on DDAH II through Y207

An analysis of the human DDAH II protein revealed the presence of a single tyrosine residue 

located at amino acid position 207. To determine if phosphorylation of this residue was 

responsible for mediating the pp60Src-dependent decrease in DDAH activity we generated a 

phospho-antibody that recognizes pY207 in DDAH II. Using this antibody we were able to 

demonstrate an increase in the phosphorylation of Y207 in DDAH II in PAEC over-

expressing Y527FSrc (Fig. 9A). Then, using side-directed mutagenesis we replaced the 

tyrosine at 207 with phenylalanine to generate a Y207F DDAH II mutant. We then co-

expressed wild-type and Y207F-DDAH II with Y527FSrc in HEK293 cells (Fig. 9B and C). 

The over-expression of Y527FSrc decreased DDAH activity (Fig. 9D) and increased ADMA 

levels (Fig. 9E) in cells expressing wild-type DDAH II. However, Y527FSrc did not alter 

DDAH activity (Fig. 9D) and ADMA levels (Fig. 9E) in cells over-expressing the Y207F 

DDAH II mutant. These results confirm that pp60Src attenuates DDAH II activity through a 

specific phosphorylation at Y207.

4. Discussion

The most significant finding in this study is the identification of pp60Src as a kinase capable 

of binding to, and directly inhibiting the activity of, DDAH II and resulting in an increase in 

cellular ADMA. As ADMA is an endogenous NOS inhibitor, this attenuates NO generation 

for eNOS by enhancing its uncoupling [13]. This occurs despite a pp60Src–mediated 

increase in eNOS phosphorylation at Ser1177. Phosphorylation of eNOS at Ser1177 is 

thought to stimulate enzymatic activity by making the enzyme calcium/calmodulin 

independent [33], or more likely, it makes the enzyme more responsive to lower levels of 

calcium. Although the phosphorylation of eNOS at Thr495 is more often associated with 

eNOS uncoupling [34], Ser1177 phosphorylation has also been associated with the 

uncoupling of eNOS [24]. In addition, a mutant eNOS protein that has an aspartic acid 

introduced at Ser1177, to mimic phosphorylation, in combination with an alanine at Thr495, 

to prevent its phosphorylation, is uncoupled [35]. Our S1177D eNOS mutant data which 

appears to have increased catalytic activity, at the cost of increased superoxide generation, is 

thus in agreement with prior studies. However, we speculate that the LPS-mediated increases 

in ADMA likely synergize with the phosphorylation of eNOS at Ser1177 to further stimulate 

eNOS uncoupling and together this results in increased peroxynitrite production and protein 

nitration we observe in both cultured PAEC and the mouse lung. Further, as our prior studies 

suggest that eNOS rather than iNOS may play a more important role in the development of 
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ALI [11,16,21], attenuating eNOS uncoupling could be a potential therapeutic target for 

treating a disease that, besides low tidal mechanical ventilation, has no viable therapy.

In the pulmonary vasculature, and other vascular beds, eNOS utilizes L-arginine to produce 

L-citrulline and NO [36]. Although a simple reaction, a complex regulatory network is 

required to maintain sufficient NO generation and a healthy endothelium. Besides, its 

substrate, L-arginine, the generation of NO requires the binding of Ca2+/calmodulin, flavin 

adenine dinucleotide, flavin mononucleotide, NADPH, and tetrahydrobiopterin (BH4) [37]. 

If the levels of L-arginine or BH4 decrease, electrons donated by NADPH are utilized to 

convert molecular oxygen to superoxide, a process known as uncoupling [38]. Another 

factor that can induce eNOS uncoupling is ADMA. ADMA competes with L-arginine for 

the substrate binding site in eNOS, and the ratio between L-arginine and ADMA is a key 

component in the regulation of endothelial NOS activity. Elevated ADMA levels have been 

shown to antagonize the endothelium-dependent vasodilation in humans [3–7]. Increased 

levels of ADMA have been identified in a number of pulmonary diseases including 

pulmonary hypertension [39], congenital heart disease (CHD) [40], and ALI [11,12]. 

ADMA appears to increase secondary to a reduction in the activity of the ADMA 

metabolizing enzyme, DDAH II. In humans with PH [41] and piglets with persistent 

pulmonary hypertension of the newborn [42] this correlates with a reduction in DDAH II 

expression. While in lambs with CHD [40] and mice exposed to LPS [11,12] DDAH II 

protein levels are unchanged but activity is decreased. Similarly, in vitro studies have shown 

that oxidized LDL [43], TNF-α [43], and hypergly-cemia [44] decrease DDAH activity, but 

not its expression. The molecular mechanism by which the post-translational inhibition of 

DDAH II occurs has been unresolved. Thus, our data add significantly to our understanding 

of how this process occurs by identifying a pp60Src-mediated phosphorylation of DDAH II 

on Y207 as the inhibitory phosphorylation. Further, our data fit well with the prior studies 

that identified oxidative stress [43,44] as being important in DDAH II inhibition as pp60Src 

can be activated by reactive oxygen species [45–47]. However, further studies will be 

required to determine if pp60Src activation is a common mechanism responsible for the 

inhibition of DDAH II activity in other pulmonary diseases such as CHD [40].

It is well established that pp60Src plays a major role in the endothelial barrier disruption 

associated with ALI [48–50] and pp60Src inhibition attenuates the severity of injury [20]. 

However, pp60Src has also been shown to indirectly enhance eNOS activity and NO 

generation through the sequential signaling of PI3 kinase and Akt1 [23]. NO signaling 

appears to be involved in maintaining the endothe-lial barrier under physiologic conditions 

[51–54] and can protect against its disruption by oxidative stress [54,55]. These findings are 

apparently contradictory. However, we show that pp60Src activation leads to both NO and 

superoxide generation and the formation of peroxynitrite. A number of studies have shown 

that peroxynitrite, generated by the interaction of NO with superoxide, plays an important 

role in the disruption of the endothelial barrier during the development of ALI/ARDS 

[11,14,15]. Peroxynitrite can lead to protein tyrosine nitration forming 3-nitrotyrosine (3-

NT). 3-NT is widely used as a marker of peroxynitrite formation and elevated levels have 

been found in animal models of ALI [11,56–59] and in patients with ALI [60]. We have 

shown that scavenging peroxynitrite can attenuate the development of ALI [11]. However, 

the key protein targets for nitration in ALI are only poorly understood. Indeed, to our 
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knowledge, the only verified nitration target in ALI is the Rho (Ras homologous) GTP-

binding protein, RhoA [21]. The canonical pathway by which RhoA is stimulated is via the 

activation of G-protein-coupled receptors and/or tyrosine kinases that results in the 

activation of guanine nucleotide exchange factors (GEFs) inducing the exchange of GDP for 

GTP and translocation of GTP-RhoA to the plasma membrane. Upon transloca-tion to the 

plasma membrane RhoA is able to activate one or more of its effector proteins, particularly 

Rho-associated kinases (ROCKs). Rho A and Rho-associated kinase can directly catalyze 

myosin light chain (MLC) phosphorylation, or act indirectly via inactivation of MLC 

phosphatase [17,18] inducing cell contraction and endothelial barrier disruption. However, 

when nitrated at Y34, the need for GEFs are minimized as the nitration of Y34 enhances 

GDP release mimicking the effect of GEFs [21]. Our data confirm that pp60Src is required 

for RhoA nitration in LPS-exposed PAEC, likely due to increased eNOS uncoupling and that 

decreasing RhoA nitration correlates with reduced endothelial barrier disruption in response 

to LPS. Another potential target for nitration is nuclear factor (NF)-κB. The NF-κB family 

of transcription factors regulate the generation of cytokines/chemokines in response to 

various injurous states including oxidative and nitrative stress. The activation of NF-κB is 

well established in ALI [61,62]. Under basal conditions, NF-κB is sequestered in the 

cytoplasm in a complex with IκBα. In a previous study, we have demonstrated that the 

nitration of IκBα at Y181 triggers its dissociation from NF-κB leading to its nuclear 

accumulation [63]. In addition, our prior studies have shown that reducing protein nitration, 

by over-expressing either DDAH II in the pulmonary endothelium of the mouse [12] or 

using eNOS-/mice [16], reduces the inflammatory cytokines normally induced by LPS via 

NF-κB again implicating eNOS rather than iNOS in the progression of ALI. Thus, although 

correlative, this is highly suggestive that NF-κB nitration may be involved in its non-

canonical activation during ALI. However, further studies will be required to test this 

hypothesis.

In conclusion our data indicate that during ALI, the activation of pp60Src through the 

uncoupling of eNOS drives the generation of peroxynitrite and enhances protein nitration, 

with at least one of the nitration targets being the barrier disruptive small GTPase, RhoA. 

This is mediated by increasing ADMA levels via the inhibition of DDAH II and through an 

increase in Ser1177 eNOS phosphorylation. These data again suggest that treatments that 

target the increased generation of ADMA during ALI may have therapeutic value.
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Fig. 1. 
The over-expression of a dominant negative pp60Src stimulates eNOS uncoupling in 

pulmonary arterial endothelial cells. PAEC were exposed to LPS (1000 EU/ml; 4 h). LPS 

increased pp60Src activity as measured by increase in its phosphorylation at Y416 (A). 

PAEC were also transduced with an adenovirus containing either a dominant negative 

pp60Src (AdK295MSrc) or GFP. After 48 h the cells were challenged with LPS (1000 

EU/ml; 4 h). LPS increased NO generation (B) and this correlated with an increase in p-

Ser1177 eNOS (C) mediated via Akt1 as indicated by increased p-Ser473 Akt1 levels (D). 

All these effects were attenuated by AdK295MSrc over-expression (insert, panel B). 

AdK295MSrc also attenuated the LPS mediated increase in NOS-derived superoxide as 

estimated using EPR (E). LPS also increased peroxynitrite generation (F) and 3-

nitrotyrosine (3-NT) levels (G). These effects were again attenuated by overexpression of 

AdK295MSrc. Values are mean ± SEM, n=3–6, *P < 0.05 vs. untreated; †P < 0.05 vs. LPS.
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Fig. 2. 
Decreasing pp60Src expression attenuated RhoA nitration and preserves the endothelial 

barrier. PAEC were transiently transfected with a siRNA for pp60Src or a control siRNA for 

48 h to decrease pp60Src expression (A). Cells were then exposed to LPS (500 EU/ml) for 2–

4 h. Whole-cell lysates (20 μg) were prepared, and pS1177eNOS levels determined by 

immunoblotting with anti-pS1177eNOS. Loading was normalized by re-probing the 

membranes with an antibody specific to total eNOS. The depletion of pp60Src significantly 

reduces the LPS-mediated p-S1177 eNOS levels (B). Decreasing pp60Src expression also 

attenuated the LPS mediated increase in NOS-derived superoxide, as estimated using EPR 

(C). LPS also increased the nitration of RhoA as determined by Western blot analysis using 

an antibody that specifically recognizes the nitration of Y34 in RhoA (Nit-RhoA, D). Again 

the depletion of pp60Src significantly reduces the LPS-mediated nitration of RhoA (D). 

Loading was normalized by re-probing the membranes with an antibody specific to β-actin. 

Depleting pp60Src also attenuates the barrier disruption associated with LPS (50 EU/ml, E). 

Values are mean ± SEM, n=4–6, *P < 0.05 vs. scr siRNA; †P < 0.05 vs. LPS+Scr siRNA.
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Fig. 3. 
Enhancing pp60Src activity in the mouse lung induces eNOS uncoupling. Mice were injected 

with either DST-luciferase (DST) or pAD/CMV/V5-DEST-CApp60Src (Y527FSrc) plasmids 

via a tail vein injection. After 72 h, the animals were sacrificed and peripheral lung lysates 

prepared. Mice injected with Y527FSrc had a significant increase in pp60Src protein levels 

(A) and increase in pp60Src activity, as determined by increase in phospho-Y416 Src (B). 

The increase in pp60Src activity resulted in an increase in NO generation (C) and p-Ser1177 

eNOS levels (D). Over-expression of Y527FSrc in the mouse lung also significantly 

increased the levels NOS-derived superoxide (E), peroxynitrite (F), and 3-NT protein (G). 

Values are mean ± SEM, n=4–16, *P<0.05 vs. DST.
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Fig. 4. 
An S1177D eNOS mutant is catalytically more active but uncoupled. NO (A) and 

superoxide (B) generation are both significantly higher in the p-S1177 eNOS mimic protein, 

S1177D eNOS compared to the wildtype enzyme. The eNOS coupling index, determined as 

the ratio between NO and superoxide generation, was significantly decreased in the S1177D 

eNOS mutant suggesting the protein is more uncoupled (C). Values are mean ± SEM, n=3, 

*P < 0.05 vs. wildtype eNOS.
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Fig. 5. 
LPS decreases DDAH activity and increases ADMA levels in pulmonary arterial endothelial 

cells. PAEC were transduced with AdK295MSrc or AdGFP for 48 h then challenged with 

LPS (1000 EU/ml; 4 h). Although DDAH II protein levels were unchanged (A), LPS 

attenuated DDAH (B) activity and increased ADMA levels (B). AdK295MSrc prevented 

both the decrease in DDAH activity (B) and the increase in ADMA (C). Values are mean ± 

SEM, n=4–11, * P < 0.05 vs. untreated; †P < 0.05 vs. LPS.
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Fig. 6. 
The decrease in DDAH activity corresponds to an increase in pp60Src-mediated 

phosphorylation of DDAH II. PAEC were exposed to LPS (1000 EU/ml; 4 h) then lysates 

were subjected to immunoprecipitation and immunoblotting using pp60Src with DDAH II 

specific antibodies. LPS stimulates the interaction of interaction of pp60Src and DDAH II 

(A) and this correlates with an increase in the tyrosine phosphorylation of DDAH II (B). 

Mice were also injected with LPS (6.75×104 EU/gm body wt.) intraperitoneally. After 12 h 

lung lysates were prepared and subjected to immunoprecipitation and immuno-blotting. LPS 

treatment increases both the interaction of pp60Src and DDAH II in the moue lung (D) and 

the tyrosine phosphorylation of DDAH II (E). Values are mean ± SEM, n=4–12, * P < 0.05 

vs. untreated. LPS.
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Fig. 7. 
The over-expression of a constitutively active pp60Src mutant mimics the effects of LPS on 

DDAH activity in pulmonary arterial endothelial cells. PAEC were transduced with 

AdY527FSrc or AdGFP for 48 h. Immunoblot analysis identified a significant increase in 

pp60Src protein levels (A) and an increase in pp60Src activity, as determine by increase in 

phospho-Y416 pp60Src levels (B) in PAEC transduced with AdY527FSrc. AdY527FSrc did 

not alter DDAH II protein levels (C). However, AdY527FSrc transduction significantly 

increased the both the interaction of pp60Src with DDAH II (D) and the tyrosine 

phosphorylation of DDAH II (E). DDAH activity was significantly decreased (F) while 

ADMA levels were significantly increased (G). Values are mean ± SEM, n=4–6, * P < 0.05 

vs. AdGFP.
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Fig. 8. 
The over-expression of a constitutively active pp60Src mutant in decreases DDAH activity 

and increases ADMA levels in the mouse lung. Mice were injected with either DST-

luciferase (DST) or pAD/CMV/V5-DEST- Y527FSrc (Y527FSrc) plasmids via the tail vein. 

After 72 h, the animals were sacrificed and peripheral lung lysates prepared. Y527FSrc over-

expression dis not alter DDAH II protein levels (A). However, the interaction of pp60Src 

with DDAH II was significantly increased (B) as was the tyrosine phosphorylation of DDAH 

II (C). DDAH activity (D) was significantly reduced and ADMA levels were significantly 

increased (E). Values are mean ± SEM, n=5–6, *P < 0.05 vs. DST-Luc.
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Fig. 9. 
pp60Src inhibits DDAH II activity through Y207. HEK293 cells were transduced 

AdY527FSrc or AdGFP along with wild-type DDAH II for 48 h. Over-expression of 

Ad527FSrc increased pY207 DDAH II levels as measured by Western blot analysis using a 

phospho-antibody that recognizes pY207 in DDAH II (A). HEK293 were transduced with 

(AdY527FSrc) or AdGFP and transfected with either wildtype (WT) DDAH II or a DDAH 

II mutant in which Y207 was replaced by phenlyalanine (Y207FDDAH II). Immunoblot 

analysis identified a similar increase in DDAH II levels in WT DDAH II or Y207F DDAH II 

transfected cells (B). HEK293 cells transduced with AdY527FSrc exhibited a significant 

increase in pp60Src expression (C). The over-expression of AdY527FSrc decreased DDAH 

II activity (D) and increased ADMA levels (E) in cells expressing WT DDAH II. However, 

AdY527FSrc did decrease DDAH activity (D) or increase ADMA levels (E) levels in cells 
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expressing the Y207F DDAH II mutant. Values are mean± SEM, n=4–6, *P< 0.05 vs. WT 

DDAH II alone.

Kumar et al. Page 25

Free Radic Biol Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	2. Materials and methods
	2.1. Cell culture
	2.2. Animal studies
	2.3. In vivo over-expression of constitutively active pp60Src
	2.4. Measurement of peroxynitrite and protein nitration levels
	2.5. DDAH activity assay
	2.6. Measurement of ADMA levels
	2.7. Expression and purification of endothelial NOS
	2.8. Detection of NOX
	2.9. Determination of superoxide levels
	2.10. Generation of a specific DDAH II pY207 antibody
	2.11. Western blot analysis
	2.12. Adenoviral-mediated overexpression of pp60Src mutants
	2.13. siRNA-mediated down-regulation of pp60Src
	2.14. Immunoprecipitation analysis
	2.15. Measurement of endothelial barrier function
	2.16. Statistical analysis

	3. Results
	3.1. Effect of pp60Src on NO signaling in pulmonary arterial endothelial cells
	3.2. Stimulating pp60Src activity in the mouse lung induces eNOS uncoupling
	3.3. An S1177D eNOS mutant protein is uncoupled
	3.4. LPS increases ADMA levels by attenuating DDAH activity
	3.5. Over-expression of a constitutively active pp60Src mutant mimics the effects of LPS on DDAH activity
	3.6. pp60Src mediates its inhibitory effect on DDAH II through Y207

	4. Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9

