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Abstract

Purpose—The oncogenic microRNA miR-155 is upregulated in many human cancers and its 

expression is increased in more aggressive and therapy resistant tumors, but the molecular 

mechanisms through which miR-155 increases therapy resistance are not fully understood. The 

main objectives of this study were to determine the role of miR-155 in resistance to chemotherapy 

and to evaluate anti-miR-155 treatment to chemosensitize tumors.

Experimental Design—We performed in vitro studies on cell lines to investigate the role of 

miR-155 in therapy resistance. To assess the effects of miR-155 inhibition on chemoresistance, we 

used an in vivo orthotopic lung cancer model of athymic nude mice, which we treated with anti-

miR-155 alone or in combination with chemotherapy. To analyze the association of miR-155 
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expression and the combination of miR-155 and TP53 expression with cancer survival, we studied 

956 patients with lung cancer, chronic lymphocytic leukemia and acute lymphoblastic leukemia.

Results—We demonstrate that miR-155 induces resistance to multiple chemotherapeutic agents 

in vitro, and that downregulation of miR-155 successfully resensitizes tumors to chemotherapy in 
vivo. We show that miR-155 and TP53, the most frequently deregulated tumor suppressor, are 

linked in a negative feedback mechanism, and demonstrate that a combination of high expression 

of miR-155 and low expression of TP53 is significantly associated with shorter survival in lung 

cancer.

Conclusions—Our findings support the existence of a miR-155/TP53 feedback loop, which is 

involved in resistance to chemotherapy and which can be specifically targeted to overcome drug 

resistance, still the main cause of cancer-related deaths.
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INTRODUCTION

Resistance to therapy is the leading cause of failure to respond to chemotherapeutic drugs 

that leads to the high mortality in cancer (1, 2). Despite decades of research, only modest 

advances have been made in developing strategies to overcome resistance (3). The addition 

of non-coding RNAs (ncRNAs) to the ever-expanding set of genes deregulated in cancer (4) 

offer the opportunity to deeper understand these mechanisms and the hope to eradicate 

chemoresistance. Non-small cell lung cancer (NSCLC) and chronic lymphocytic leukemia 

(CLL) are the most frequent adult solid and hematological malignancies in the Western 

world, respectively (2), and resistance to therapy is a very significant medical issue in these 

patients. Virtually all NSCLC patients will eventually develop resistance to the 

chemotherapeutic agents they are exposed to (5), and all CLL patients requiring treatment, 

including the standard of care chemotherapy-based fludarabine, cyclophosphamide and 

rituximab (FCR) treatment, are expected to relapse (6). The poorest prognosis CLL 

subgroup is characterized by deletions of chromosome 17p (del17p), the genomic locus of 

TP53, having an overall survival of less than 2 years (7). The tumor suppressor gene TP53 is 

frequently deleted or mutated in human cancers and is involved in the development of drug 

resistance by cancer cells (8).

MicroRNAs (miRNAs) are small ncRNAs that regulate the expression of protein coding 

genes (9). MiR-155 is a well-known oncogenic miRNA, which is upregulated in a wide 

variety of human cancers (10, 11), especially in more aggressive and therapy resistant 

tumors (12, 13). For example, we identified a signature of deregulated miRNAs in patients 

with CLL and 17p deletion, versus patients with normal genotype, having good prognosis 

(14). In the 17p deletion group, miR-155 was the most upregulated miRNA (14). Moreover, 

we and others have demonstrated that miR-155 has prognostic significance in multiple types 

of tumors, including leukemia (15, 16) and lung cancer (17, 18).

Van Roosbroeck et al. Page 3

Clin Cancer Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Overexpression of miR-155 has been associated with drug resistance in several human 

cancers, including breast cancer, B-cell lymphoma and colon cancer (12, 19, 20), but the 

molecular mechanisms through which miR-155 increases cancer cell resistance to treatment 

are not fully understood. Therefore, the main objectives of this study were to determine the 

molecular mechanism through which miR-155 induces resistance to chemotherapy and to 

evaluate anti-miR-155 treatment to chemosensitize tumors. We demonstrate that 

overexpression of miR-155 induces resistance to chemotherapy, which can be reversed upon 

miR-155 inhibition. We further identify a miR-155/TP53 negative regulatory feedback loop, 

which affects the development of cancer drug resistance. The inverse expression correlation 

between miR-155 and TP53 transcripts is additionally supported by survival data from four 

lung cancer cohorts, in which we show that high expression of miR-155 and low expression 

of TP53 are associated with shorter survival, further confirming the involvement of miR-155 

in TP53-mediated resistance mechanisms.

MATERIALS AND METHODS

Patient samples

The origin of all patient datasets is presented in Table 1. The total number of patients 

included in the survival analyses was 956. Both analyzed CLL subgroups were previously 

described: CLL-NEJM (21) and CLL-Clin Cancer Res (22).

Twenty-four NSCLC samples were collected at the Istituto Scientifico Romagnolo per lo 

Studio e la Cura dei Tumori (IRST) IRCCS, Italy (NSCLC-Italy), 58 lung adenocarcinoma 

samples were collected at The University of Texas MD Anderson Cancer Center (lung 

adenocarcinoma-MDACC), and 52 ALL samples were collected at MDACC (ALL-

MDACC). Clinical characteristics of both lung cancer datasets and the ALL dataset can be 

found in Supplementary Tables S1 and S2, respectively. All patients provided written 

informed consent prior to inclusion in the study, and collection of the samples was approved 

by the institutional review board at each institution (IRST Srl IRCCS, and MDACC). All the 

work described has been carried out in accordance with the Declaration of Helsinki. In 

addition, the TCGA datasets for lung adeno-carcinoma (n = 343) and lung squamous cell 

carcinoma (n = 192) were downloaded from the data portal at https://tcga-data.nci.nih.gov/

tcga and survival analysis was performed (Table 1).

In vitro assays

A detailed description of the in vitro assays used, including cell lines, cell culture, 

transfection, drug treatment, quantitative real-time PCR, Western blotting, chromatin 

immunoprecipitation, luciferase assay, mutagenesis and drug resistance assays, can be found 

in the Supplementary Methods.

In vivo orthotopic mouse models

Liposomal control anti-miR and anti-miR-155 nanoparticle preparations, intrapulmonary 

injections, liposomal nanoparticle delivery, and cisplatin and doxorubicin treatment were 

carried out as previously described (23). The treatment schedules can be found in Figures 
1A and Supplementary Figure S1A. MiR-155 expression in tissue sections was analyzed 
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by in situ hybridization as previously described (24). Cell proliferation, angiogenesis and 

microvesicle density, and apoptosis were assessed by Ki-67 or CD31 immunostaining, or 

with the TUNEL assay as previously described (24). A more detailed description of the 

animal experiment can be found in the Supplementary Methods.

TCGA data analysis

Input data were downloaded from the publicly available data portal of The Cancer Genome 

Atlas Project (TCGA) at https://tcga-data.nci.nih.gov/tcga. Level 3 Illumina RNA-Seq and 

miRNA-Seq were used for the analysis of mRNA and miRNA expression, respectively. For 

miRNA-Seq data, we derived the “reads_per_million_miRNA_mapped” values for mature 

forms of each microRNA from the “isoform_quantification” files. Patient samples with 

survival data of 0 “days_to_last_follow_up” were excluded. Data for somatic mutations of 

TP53 in TCGA samples were downloaded from the cBio Portal at http://

www.cbioportal.org/public-portal/.

Statistics

All patient-related analyses were carried out in the R statistical environment, version 3.0. 

(http:///www.r-project.org/). Survival analyses were performed as previously described (24) 

with some modifications. Briefly, for each cohort, a relationship between miR-155/TP53 
expression and overall survival was assessed as follows. Patients were grouped into 

percentiles according to miR-155 and TP53 expression. The log-rank test was employed to 

determine the association between miRNA/mRNA expression and survival. The Kaplan-

Meyer method was used to generate survival curves. The p-value and the cut-off to optimally 

separate the patients in high and low (min p-value) miR-155 and TP53 were recorded. We 

then considered whether combining inverse expression of miR-155 and TP53 would 

associate with survival. We used the following procedure. A fixed cut-off for miR-155 

together with a fixed cut-off for TP53 splits the cohort in four groups corresponding to low 

or high miR-155 and low or high TP53 expression. For each pair of cut-offs we contrasted 

the two groups linked to a negative association: tumors with high levels of miR-155 and low 

levels of TP53 versus tumors with low levels of miR-155 and high levels of TP53. We 

recorded the best separation obtained (min p-value) for the pair and noticed that the 

difference in median survival time between the two groups contrasted is significantly larger 

than the difference between the groups classified into high/low based on the expression of 

miR-155 or TP53 alone. The relationship between survival and covariates (miR-155 and 

TP53 expression levels and available prognostic factors or other clinical parameters) was 

examined using a Cox proportional hazard model.

For lung adenocarcinoma cases with miR-155 expression, TP53 mutational status and 

survival information available, we checked for a relationship between miR-155 expression, 

TP53 expression and overall survival in patients with wild-type TP53 and mutated TP53 in a 

similar manner as described above. According to the TP53 mutational status, patients were 

divided into two groups: (i) those expressing wild-type TP53 (unmutated) or harboring TP53 
mutations not affecting its protein function (according to the IARC TP53 database 

p53.iarc.fr), and (ii) those harboring TP53 mutations that affect TP53 protein function 

(according to the IARC TP53 database p53.iarc.fr). For each group, Kaplan-Meier overall 
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survival curves were generated for high vs. low miR-155, and high miR-155 and low TP53 
vs. low miR-155 and high TP53.

Statistical analysis of the in vitro and in vivo data was carried out with GraphPad Prism 6 

software. To verify whether data followed a normal distribution, the Shapiro-Wilk normality 

test was performed, and an unpaired t-test (normal distribution) or non-parametric Mann-

Whitney-Wilcoxon test (non-normal distribution) was applied to determine P-values. All 

tests were two-sided and P-values <0.05 were considered statistically significant. Statistical 

significances are presented as * according to the following scheme: *, P < 0.05; **, P < 

0.01; ***, P < 0.001; ****, P < 0.0001.

RESULTS

MiR-155 induces chemoresistance in vitro

We treated three different lung cancer and leukemia cell lines with endogenous levels of 

miR-155 expression and after miR-155 overexpression (either by miR-155 precursor or 

miR-155 lentivirus) with chemotherapeutic agents commonly used to treat patients: the lung 

cancer cell line A549 with cisplatin (CDDP, cis-diamminodichloroplatinum) (5, 25), the 

acute lymphoblastic leukemia (ALL) cell line REH with doxorubicin (26) and the 

immunoblastic B-cell leukemia/lymphoma cell line JM1 with CDDP (27). As shown in 

Figure 2A-B, A549, REH and JM1 cells overexpresssing miR-155 grew significantly better 

and showed higher proliferation when undergoing treatment with CDDP or doxorubicin than 

cells expressing normal levels of miR-155. In addition, we performed a clonogenic assay for 

A549 cells stably overexpressing miR-155 (A549-155LV) and treated with CDDP vs. 

control cells (A549-LVEV) treated with CDDP. We observed a significant increase in the 

number of colonies when miR-155 was overexpressed, further demonstrating the 

chemoresistance induced by miR-155 (Figure 2C). Moreover, when we treated the H2009 

lung cancer cell line with miR-155 inhibitor and CDDP, we found that these cells grew 

significantly less than H2009 cells treated with negative control inhibitor and CDDP (Figure 
2D). Of note, when TP53 expression was abolished in REH cells by shRNA treatment, the 

protective effect to chemotherapeutic agents in cells overexpressing miR-155 disappeared 

(Figure 2A, middle panel and Figure 2B, middle panel). Finally, no difference in 

proliferation and cell growth was observed after fludarabine treatment and miR-155 

overexpression in MEC1 and MEC2 cell lines, both of which carry a deletion of the TP53 
locus (28) (Supplementary Figure S2). Altogether, these data suggest a role of miR-155 in 

drug resistance in various types of cancer, including lung cancer and leukemia, for multiple 

types of chemotherapy.

MiR-155-induced chemoresistance can be reversed in vivo by treatment with anti-miR-155-
DOPC

To evaluate the in vivo involvement of miR-155 in therapy resistance, we established an 

orthotopic lung cancer mouse model by intrapulmonary injection of A549-LVEV (control) 

cells or with A549-155LV (miR-155 overexpressing) cells. Two independent experiments 

were carried out with four (Figure S1) and five (Figure 1) treatment groups, respectively, in 

which mice were treated with negative control anti-miR (anti-miR-NC) or with anti-
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miR-155 alone or in combination with CDDP, according to the schedule in Figure 1A and 

Supplementary Figure S1A. Mice injected with A549-LVEV cells and treated with CDDP 

and anti-miR-NC showed a decrease in number of tumors, reduced primary tumor size and a 

reduced aggregate mass of metastases when compared to untreated mice injected with A549-

LVEV cells, although this decrease was not significant, indicating that these tumors are 

sensitive to CDDP, as was expected (Figure 1B-C and Supplementary Figure S1B-D). 

When miR-155 was overexpressed (through injection of A549-155LV cells), the tumors 

became resistant to CDDP treatment and the administration of anti-miR-155 alone 

significantly reduced number of tumors, tumor size and aggregate mass of metastases 

(Figure 1B-C). In addition, when anti-miR-155 was combined with CDDP treatment, the 

chemotherapy resistance was almost completely reversed (Figure 1B-C and 

Supplementary Figure S1B-D). In situ hybridization for miR-155 showed an increase of 

miR-155 expression in miR-155 overexpressing tumors treated with CDDP and anti-miR-

NC, and miR-155 levels comparable to or lower than A549-LVEV tumors when miR-155 

overexpressing tumors were treated with anti-miR-155 alone or in combination with CDDP 

(Figure 1D and Supplementary Figure S1E). Immunohistochemistry for Ki-67 

(apoptosis), CD31 (angiogenesis) and the TUNEL (apoptosis) assay suggested that 

miR-155, even in the presence of CDDP, is able to induce cell proliferation and 

angiogenesis, and reduce apoptosis, effects that are completely abolished when miR-155 is 

inhibited (Figure 1E and Supplementary Figure S1F). Although treatment with anti-

miR-155 alone resulted in a significant decrease in proliferation and angiogenesis, and 

increase in apoptosis, the effects are even more pronounced when anti-miR-155 is combined 

with CDDP therapy (Figure 1E). Therefore, the in vivo reversion of chemoresistance by 

anti-miR-155 administration is consistent and reproducible by independent sets of 

experiments.

We further investigated whether the anti-miR-155 molecule induces an immune response in 
vivo. We performed a cytokine assay detecting 25 pro-inflammatory cytokines on serum of 

mice injected with either anti-NC-DOPC or anti-miR-155-DOPC. With the exception of 

IL-12 (p40), IL-17, MIP-1α and MIP-1β, which showed marginally statistically significant 

differences, no activation of the immune system was observed (Figure 1F), suggesting that 

the therapeutic effects observed in our in vivo orthotopic mouse model are likely caused by 

targeting of miR-155, rather than immune induction.

Identification of a miR-155/TP53 negative feedback loop

miR-155 is significantly overexpressed in patients with CLL and deletion of 17p, where the 

genomic TP53 locus resides (14), suggesting that TP53 might suppress the expression of 

miR-155. To assess this hypothesis, we performed chromatin immunoprecipitation (ChIP) 

for TP53 in the wild-type ALL cell line REH (REH wt) and showed that TP53 binds to one 

of three predicted binding sites (BS3) downstream of miR-155 (Figure 3A-B). A luciferase 

reporter assays for BS3 confirmed that TP53 inhibits the expression of miR-155 through 

direct binding in the region downstream of miR-155 (Figure 3C). The silencing effect was 

abrogated when BS3 was mutated, further confirming a direct binding of TP53 to BS3 

(Figure 3C). To determine whether miR-155 is involved in a feedback loop, we checked 

whether overexpression of miR-155 affected TP53 expression. We transfected TP53 wild-
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type (wt) A549 and H460 cells (29) with miR-155 and observed reduced expression of TP53 

protein, as well as of the known miR-155 target TP53INP1 (30, 31) and p21 (Figure 3D). 

When downregulating miR-155 in the H2009 lung cancer cell line harboring a mutation in 

TP53 that does not affect the miR-155 binding sites, we observed increased TP53 and p21 

protein expression (Figure 3E). A luciferase reporter assay in the TP53 null cell line H1299 

for two identified miR-155 binding sites in the 3’ untranslated region (3’ UTR) of TP53 
mRNA (BS-UTR) (Figure 3F) and in the TP53 coding sequence (BS-CDS), respectively, 

showed a direct binding of miR-155 to BS-UTR (Figure 3G) but not to BS-CDS (data not 

shown). The silencing effect was abolished when BS-UTR was mutated (Figure 3G), 

indicating a direct binding of miR-155 to the 3’ UTR of TP53. Similar experiments in the 

TP53 wild-type cell line H460 showed a reduction in luciferase activity as well (Figure 3H). 

Finally, to assess the effects of miR-155 overexpression on TP53 expression in vivo, we 

performed TP53 immunostaining on the mouse tumors, and observed decrease in TP53 

expression when miR-155 was overexpressed. Treatment with anti-miR-155 alone did not 

significantly affect TP53 expression, but a combination of anti-miR-155 with CDDP resulted 

in a significant increase of TP53 expression (Figure 1G and Supplementary Figure S1G). 

Altogether, these in vitro and in vivo data demonstrate a negative feedback loop between 

miR-155 and TP53, which is involved in resistance to chemotherapy.

To understand the biological significance of the newly identified miR-155/TP53 feedback 

loop, and to determine how our findings fit in with other known functions and targets of 

miR-155, we performed integrated function and pathway analysis on 248 experimentally 

validated miR-155 target genes. Thirteen pathways (Supplementary Table S3) were 

significantly (p<0.01 and FDR<10%) enriched, the majority of which were related to cancer 

(pathways in cancer, colorectal cancer, pancreatic cancer), cell growth and death (cell cycle, 

apoptosis), as well as signal transduction pathways often deregulated in cancer and involved 

in drug resistance (Wnt signaling pathway, TGF-β signaling pathway, signaling by BMP, 

signaling by NGF). These pathways closely relate to the roles of miR-155 as an oncogene 

(32), TP53 as tumor suppressor and apoptosis inducer (8), and our novel findings of a 

miR-155/TP53 negative feedback loop involved in resistance to therapy.

High expression of miR-155 and low expression of TP53 are correlated with survival

MiR-155 was found to have prognostic impact in patients with various types of cancer (17) 

including lung cancer (18), leukemia (15, 16), breast cancer (33), renal cell carcinoma (34), 

glioma (35), colorectal cancer (36) and gallbladder carcinoma (37). We additionally assessed 

the correlation of miR-155 with survival in two independent and already published CLL 

cohorts (CLL-NEJM (21) and CLL-Clin Cancer Res (22)), in a new ALL cohort (ALL-

MDACC), and in four lung cancer datasets (2 new cohorts, NSCLC-Italy and lung 

adenocarcinoma-MDACC, and the TCGA cohorts for lung adenocarcinoma and squamous 

cell carcinoma). To our surprise, we only found a correlation between high expression of 

miR-155 in the leukemia datasets (Supplementary Figure S3), but not in any of the lung 

cancer cohorts (Table 1). We previously showed that a combination of miR-520d-3p and its 

target EphA2 is a better prognostic factor for ovarian cancer than each gene by itself (24). To 

investigate whether this is also the case for our newly identified miR-155/TP53 negative 

feedback loop, we associated miR-155 and TP53 transcript expression with overall survival 
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(OS) and time-to-progression (TTP) in four sets of lung cancer (Table 1). We used OS as a 

measure of resistance to therapy. In all cohorts, we found a significant decrease in survival 

when miR-155 expression was high and TP53 mRNA expression was low. Unfortunately, no 

TP53 expression data were available for any of the CLL and ALL datasets.

When TP53 mutation status was considered in the lung adenocarcinoma – TCGA subset, 

only in cases with unmutated (wild-type) TP53 or with TP53 mutations not affecting its 

function, high miR-155 expression was significantly associated with shorter OS (Figure 4A-
B). In addition, only in cases with wild-type TP53 or TP53 mutations not affecting its 

function high miR-155 and low TP53 expression remained significantly associated with 

shorter OS (Figure 4C-D). Since all tumors in the NSCLC-Italy dataset were selected for 

having unmutated TP53, the same can be concluded for this dataset. Unfortunately, for the 

lung adenocarcinoma-MDACC and lung squamous cell carcinoma-TCGA datasets, too few 

patients were left to perform this analysis and get a reliable significance.

To assess whether expression of miR-155, TP53 and the combination of miR-155 and TP53 
were independently associated with survival, uni- and multivariate analyses were carried out 

containing the miR-155 and TP53 expression data, as well as several known prognostic 

factors and available clinical parameters, as categorical variables (Table 2). In addition, the 

hazard ratio (HR) was calculated using the estimated parameters from the Cox models to 

compare survival between miR-155 high and TP53 low vs. miR-155 low and TP53 high 

groups (Supplementary Table S4). These analyses confirmed that high miR-155 and low 

TP53 mRNA expression or high miR-155 expression (when no TP53 expression data were 

available) were independently associated with survival in most datasets (Table 2 and 

Supplementary Table S4). This co-occurrence of high miR-155 expression with low TP53 
mRNA expression appears to be important for predicting survival, as in all analyzed lung 

cancer datasets, miR-155 expression and TP53 mRNA expression by itself were not 

sufficient to be associated with survival. Interestingly, for the leukemia datasets (in which 

miR-155 expression alone was significantly associated with survival), when considering 

miR-155 as a continuous variable in the univariate analyses, the significance is lost for all 

cohorts, except CLL-Clin Cancer Res (Supplementary Table S51). This further supports 

our concept that a combination of both miR-155 and TP53 expression represents a better 

marker to predict survival.

DISCUSSION

Here, we showed for the first time that TP53 and miR-155 are linked in a new feedback 

mechanism. We further demonstrated that the miR-155/TP53 feedback loop is involved in 

resistance to multiple chemotherapeutic drugs used in treatment combinations in lung cancer 

(5) and leukemia (26, 38). Through miR-155 downregulation in vivo, we successfully 

resensitized the tumors to chemotherapy, and therefore, this miR-155/TP53 interactor loop 

could be exploited for miRNA-based therapeutic interventions in cancer patients (39). 

Others have shown that LNA-based and nanoparticle-based inhibition of miR-155 decreases 

tumor growth in mouse models of Waldenstrom macroglobulinemia and lymphoma, 

respectively (40-42). In addition, a recent publication showed that knockdown of miR-155 in 

the doxorubicin-resistant cell line A549/dox reversed doxorubicin resistance and restored 
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doxorubicin-induced apoptosis and cell cycle arrest (43), further supporting that miR-155 

might be a good target in chemosensitization of tumors.

When we took the TP53 mutational status into consideration for the survival analysis of the 

lung adenocarcinoma-TCGA cohort, we observed that miR-155 and the combination of 

miR-155 and TP53 are significantly associated with shorter OS, only in cases with 

unmutated TP53 or TP53 mutations not affecting its function. Similar conclusions could be 

drawn from the NSCLC-Italy cohort, since all patients were selected for unmutated TP53 
status. In addition, we showed that overexpression of miR-155 in MEC1 and MEC2 cell 

lines (both carrying a deletion of the TP53 locus) does not induce chemoresistance to 

fludarabine treatment (Supplementary Figure S2), suggesting that there is a difference in 

response in the context of wild-type and mutant TP53 alleles. However, as the current data 

are very limited, further investigation is needed to assess the role of mutant TP53 vs. wild-

type TP53 in the newly identified miR-155/TP53 feedback loop.

In contrast with some of the literature (17, 18, 33-37), we found that in most of the analyzed 

cancer datasets, miR-155 expression and TP53 mRNA expression by itself were not 

sufficient to be associated with OS (Table 1). In fact, significant correlations between 

miR-155 and survival could only be found in the leukemia cohorts. In addition, a recent 

meta-analysis evaluating miR-155 as a prognostic factor for survival in 1,557 NSCLC 

patients from 6 different studies suggested that high expression levels of miR-155 alone may 

not be significantly related to lung cancer prognosis, except for Asian and American patients 

(44). Our data further support the importance to consider miRNA (miR-155) and target 

mRNA (TP53) to predict survival. Actually, when combined, we found that high miR-155 

and low TP53 expression significantly correlated with survival in 4 independent lung cancer 

datasets (Table 1), and that this combination remained independently associated with 

survival in the datasets analyzed in a multivariate analysis (Table 2 and Supplementary 
Table S4). We recently demonstrated that a combination of miR-520d-3p and its target 

EphA2 is a better prognostic factor for ovarian cancer than each gene by itself, and that 

simultaneous targeting of miRNA/mRNA (miR-520d-3p/EphA2) results in a remarkable 

therapeutic synergy as compared to either monotherapy (24).

In conclusion, our study is innovative due to multiple reasons. We show for the first time that 

the most frequently altered human tumor suppressor TP53 is directly targeted by one of the 

most oncogenic miRNAs, miR-155, and that TP53 directly regulates the expression of this 

miRNA as a feedback. Second, a combination of TP53 and miR-155 expression seems to be 

a much better classifier for overall survival of lung cancer and possibly also leukemia, than 

miR-155 alone. Third, miR-155 and TP53 and their downstream targets are involved in 

resistance to multiple types of chemotherapeutic regimens in various hystotypes. Finally, we 

propose to use anti-miR-155 as an additive to chemotherapy and not as a single agent, as 

was proposed by others (40-42). This means lower doses of drugs to be used and, 

consequently, less adverse reactions to occur in clinical trials. The identification of the 

miR-155/TP53 interaction will favor the advancement of new anti-miR-155 targeted 

therapies to overcome the development of drug resistance, still the main cause of cancer-

related deaths.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TRANSLATIONAL RELEVANCE

Resistance to therapy is an important issue in cancer treatment and the main cause of 

cancer-related deaths. Despites decades of research into overcoming this resistance, only 

modest advances have been made and the resistance mechanisms remain poorly 

understood. This is the first report of a miR-155/TP53 negative feedback mechanism, in 

which there is a direct targeting of TP53 by miR-155, and which is involved in the 

resistance to multiple chemotherapeutic drugs used in the treatment of lung cancer and 

leukemias. The finding that treatment with anti-miR-155 can reverse chemoresistance in 
vivo supports a potential clinical use of anti-miR-155 therapy in human clinical trials of 

various cancer types as an addition to current chemotherapy regimens in order to 

overcome cancer-enacted resistance mechanisms.
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Figure 1. In vivo orthotopic lung cancer model for the role of miR-155 in chemoresistance
(A) Injection and treatment schedule for CDDP (green arrows) and anti-miR negative 

control (NC) or anti-miR-155 liposomal nanoparticles (red stars) for five different treatment 

groups: mice that were injected with A549-LVEV cells and untreated (group 1), injected 

with A549-LVEV cells and treated with anti-miR-NC and CDDP (group 2), injected with 

A549-155LV cells and treated with anti-miR-NC and CDDP (group 3), injected with 

A549-155LV cells and treated with anti-miR-155 alone (group 4), and injected with 

A549-155LV cells and treated with anti-miR-155 and CDDP (group 5). (B-C) Graphs of the 

primary tumor size (B) and the aggregate mass of nodules in the mediastinum (C) for each 

of the five treatment groups. (D) In situ hybridization for miR-155 for each of the five 

treatment groups. (E) Immunohistochemical analyses for Ki-67 (proliferation) and CD31 

(angiogenesis), as well as the TUNEL assay (apoptosis) for each of the five treatment 

groups. Quantifications are presented in the histograms at the right side of the pictures. (F) 

Cytokine assay detecting 25 pro-inflammatory cytokines on serum of mice (n=10/group) 

injected with either anti-miR-NC-DOPC or anti-miR-155-DOPC. (G) TP53 immunostaining 

for each of the five treatment groups. CDDP, cisplatin; LVEV, lentivirus empty vector; LV, 

lentivirus; NC, negative control. Error bars represent SEM (panels B, C, E and G) or SD 

(panel F). Scale bars in panels D and E represent 100 m. The number of mice in each group 

is indicated.
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Figure 2. The effect of miR-155 modulation on drug resistance
(A) Growth curves and (B) proliferation curves for A549 cells treated with CDDP (left 

graph), REH cells (wt and shp53) treated with doxorubicin (middle graph) and JM1 cells 

treated with CDDP (right graph). (C) Clonogenic assay of A549 cells treated with CDDP. 

(D) Viability assay for H2009 cells treated with CDDP. CDDP, cisplatin; wt, wild-type; 

shp53, short hairpin for TP53; LVEV, lentivirus empty vector; LV, lentivirus. Error bars 

represent SEM, and each assay was performed at least three times.
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Figure 3. In vitro validation of a miR-155/TP53 negative feedback loop
(A) Schematic representation of three predicted TP53 binding sites in the downstream region 

of miR-155. (B) Chromatin immunoprecipitation for TP53 binding to BS1/2 and BS3 in 

REH cells with normal TP53 expression (REH wt). (C) Luciferase reporter assay and 

mutagenesis for the TP53 binding site BS3 downstream of miR-155 in A549 cells. (D) 

Western blot analysis of A549 and H460 cell lines with baseline miR-155 levels or 

overexpressing miR-155. (E) Western blot analysis of H2009 cells with relatively high basal 

miR-155 expression and after inhibiting miR-155. (F) Schematic representation of a 

predicted miR-155 binding site in the 3’ UTR of TP53 (BS-UTR). (G) Luciferase reporter 

assay and mutagenesis for BS-UTR in the TP53 null cell line H1299. (H) Luciferase reporter 

assay for the 3’ UTR of TP53 in the TP53 wild-type cell line H460. BS, binding site; UTR, 

untranslated region; SCR, scrambled. Error bars represent SD, and each assay was 

performed at least three times.
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Figure 4. Clinical correlation of miR-155 and TP53 expression with survival in the lung 
adenocarcinoma – TCGA dataset when distinguishing between TP53 wild-type and TP53 
mutated samples
(A-B) Kaplan-Meier survival analysis for patients expressing high levels of miR-155 vs. low 

levels of miR-155 in samples that express wild-typeTP53 or harbor TP53 mutations that do 

not affect TP53 function (A), and in samples expressing mutated TP53 that affects TP53 

function (B). (C-D) Kaplan-Meier survival analysis for patients expressing high levels of 

miR-155 and low levels of TP53 vs. low levels of miR-155 and high levels of TP53 in 

samples that express wild-type TP53 or harbor TP53 mutations that do not affect TP53 

function (C), and in samples expressing mutated TP53 that affects TP53 function (D). The 

red and blue values below the curves represent patients at risk at the specified time points. 

OS, overall survival; mo, months; TCGA, The Cancer Genome Atlas; mut, mutation.
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Table 2

Univariate and multivariate analyses of survival with patient characteristics and miR-155 and TP53 expression 

as categorical variables in different patient cohorts

UNIVARIATE (CATEGORICAL) MULTIVARIATE (CATEGORICAL)

Cohort Variable HR (95%CI) p-value (log-
rank)

HR (95%CI) p-value (wald)

CLL – Clin 
Cancer Res

IGHV (MUT vs UNM) 3.8 (2.3-6.5) <0.0001 2.4 (1.3-4.5) 0.009

CD38 (<30% vs > 30%) 3.7 (2.2-6.2) <0.0001 2.6 (1.4-4.8) 0.002

FISH risk category (poor vs
intermediate/normal/favorable)

4.6 (2.5-8.5) <0.0001 1.9 (0.9-3.9) 0.063

cMBL vs CLL 2.5 (1.2-5.6) 0.02 2.9 (1.3-6.5) 0.01

miR-155 high vs miR-155 low 2.1 (1.2-3.5) 0.006 2.9 (1.3-3.6) 0.01

CLL – NEJM IGHV (UNM vs MUT) 4.21 (2.09-8.47) <0.0001 3.97 (1.84-8.58) 0.0005

CD38 (>30% vs <30%) 1.88 (0.92-3.84) 0.0539 1.02 (0.50-2.10) 0.9512

miR-155 high vs miR-155 low 2.22 (1.14-4.34) 0.0147 1.89 (0.97-3.68) 0.0633

ALL – MDACC Age (>40 vs <40) 2.16 (1.08-4.31) 0.0258 1.86 (0.91-3.79) 0.0881

Gender (male vs female) 1.11 (0.55-2.24) 0.7698

Molecular (BCR/ABL+ vs BCR/
ABL-)

0.61 (0.25-1.47) 0.2651

WBC (>50,000 vs <50,000) 2.47 (1.14-5.33) 0.0176 2.25 (1.03-4.93) 0.0428

Cytogenetics (hyperdiploid (>50 
chromosomes) vs rest)

0.65 (0.25-1.71) 0.3837

miR-155 high vs miR-155 low 3.42 (1.65-7.1) 0.0005 2.61 (1.22-5.56) 0.013

NSCLC – Italy Age (>64 vs <64) 0.46 (0.05-4.52) 0.4987

Pathological stage (stage III-IV vs 
stage I-II)

3.38 (0.54-21) 0.1687

TP53 low vs TP53 high 2.71 (0.60-
12.33)

0.1971

miR-155 high vs miR-155 low 5.25 (0.62-
44.36)

0.1277

miR-155 high and TP53 low vs 
miR-155 low and TP53
high

6.87 (1.05-
63.08)

0.0161

Lung 
adenocarcinoma – 
MDACC

Age (>60 vs <60) 1.49 (0.52-4.3) 0.4536

Tobacco history (ever vs never) 0.76 (0.167-
3.42)

0.7165

Pathological stage (stage III-IV vs 
stage I-II)

2.53 (0.87-7.33) 0.076

TP53 low vs TP53 high 2.32 (0.92-5.85) 0.075

miR-155 low vs miR-155 high 1.67 (0.72-3.72) 0.2354

miR-155 high and TP53 low vs 
miR-155 low and TP53
high

4.19 (1.03-
18.77)

0.0356
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UNIVARIATE (CATEGORICAL) MULTIVARIATE (CATEGORICAL)

Cohort Variable HR (95%CI) p-value (log-
rank)

HR (95%CI) p-value (wald)

Lung 
adenocarcinoma – 
TCGA

Age (>66 vs <66) 1.03 (0.57-1.86) 0.9203

Tobacco history (ever vs never) 0.77 (0.37-1.63) 0.4995

Pathological stage (stage III-IV vs 
stage I-II)

1.7 (0.93-3.13) 0.0823

TP53 low vs TP53 high 1.66 (1.09-2.54) 0.019

miR-155 high vs miR-155 low 1.33 (0.85-2.09) 0.2169

miR-155 high and TP53 low vs 
miR-155 low and TP53
high

2.03 (1.05-3.72) 0.0177

Lung squamous 
cell carcinoma –
TCGA

Age (>70 vs <70) 0.08 (0.37-1.8) 0.6215

Tobacco history (ever vs never) 1.32 (0.49-3.58) 0.585

Pathological stage (stage III-IV vs 
stage I-II)

1.21 (0.45-3.25) 0.7078

TP53 low vs TP53 high 1.60 (0.96-2.68) 0.0711

miR-155 high vs miR-155 low 1.41 (0.78-2.56) 0.2537

miR-155 high and TP53 low vs 
miR-155 low and TP53
high

2.03 (1.05-3.72) 0.0177

Abbreviations: HR, hazard ratio; CI, confidence interval; IGHV, immunoglobulin heavy chain variable region; MUT, mutated; UNM , unmutated; 
FISH, fluorescent in situ hybridization; cMBL, clinical monoclonal B-lymphocytosis; CLL, chronic lymphocytic leukemia; ALL, acute 
lymphoblastic leukemia; MDACC, The University of Texas MD Anderson Cancer Center; NSCLC, non-small cell lung cancer; WBC, white blood 
cells; TCGA, The Cancer Genome Atlas; MSI, microsatellite instable; MSS, microsatellite stable
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