Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Aug;87(16):6171–6175. doi: 10.1073/pnas.87.16.6171

Hot spot mutations in adenosine deaminase deficiency.

R Hirschhorn 1, S Tzall 1, A Ellenbogen 1
PMCID: PMC54494  PMID: 2166947

Abstract

We have previously characterized mutant adenosine deaminase (ADA; adenosine aminohydrolase, EC 3.5.4.4) enzymes in seven children with partial ADA deficiency. Six children shared common origins, suggesting a common progenitor. However, we found evidence for multiple phenotypically different mutant enzymes. We hypothesized that many of the mutations would be at CpG dinucleotides, hot spots at which spontaneous deamination of 5-methylcytosine results in C to T or G to A transitions. Digestion of DNA from these children with Msp I and Taq I, enzymes recognizing CpG dinucleotides, identified three different mutations, each correlating with expression of a different mutant enzyme. Sequencing of cDNA clones and genomic DNA amplified by polymerase chain reaction confirmed the presence of C to T or G to A transitions at CpG dinucleotides (C226 to T, G446 to A, and C821 to T, resulting in Arg76 to Trp, Arg149 to Gln, and Pro274 to Leu). A "null" mutation, also found in two ADA-deficient severe combined immunodeficient children, was serendipitously detected as gain of a site for Msp I. Simultaneous loss of a site for Bal I defined the precise base substitution (T320 to C, Leu107 to Pro), confirmed by sequence analysis. To determine the true frequency of hot spot mutation in these children, consecutively ascertained through a newborn screening program, we sequenced cDNA from the remaining alleles. Two others were hot spot mutations (C631 to T and G643 to A, resulting in Arg211 to Cys and Ala215 to Thr), each again resulting in expression of a phenotypically different mutant enzyme. Only one additional mutation (previously identified by us) is not in a hot spot. These seven mutations account for all 14 chromosomes in these children. There is thus a very high frequency of hot spot mutations in partial ADA deficiency. Most of these children carry two different mutant alleles. We were able to correlate genotype and phenotype and to dissect the activity of individual mutant alleles.

Full text

PDF
6171

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian G. S., Wiginton D. A., Hutton J. J. Structure of adenosine deaminase mRNAs from normal and adenosine deaminase-deficient human cell lines. Mol Cell Biol. 1984 Sep;4(9):1712–1717. doi: 10.1128/mcb.4.9.1712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akeson A. L., Wiginton D. A., Dusing M. R., States J. C., Hutton J. J. Mutant human adenosine deaminase alleles and their expression by transfection into fibroblasts. J Biol Chem. 1988 Nov 5;263(31):16291–16296. [PubMed] [Google Scholar]
  3. Akeson A. L., Wiginton D. A., States J. C., Perme C. M., Dusing M. R., Hutton J. J. Mutations in the human adenosine deaminase gene that affect protein structure and RNA splicing. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5947–5951. doi: 10.1073/pnas.84.16.5947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barker D., Schafer M., White R. Restriction sites containing CpG show a higher frequency of polymorphism in human DNA. Cell. 1984 Jan;36(1):131–138. doi: 10.1016/0092-8674(84)90081-3. [DOI] [PubMed] [Google Scholar]
  5. Bird A. P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980 Apr 11;8(7):1499–1504. doi: 10.1093/nar/8.7.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonthron D. T., Markham A. F., Ginsburg D., Orkin S. H. Identification of a point mutation in the adenosine deaminase gene responsible for immunodeficiency. J Clin Invest. 1985 Aug;76(2):894–897. doi: 10.1172/JCI112050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Borkowsky W., Gershon A. A., Shenkman L., Hirschhorn R. Adenosine deaminase deficiency without immunodeficiency: clinical and metabolic studies. Pediatr Res. 1980 Jul;14(7):885–889. doi: 10.1203/00006450-198007000-00009. [DOI] [PubMed] [Google Scholar]
  8. Cooper D. N., Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988 Feb;78(2):151–155. doi: 10.1007/BF00278187. [DOI] [PubMed] [Google Scholar]
  9. Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. doi: 10.1038/274775a0. [DOI] [PubMed] [Google Scholar]
  10. Daddona P. E., Davidson B. L., Perignon J. L., Kelley W. N. Genetic expression in partial adenosine deaminase deficiency. mRNA levels and protein turnover for the enzyme variants in human B-lymphoblast cell lines. J Biol Chem. 1985 Mar 25;260(6):3875–3880. [PubMed] [Google Scholar]
  11. Daddona P. E., Mitchell B. S., Meuwissen H. J., Davidson B. L., Wilson J. M., Koller C. A. Adenosine deaminase deficiency with normal immune function. An acidic enzyme mutation. J Clin Invest. 1983 Aug;72(2):483–492. doi: 10.1172/JCI110996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Daddona P. E., Shewach D. S., Kelley W. N., Argos P., Markham A. F., Orkin S. H. Human adenosine deaminase. cDNA and complete primary amino acid sequence. J Biol Chem. 1984 Oct 10;259(19):12101–12106. [PubMed] [Google Scholar]
  13. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  14. Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972 Nov 18;2(7786):1067–1069. doi: 10.1016/s0140-6736(72)92345-8. [DOI] [PubMed] [Google Scholar]
  15. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  16. Hirschhorn R., Ellenbogen A. Genetic heterogeneity in adenosine deaminase (ADA) deficiency: five different mutations in five new patients with partial ADA deficiency. Am J Hum Genet. 1986 Jan;38(1):13–25. [PMC free article] [PubMed] [Google Scholar]
  17. Hirschhorn R. Inherited enzyme deficiencies and immunodeficiency: adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) deficiencies. Clin Immunol Immunopathol. 1986 Jul;40(1):157–165. doi: 10.1016/0090-1229(86)90081-4. [DOI] [PubMed] [Google Scholar]
  18. Hirschhorn R., Martiniuk F., Roegner-Maniscalco V., Ellenbogen A., Perignon J. L., Jenkins T. Genetic heterogeneity in partial adenosine deaminase deficiency. J Clin Invest. 1983 Jun;71(6):1887–1892. doi: 10.1172/JCI110944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hirschhorn R., Roegner V., Jenkins T., Seaman C., Piomelli S., Borkowsky W. Erythrocyte adenosine deaminase deficiency without immunodeficiency. Evidence for an unstable mutant enzyme. J Clin Invest. 1979 Oct;64(4):1130–1139. doi: 10.1172/JCI109552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hirschhorn R., Tzall S., Ellenbogen A., Orkin S. H. Identification of a point mutation resulting in a heat-labile adenosine deaminase (ADA) in two unrelated children with partial ADA deficiency. J Clin Invest. 1989 Feb;83(2):497–501. doi: 10.1172/JCI113909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martiniuk F., Mehler M., Pellicer A., Tzall S., La Badie G., Hobart C., Ellenbogen A., Hirschhorn R. Isolation of a cDNA for human acid alpha-glucosidase and detection of genetic heterogeneity for mRNA in three alpha-glucosidase-deficient patients. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9641–9644. doi: 10.1073/pnas.83.24.9641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mierendorf R. C., Pfeffer D. Direct sequencing of denatured plasmid DNA. Methods Enzymol. 1987;152:556–562. doi: 10.1016/0076-6879(87)52061-4. [DOI] [PubMed] [Google Scholar]
  23. Orkin S. H., Goff S. C., Kelley W. N., Daddona P. E. Transient expression of human adenosine deaminase cDNAs: identification of a nonfunctional clone resulting from a single amino acid substitution. Mol Cell Biol. 1985 Apr;5(4):762–767. doi: 10.1128/mcb.5.4.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  27. Tzall S., Ellenbogen A., Eng F., Hirschhorn R. Identification and characterization of nine RFLPs at the adenosine deaminase (ADA) locus. Am J Hum Genet. 1989 Jun;44(6):864–875. [PMC free article] [PubMed] [Google Scholar]
  28. Valerio D., Dekker B. M., Duyvesteyn M. G., van der Voorn L., Berkvens T. M., van Ormondt H., van der Eb A. J. One adenosine deaminase allele in a patient with severe combined immunodeficiency contains a point mutation abolishing enzyme activity. EMBO J. 1986 Jan;5(1):113–119. doi: 10.1002/j.1460-2075.1986.tb04184.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vulliamy T. J., D'Urso M., Battistuzzi G., Estrada M., Foulkes N. S., Martini G., Calabro V., Poggi V., Giordano R., Town M. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5171–5175. doi: 10.1073/pnas.85.14.5171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wiginton D. A., Kaplan D. J., States J. C., Akeson A. L., Perme C. M., Bilyk I. J., Vaughn A. J., Lattier D. L., Hutton J. J. Complete sequence and structure of the gene for human adenosine deaminase. Biochemistry. 1986 Dec 16;25(25):8234–8244. doi: 10.1021/bi00373a017. [DOI] [PubMed] [Google Scholar]
  31. Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Youssoufian H., Antonarakis S. E., Bell W., Griffin A. M., Kazazian H. H., Jr Nonsense and missense mutations in hemophilia A: estimate of the relative mutation rate at CG dinucleotides. Am J Hum Genet. 1988 May;42(5):718–725. [PMC free article] [PubMed] [Google Scholar]
  33. Youssoufian H., Kazazian H. H., Jr, Phillips D. G., Aronis S., Tsiftis G., Brown V. A., Antonarakis S. E. Recurrent mutations in haemophilia A give evidence for CpG mutation hotspots. 1986 Nov 27-Dec 3Nature. 324(6095):380–382. doi: 10.1038/324380a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES