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Abstract

Although it is accepted that the environment within the granuloma
profoundly affectsMycobacterium tuberculosis (Mtb) and infection
outcome, our ability to understandMtb gene expression in these
niches has been limited. We determined intragranulomatous gene
expression in human-like lung lesions derived from nonhuman
primates with both active tuberculosis (ATB) and latent TB infection
(LTBI). We employed a non–laser-based approach to microdissect
individual lung lesions and interrogate the global transcriptome of
Mtbwithin granulomas.Mtb genes expressed in classical granulomas
with central, caseous necrosis, aswell as within the caseum itself, were
identified and compared with otherMtb lesions in animals with ATB
(n = 7) or LTBI (n = 7). Results were validated using both an
oligonucleotide approach and RT-PCR on macaque samples and by
using human TB samples. We detected approximately 2,900 and
1,850 statistically significant genes in ATB and LTBI lesions,
respectively (linear models for microarray analysis, Bonferroni
corrected, P, 0.05). Of these genes, the expression of approximately
1,300 (ATB) and 900 (LTBI) was positively induced. We identified
the induction of key regulons and compared our results to genes

previously determined to be required forMtb growth. Our results
indicate pathways thatMtb uses to ensure its survival in a
highly stressful environment in vivo. A large number of genes is
commonly expressed in granulomas with ATB and LTBI. In addition,
the enhanced expression of the dormancy survival regulon was a
key feature of lesions in animals with LTBI, stressing its importance in
the persistence ofMtb during the chronic phase of infection.

Keywords: Mycobacterium tuberculosis; macaque; granuloma;
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Clinical Relevance

Our results conclusively show that the hypoxia-sensing
dormancy survival regulon is expressed in tuberculosis (TB)
lesions in vivo. In addition, we describe, in detail, hundreds of
other Mycobacterium tuberculosis genes, the expression of
which was detected in the natural niche. This will inform
future drug and vaccine development efforts.
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Mycobacterium tuberculosis (Mtb) is
constantly subjected to stress in vivo and
must successfully adapt to survive its ever-
changing extracellular milieu (1). The study
of the mycobacterial state in vivo is further
complicated by variability in granuloma
pathology, physiology, and morphology.
Currently, we do not fully understand the
drivers of Mtb reactivation in the lung (2),
and disease progression can be highly
variable given the differences in host
genetics, environment, microbiota, and the
presence of comorbidities. A comparative
systems biology approach that incorporates
the pathological complexities of Mtb
infection would allow us to better
understand the physiology of the pathogen.

Various approaches have been used to
attempt to understand the importance of
Mtb genes and therefore better elucidate
tuberculosis (TB) pathogenesis. Initially,
the TB field focused on a gene-by-gene
approach and, with time and technological
advancements, began shifting to whole-
genome–based approaches. Leveraging
transposon site hybridization (TraSH),
genes required for Mtb growth have been
identified in mice, murine macrophages,
and computationally. Another mutant-
based technique, designer arrays for defined
mutant analysis, have been used in mice,
guinea pigs, and nonhuman primates
(NHPs). In addition, several groups have
attempted to model the granuloma
environment, whereas others have detected
the expression of a small number of specific
Mtb genes in human macrophages. Some
have conducted massively parallel RNA-
PCR of Mtb transcriptome using the mouse
model. Yet others have identified whole-
genome Mtb gene expression in various
mouse models and used in vitro granuloma
models. These studies have provided insight
into genes required for Mtb growth in
survival, but no studies to date have
profiled in vivo gene profiles within
its natural microenvironment and
characteristic pulmonary lesion, the
granuloma, while also using a model that
most closely recapitulates the human
disease spectrum. As such, failure to
effectively control Mtb infections and TB
disease via devising new vaccinations and
therapeutic strategies has been due to the
lack of effective disease models and
fundamental knowledge of the pathogen
in its natural niches.

Here, we change the way that we
identify Mtb treatment and vaccine

strategies by switching from traditionally
used peripheral responses to a localized
approach by assessing Mtb gene induction
within the pulmonary granulomatous
environment. Due to the many similarities
between infected NHPs and humans, NHPs
are the ideal model for addressing these
questions (3). NHPs, such as rhesus
(Macaca mulatta) (2–18) and cynomolgus
(Macaca fascicularis) (19, 20) macaques,
recapitulate the wide spectrum of human
TB pathology and outcomes upon
experimental infection with Mtb. We
currently lack an understanding of the
physiology and the metabolic state of Mtb
in this granulomatous environment during
different states of infection. Understanding
the physiology and metabolism of the
intragranulomatous environment is critical,
because effective vaccines and drugs must
target this state to eradicate the bacteria and
subsequently control the infection. We
therefore propose to study and compare the
intragranulomatous gene expression of Mtb
during ATB, latent TB infection (LTBI),
and reactivation.

We hypothesize that the Mtb
transcriptional profiles, with respect to
metabolism and physiology, exhibit
changes over time and upon interaction
with both a variety of environmental cues
and host immune responses. Consequently,
we hypothesize that different infective
stages, as well as different areas of the
granuloma, lead to differential bacillary
expression profiles. Furthermore, and more
importantly, we propose that these changes
can be used to understand the physiology of
the pathogen as well as its virulence.

The purpose of evaluating the
entire granulomatous pathology (i.e., the
combination of all lesion and granuloma
types on the formalin-fixed, paraffin-
embedded [FFPE] lung slides) is to generate
a bacterial transcriptome profile that is
representative of the entire infective state.
In addition, the purpose of specifically
evaluating the classical, caseating-type
granuloma is to evaluate the bacterial
transcripts specific to this lesion type.
Overall, evaluation of the mycobacterial
transcriptome in granulomatous tissue is
likely to further our understanding of the
mechanisms involved in their formation and
maintenance, as well as those genes that are
expressed in each state of the infection.
Analysis of Mtb gene expression within this
environment in vivo will further our
understanding of the environmental

stressors that Mtb encounters within this
specific niche, and allow us to identify
genetic programs that are critical for the
transition between ATB and LTBI. This
information can be used to facilitate
development of Mtb vaccines, diagnostics,
and therapeutics, and consequently
generate a more targeted approach to
prevent, identify, and treat TB infection.

Materials and Methods

Study Design and Statistical Analysis
The goal of this study was to assess the
in vivo Mtb transcriptome in defined
microanatomic compartments typical of
ATB (Figures 1A and 1B, see Figure E1 in
the online supplement) and LTBI (Figures
1C and 1D, Figure E2). We observed that
LTBI correlated with solitary lesions with
well defined central necrosis (caseum) and
defined cellular layers including fibrosis.
These were referred to as “classical
granulomata” or “classical granulomas.” In
contrast, pulmonary pathology in ATB was
characterized by the presence of a wide
variety of granulomata, including
coalescing of classical granulomas with
caseum as well as other less-organized TB-
related lesions, which include, but are not
limited to: (1) granulomatous inflammation
characterized by poorly organized cellular
infiltration, predominately consisting of
macrophages, but also consisting of other
inflammatory cells; and (2) nonnecrotizing
granulomas with a thin layer of
lymphocytes surrounding a central core of
predominantly epithelioid macrophages. In
addition, due to the increased diversity of
lesions in ATB, Mtb transcriptome was
examined in the amalgamation of ATB-
induced lesions by dissecting an area,
referred to as “representative pathology,”
consisting of all of the aforementioned
lesion types evident on the section. Sections
of FFPE lung tissue obtained from two
groups of previously infected Mtb-infected
NHPs (ATB [n = 7] or LTBI [n = 7]; Table
E1) (4, 18) were microdissected, tissue
digested, and RNA extracted, as described
previously (21). Animals with ATB had
higher serum C-reactive protein levels
(Figure 2A; P, 0.01), significantly greater
percent weight loss (Figure 2B; P, 0.05),
and significantly higher lung bacterial
burden (Figure 2C; P, 0.005) and lung
pathology (Figure 2D; P, 0.005) as
compared with animals with LTBI. These
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results are further supported by the Mtb-
specific staining of lung sections using
multilabel confocal microscopy (Figures
2E–2G) and chromogen staining (Figures
2H and 2I). In each of these instances,
significantly higher Mtb burden was
detected by staining fixed, random lung
tissue sections with Mtb-specific antibodies
in the animals with ATB relative to LTBI.
In the case of confocal microscopy, we were
able to quantify these signals, and found
that the quantity of Mtb present per square
millimeter was significantly higher in the
lungs of animals with ATB than in those
with LTBI (P, 0.005). Because the
extracted heterogeneous RNA samples
contain predominately host-specific
transcripts, RNA was amplified (Ovation
FFPE WTA System; Nugen, San Carlos,
CA) and purified (QIAquick PCR
Purification Kit; Qiagen, Germantown,
MD). For microarray analysis, 3 mg cDNA

samples (Alexa Fluor 5) and 3 mg CDC1551
gDNA (Alexa Fluor 3; BEI Resources,
Manassas, VA) were labeled. Mtb
microarrays were used to compare samples
to control (4). Statistically significant genes
were determined using linear models for
microarray analysis (22). Multiple
hypothesis error was corrected using a
Bonferroni correction (P, 0.05) that has
been previously described (14, 16).

Host-specific hypoxia was assessed
using Agilent Rhesus Macaque microarrays
(Agilent Technologies, Santa Clara, CA)
relative to normal lung tissue derived from
uninfected macaques as baseline. Lesion
hypoxia was assessed in tissues of animals
injected with pimonidazole hydrochloride
(PIMO; Hypoxyprobe, Burlington, MA)
coupled to daylight red (16). A subset of 86
genes (five housekeeping) was used to
validate microarray profiles using nCounter
Analysis (23). In addition, FFPE human

lung blocks from patients with ATB were
obtained from R.L.H. and S.-A.H. for
validation of NHP gene expression profiles.
A subset of bacillary genes with clearly
defined expression profiles were used for
real-time RT-PCR, performed as described
previously (4, 21, 24–30), for an additional
level of validation of results. For this
purpose, RNA isolated from
in vitro–grown, log-phase (0.4 optical
density) Mtb cultures was used for
comparison, and data were normalized
using 16S gene as internal reference.

Results

Mesodissected samples from ATB and LTBI
were used to identify Mtb genes that were
expressed in a statistically significant
manner in vivo. Significance was defined as
those genes the expression level of which
differed from that generated by the use of
a discrete, constant amount of Mtb
genomic DNA (control). The expression of
approximately three-fourths of the entire
Mtb genome could be detected in a
statistically significant manner in all lesion
types derived from NHPs with ATB, with
2,909, 2,848, and 2,910 genes being detected
in representative pathology, classical
granuloma, and caseum of the classical
granuloma, respectively (Tables E2–E4).
A similar analysis in lesions derived from
animals with LTBI showed that 1,874 genes
exhibited expression in classical
granulomas and 1,872 in the caseum of the
classical granuloma (Tables E5 and E6).

Microarray sample inputs consisted
of 3 mg of either amplified, lung-derived
mixed sample or Mtb control. Therefore,
genes detected with a positive fold change
in the mixed sample compared with the
pure Mtb control reflect much larger actual
fold changes. Given these limitations, we
subsequently focused on statistically
significant genes with a positive fold change.
In ATB samples, 1,344, 1,328, and 1,343
genes were detected in a positive manner in
representative pathology, classical granuloma,
and caseum of the classical granuloma,
respectively (Figure 3A, Tables E2–E4). In
LTBI samples, the expression of 1,082 and
891 genes with a positive fold change could
be detected in classical granuloma and
associated caseum (Figure 3B, Tables E5 and
E6). The expression of a core group of 633
genes was induced in ATB, LTBI, and among
all lesion types (Figure 3C, Table E7).

Figure 1. (A and B) Representative hematoxylin and eosin (H&E) image of active tuberculosis (ATB;
DF30) lung. (A) A 325 magnification image of two coalescing granulomata, with extensive intervening
and surrounding regions of inflammation. We termed this presentation as “representative pathology,”
which includes classical granulomata and associated caseum. Arrows define the two coalescing lung
granulomas. (B) A350 magnification image of an animal with ATB. (C and D) Representative H&E image of
latent tuberculosis infection (LTBI) (FJ05) lung. (C) A 325 magnification image of a solitary granuloma
surrounded by regions of normal lung. (D) A 350 magnification image of the same granuloma clearly
describes the presence of a central necrotic region (the caseum). We termed such lesions as “classical
granulomata.” (A,C, and D) Asterisks correspond to necrotic-hypoxic centers within granulomas. (C) The
arrowheads define the boundary between the necrotic center and the cellular layer to the outside. (D) The
arrows define the boundary between the granuloma and the normal lung as well as between the myeloid
and the lymphocytic layers. Scale bars: 500 mm.
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The dormancy survival regulon (dosR)
consists of 48 genes up-regulated during a
multitude of in vitro stress conditions that
mimic the environment faced by Mtb
in vivo, including hypoxia (31). This
regulon has generally been considered
essential for Mtb dormancy, although
conclusive evidence in this regard was
lacking until recently (16). In ATB lesions,
the expression of approximately 26, 34, and
32% of the genes within this regulon were
found to be induced in a statistically
significant manner in representative

pathology, classical granuloma, and caseum
of the classical granuloma, respectively
(Table E8). In LTBI samples, approximately
30% of the genes within the regulon could
be similarly detected in both classical
granuloma and caseum of the classical
granuloma. In addition, eight dosR regulon
members (Rv0080, Rv0081, Rv1736c,
Rv1737c, Rv2032, Rv2625c, and Rv2630)
were present in the core group common to
all ATB and LTBI samples. We predicted
that the expression of members of this
regulon would occur at higher levels in

animals progressing to LTBI. The
greatest induction of genes of the dosR
regulon occurred in the most hypoxic
areas of the granuloma (e.g., the caseum
derived from LTBI granulomas, followed
by entire LTBI classical granuloma and
the caseum derived from ATB lesions;
Figure 4A).

Next, to further gauge the degree of
hypoxia within the granuloma, we surveyed
the amount of hypoxia within ATB and LTBI
using PIMO (16) (Figures 4B and 4C). TB
lung lesions in both ATB- and LTBI-derived
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with either ATB (red) or LTBI (blue). Peak serum C-reactive protein (CRP; mg/ml), (B) changes in body weight, (C) Mycobacterium tuberculosis (Mtb)
bacterial burden per gram of lung tissue after killing, (D) percentage lung affected by tuberculosis pathology at necropsy and over course of infection,
representative confocal staining of a section of lung with anti-Mtb antibody for an animal with LTBI (E) and with ATB (F). Mtb, red; To-Pro-3 iodide, green;
quantification ofMtb-positive signal over area (mm2) (G); representative chromogen staining of a section of lung with anti-Mtb antibody for an animal with LTBI (H)
and with ATB (I). Scale bar in panel H is 10 mm, and scale bar in panel I is 5 mm. *P,0.05, **P, 0.01 and ***P,0.001 using unpaired Student’s t test.
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granulomas were positive for PIMO,
indicating hypoxia. During ATB, PIMO
was evident throughout granulomatous
pathology (Figure 4B). In contrast, in LTBI
samples, PIMO signal was predominately
localized to the inner rim of the granuloma
surrounding the caseum (Figure 4C). PIMO
signal was calculated as a percentage of
lung and granuloma area within various
microscopic fields (Figure 4D). The highest
levels of PIMO were observed in the
classical granulomas of NHPs infected with
LTBI (Figure 4D). To determine if the
expression of host genes known to be
induced by hypoxia was correspondingly
increased in LTBI compared with ATB,
we screened a macaque transcriptome
dataset of granuloma lesions isolated
from 21 animals (LTBI [n = 10] or ATB
[n = 11]) relative to normal lung tissue
(S.M., A.A.L., and D.K., unpublished
data), specifically focusing on host genes
induced by hypoxia and regulated by
hypoxia-inducible factor 1 (HIF-1) (32)
(Tables E9 and E10). These genes exhibited
higher expression in lesions derived from both
groups (Figures 4B and 4E) with relatively
higher expression of numerous hypoxia-
sensitive genes in LTBI rather than ATB
samples. These data suggest that the extent of
the hypoxic environment is greater in lesions
derived from animals with LTBI, strongly
supporting our bacterial transcriptome data.

We detected the induced expression of
a large number of genes that belong to the
proline-glutamate (PE) or proline-proline-
glutamate (PPE) family of genes (Table

E11). We further assessed the expression of
PE/PPE in vivo by supervised clustering
and observed increased induction in ATB
samples (Figure 5A). The PE/PPE family
consists of more than 160 members unique
to mycobacteria, which have been
implicated in antigenicity and associated
with persister formation (33). We also
investigated six known gene families and
regulons for their intragranulomatous
expression, including sigma factors,
toxin–antitoxin (TA) systems, lipid
metabolism, Esx1, enduring hypoxic
response, and persisters. The expression of
several TA genes, which potentially aid in
the survival and persistence of Mtb, was
highly induced (Table E12). Although some
differences existed between lesion types,
which is expected given the widely accepted
concept of lesion heterogeneity, we were
able to detect approximately 26% of these
genes in each of the granuloma types derived
from animals with ATB (34). In animals with
LTBI, we detected approximately 21% in the
classical granuloma and 16% in the caseum.
TAs depicted greater induction in ATB than
LTBI (Figure 5B). The majority of the TAs
expressed belonged to the largest TA family
in the genome, the vapBC family. In total, we
found the induction of 15 toxins and 14
antitoxins belonging to this family, including
4 pairs: vapBC19, vapBC21, vapBC33, and
vapBC34, within granulomas.

To better assess the mechanisms of
modulation of Mtb gene expression in vivo,
we assessed known sigma (sig) factors
and their associated genes (Table E13).

We detected the following five in all
samples: sigB, sigD, sigI, sigJ, and sigF.
We also detected the following factors
within specific environments and disease
states: LTBI—sigL and sigM (caseum), as
well as sigK and sigG (granuloma);
ATB—sigM, sigK, sigG (caseum), sigK
(granuloma), sigG (representative
pathology), and sigH (caseum). Overall,
greater expression was detected in ATB,
similarly to many of the aforementioned
pathways (Figure 5C). These results may
suggest specific roles for each of these
factors in facilitating the transition from
ATB to LTBI. Thus, sigF and sigD have
been shown to be required in the
adaptation to stationary phase (35),
whereas the induction of sigJ, sigI, sigB,
sigK, and sigH supports the importance
of the oxidative stress on various bacterial
components within the granuloma (35).
These results point to a battery of alternate
sigma factors being critically important for
the survival of Mtb in vivo by modulating
gene expression in response to changing
milieu.

We detected the up-regulation of
539 genes in a statistically significant
manner common to all six granulomatous
samples derived from patients with ATB
(Table E14). In addition, 391 of the
aforementioned genes were also detected
in all NHP-derived samples. Using a
subset of 86 genes, we validated gene
expression profiles via a microfluidic
approach (Figure E4, supplemental
MATERIALS AND METHODS, Table E15).
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In addition, a small subset of genes with
specific and interesting expression profiles
were cherry picked and transcriptome
profiles validated by real-time RT-PCR in
comparable classical granulomata derived
from animals with ATB and LTBI
(Figure 6). The expression of vapB21, an
antitoxin of the TA system, was validated to
be induced approximately 100-fold in the
classical lesions derived from animals with
ATB, significantly higher than the
expression in classical granulomata samples
from animals with LTBI, where no
induction was observed (Figure 6A). The

expression of oxidative stress response
factors, sigE (12- versus 0.1-fold) and sigH
(z300-fold versus 1.2-fold), was highly
induced in lesions derived from ATB
relative to LTBI animals (Figures 6B and
6C). In the case of sigH, the difference
approached statistical significance
(P = 0.0584). These results were comparable
to those derived from whole-genome
microarray analysis. The expression of the
dosR gene was robustly detected in lesions
derived from animals with both clinical
outcomes, as was suggested by
transcriptome and NanoString data

(Figure 6D). The dosR levels were not
statistically significantly different, but the
overall expression was slightly higher in
granulomata from animals with LTBI
relative to ATB.

We compared the genes expressed
within granulomas to those previously
essential for survival of the bacilli
(Figure E5A) (4, 36–39). We found the
greatest degree of similarity between
intragranulomatous data described here to
our previously conducted NHP mutant
experiment, where we identified 108 genes
unable to survive in macaque lungs during
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active TB, implying that the genes whose
expression was interrupted in these
mutants were important for pathogenesis
and likely expressed in vivo (4) (Table E16).

An overwhelming number of genes
overlapped in each disease state with 27%
belonging to all ATB derived lesions,
18% to all LTBI derived lesions, and 17% to

all NHP-derived lesions (see the online
supplement). The next greatest degree of
similarity was found with a computational
prediction model (39), followed by the
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Figure 5. Mechanisms of persistence and validation. Comparison of genes within the (A) proline-glutamate/proline-proline-glutamate gene family, (B)
toxin–antitoxin complexes, and (C) sigma factor family with induced expression in all NHPs with either LTBI or ATB in each granuloma sample subset.
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in vitro/mouse TraSH (36), murine
macrophage TraSH (38), and a mouse
designer arrays for defined mutant analysis
study (37) (Tables E17–E20). We detected
more essential genes in ATB, presumably
due to a higher burden of actively
replicating bacteria. Pathway analysis of
ATB and LTBI shows a high degree of
known connection between essential genes
defined by DeJesus and colleagues (39)
(Figures E5B and E5C). Interestingly,
we detected 115 essential genes common to
all ATB and LTBI NHP samples (Figure
E5D) (39), approximately 50% of which
function in intermediary metabolism
and respiration, representing essential
mechanisms that Mtb employs to transition
between active and latent disease. These results
suggest the reprogramming of Mtb
metabolism within lung lesions due to the
varied availability of nutrients and metabolites.

Discussion

We assessed Mtb genes induced within
defined microanatomic compartments of
the TB lung in NHPs with ATB and LTBI.

Due to route of infection, pathologic, and
disease spectrum similarities between
NHPs and humans, especially in the
context of TB, the NHP model is ideally
suited to assess in vivo Mtb gene
expression. Lung samples used here
reflect human TB disease, because, as with
human infection, NHPs were infected via
aerosol. In addition, NHP produce a
spectrum of lesions most similar to those
found in human patients with TB as
compared with other animal models;
therefore, this is the best model
for assessing specific granuloma
microenvironments. This work extends
beyond just assessing active disease
transcriptome profiles, but also assesses
the transition between LTBI and ATB. As
in humans, NHPs also develop LTBI.
Unlike humans, it is possible to ethically
obtain pulmonary endpoint samples from
latently infected NHPs. Here, we
identified transcriptome profiles of both
ATB and LTBI. In addition, profiles were
validated with lesions derived from
human samples with active disease and
comparable results obtained. Our results
suggest that certain Mtb pathways are

critical for the transition from LTBI to
ATB disease.

Here, we identify regulons associated
with ATB, LTBI, and the combination
thereof in representative ATB pathology,
ATB and LTBI classical granulomas, and
their subsequent caseum. We identify a
core group of genes common to all
lesions, indicating an underlying shared
bacterial program to respond to the
granulomatous environment, regardless
of the clinical disease status. Our results
conclusively demonstrate that the
response of the bacillus to hypoxia is
critical for the transition to latency. By
finding the enhanced expression of
hypoxia-responsive regulons, we provide
the conclusive in vivo evidence of its
importance in maintaining Mtb in the
chronic state of infection with the
granuloma. By identifying genes and
pathways involved in Mtb persistence,
maintenance, and growth in vivo, and
coupling these findings to pre-existing
mutant-based studies, this study
provides critical information on genes
that can be used in a potentially novel,
targeted vaccine and therapeutic
approaches.

Unsurprisingly, more genes were
detected in a statistically significant manner
in ATB than LTBI, as the latter is
characterized by a greater bacterial burden
as well as a higher magnitude of host
response (5). The induced expression of a
core group of 633 genes was identified in all
intragranulomatous lesions, representing a
core group of genes essential for Mtb
survival and persistence within the
granuloma, suggesting that these genes may
be necessary for the transition from ATB to
LTBI.

Stress is vitally important for Mtb gene
regulation (40); consequently, we studied
regulons known to respond to specific
validated conditions, with a primary focus
on the expression of the hypoxia-sensing
dosR gene and its regulon (31). While
not required for initial infection, the
dosR regulon is essential for the
persistence of Mtb in human-like caseous
granulomas (16). Furthermore, the lack
of dosR in Mtb allows the recruitment
of stronger adaptive immunity (16). A
large number of dosR-dependent genes
was expressed in every sample, disease
state, and pathologic lesion studied.
Importantly, intragranulomatous
expression patterns of dosR-dependent
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Figure 6. Real-time RT-PCR to validate macaque Mtb transcriptome results. Using cDNA derived
from in vitro, log-phase–grown Mtb, and using the 16S gene as an internal reference, the fold
changes of expression of vapB21 (A), sigE (B), sigH (C), and dosR (D) was assessed in classical
granulomata derived from animals with ATB (red circles) or LTBI (blue squares) (Student’s t test,
**P, 0.005). ns, not significant.
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genes circumvented our selection bias
and strongly correlated with oxygenation
patterns. Thus, the expression of the
dosR regulon was at the lowest level in
the least hypoxic lesion type (ATB-
representative pathology), whereas it was
the greatest in the most hypoxic
samples (LTBI, particularly caseum).
This pattern was best exemplified by
Rv1813c, which is coregulated by both
dosR and mprAB two-component
regulatory systems. It exhibited
increased expression in LTBI, especially
in the hypoxic caseum of the classical
granuloma, demonstrating the ability
of the bacillus to use multiple regulatory
pathways concurrently to recognize,
respond, and persist in specific
environmental conditions.

At least two of the genes identified in
this screen, Rv1996 and Rv2028c, are
implicated in inducing greater T cell
responses in patients with LTBI than ATB
(41). Finally, Rv2031c, which exhibited
the highest induction in expression in
LTBI and ATB caseum-derived samples,
is up-regulated during latency. This gene
has recently been implicated in silico as
an important regulator in cellular
hypoxic stress response via its regulation
of the Rv2028-Rv2031 operon. The
higher induction of the dosR regulon in
samples derived from macaques with
LTBI was reinforced by increased
hypoxia (PIMO) signal, as well as
increased host HIF-1 expression, which
is a known regulator of hypoxic
responses (32). The expression of the
downstream HIF-regulated host genes
also occurred at much higher levels
in LTBI- relative to ATB-derived
samples. Our study shows the critical
importance of such mechanisms
that allow the bacteria to alter its
metabolism to favor survival in hostile
conditions.

The expression of some dosR-
dependent genes was high throughout the
granuloma types and disease states. This
profile was exemplified by Rv0569, which
encodes a signal transducer during hypoxia
and by Rv2625c (rip3), which encodes a
mitochondrial reactive oxygen species
induced in a TNF-associated pathway
(42). In conditions of excess TNF, ROS
induces macrophage necrosis, allowing
bacterial release into the extracellular
environment, increasing host
susceptibility (42). Because hypoxia was

detected in all samples tested, our data
strongly suggest that the induction of
dormancy is critical in all granuloma
stages, a result supported by observations
that lesions of macaques with both ATB
and LTBI contain hypoxia (Figures
4B–4D) (16). Our results are also
supported by the recent evidence of dosR
expression in the lungs of humans with
TB (43). Overall, the pathogen’s response
to hypoxia is a critical component of its
intragranulomatous physiology. Although
long suspected (44), we are only
beginning to appreciate the importance of
dosR and hypoxia in governing the
transition from active to latent TB in
classical lesions, and its impact on
immunity.

Due to sustained Mtb replication,
granulomata of different maturation levels
can be observed in the same animal with
ATB. These granulomata of varying
pathologies provide an array of diverse
environments to which the bacilli must
respond (45). Some of these lesions,
especially the less mature ones, have not
yet evolved to contain a fibrotic cuff on the
exterior (Figure 1). As a result, these
lesions are able to “breathe,” and don’t
experience radically reduced oxygen
tensions. On the contrary, virtually every
LTBI lesion is highly ordered (Figure 1).
Hence, it is not surprising that the latter
are more hypoxic and invoke a greater
hypoxic response from both the host
and the pathogen. It is believed that
hypoxia within the LTBI lesions is the
trigger that alters the physiology of the
pathogen in a manner such that bacilli
acquire a dormant (or persistent)
phenotype. There is support for our
contention in the published literature.
Thus, metronidazole is a drug that is
only effective in hypoxic conditions,
presumably against persisters. Treatment
of LTBI, but not ATB, with metronidazole
in this system prevents conversion to
ATB (46).

Recent studies have in particular
underlined the importance of the dosR
regulon. T cells from humans with LTBI
recognize dosR-regulated antigens,
suggesting that these proteins are expressed
and presented in vivo during latency (47).
Infection of macaques with Mtb mutants in
the dosR regulon causes nonpathogenic
infection with enhanced adaptive immune
responses recruited to the lung (16).
Hence, the dosR response appears integral

to Mtb pathogenesis, and helps the
pathogen manipulate immunity. Finally,
an unbiased, system-wide proteomic
approach found that, upon in vitro
hypoxic stress, 20% of all Mtb protein
mass is contributed by the fewer than 50
dosR-regulated genes (48). Moreover, the
expression of this regulon was recently
reported to be strongly induced in human
TB and to significantly lower levels in
patients with HIV (43). This suggests that
the expression of DosR may promote
more robust granulomas, a contention
supported by data that expression of
DosR by WhiB6 promotes granuloma
stability in an environment of chronic
oxidative/nitrosative stress (49). Thus, the
notion that dosR is critical to the
reprogramming of Mtb physiology in
hypoxic conditions in vivo is increasingly
supported by experimental data (50). We
propose that, in macaque as well as
human lesions, progressively increasing
hypoxia elicits the expression of the DosR
regulon. This results in the blockade of
the highly bactericidal Th1 response from
accessing the bacilli within the lesion
through the expression of DosR-regulated
antigens. The lesions characterized by
high DosR expression are therefore likely
robust granulomas that do not allow the
bacilli to spread. The current study
cements the role of the dosR regulon in
Mtb persistence within human-like
caseous lung granulomas by providing
conclusive evidence for its deployment in
this important niche (16). Because it is
likely that dosR-regulated antigens are
expressed intragranulomatously, cognate
Mtb-specific T cells could be effective in
controlling or eradicating infection. By
extension, our data suggest that the
induction of dosR (or dormancy) results
in the expression of numerous specific
antigenic epitopes. Our results provide a
compelling rationale to study responses
specific to dosR-expressed antigens,
and suggest that vaccination approaches
that induce CD4 and CD8 responses to
these may be successful. n
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