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Releasing Tensin

Myofibroblasts are reparative cells tasked with the synthesis,
secretion, deposition, and remodeling of extracellular matrix
(ECM). In the context of normal wound repair, myofibroblasts
function as necessary effectors contributing to an integrated
response aimed at restoring tissue homeostasis. In the lungs, the
successful repair response culminates with restoration of an intact
alveolar epithelium, degradation of excessive ECM, and clearance of
myofibroblasts via apoptosis, leaving behind a physiologic scar
that does not impair lung function (1). In contrast, the pathologic
scar formation that is evident in fibrotic lung diseases such as
idiopathic pulmonary fibrosis is characterized, in part, by the
aberrant persistence of myofibroblasts. These rogue myofibroblasts
fail to respond to normal environmental cues to shut down and
instead, similar to cancer cells, become autonomous drivers of the
pathologic response (2).

Our understanding of the mechanisms that underlie fibroblast
acquisition of this aberrant phenotype continues to evolve.
Importantly, it is possible that these mechanisms change over time
and that the mechanisms that initially stimulate myofibroblast
recruitment and activation are not required for their survival and
persistent activation. Transforming growth factor b1 (TGF-b1), for
example, is well recognized for its ability to induce profibrotic
myofibroblast phenotypes in vitro and fibrosis in vivo. However,
it has also become evident that biomechanical and biochemical
signals derived from the ECM itself can independently regulate
myofibroblast phenotype and function (3–5). Thus, delineating the
mechanisms of mechanotransduction, by which fibroblasts convert
environmental cues from the ECM into the intracellular signals
that modulate their function is crucial to advancing our
mechanistic understanding of fibrosis and holds promise for the
development of novel interventions.

MKL-1 (megakaryoblastic leukemia-1, also known as
Myocardin Related Transcription Factor-A/MRTF-A) is a
transcriptional co-activator that is, in quiescent fibroblasts, bound to
globular actin (G-actin) and sequestered in the cytoplasm. Under
circumstances that stimulate actin polymerization, as seen with
exposure to TGF-b or rigid extracellular matrices, MKL-1 is
released from G-actin and imported into the nucleus, where it
partners with serum response factor to drive transcriptional
responses (6). These responses have been strongly linked to pro-
fibrotic fibroblast function, as MKL-1 has been shown to mediate
fibroblast differentiation, resistance to apoptosis, collagen and
fibronectin synthesis, and plasminogen activator inhibitor-1
production (6–8). In several murine models, genetic deficiency in
MKL-1 and pharmacologic inhibition of MKL-1 signaling have
diminished lung fibrosis (8–10).

Tensin1 (TNS1) is a scaffold protein that has been linked
to the formation of fibrillary fibronectin matrices and
mechanotransduction signaling through its interactions with
integrin b1 and protein kinases that localize to cellular focal
adhesions, including focal adhesion kinase (FAK). In this issue of
the Journal, Bernau and colleagues (pp. 465–476) demonstrate a
link among TGF-b1–mediated myofibroblast differentiation,

matrix production, and MKL-1–dependent transcriptional
regulation of TNS1 (11). The investigators show that TGF-b1
increases TNS1 expression in normal lung fibroblasts and that
TNS1 is robustly expressed within the fibroblastic foci of idiopathic
pulmonary fibrosis tissue. Moreover, TNS1 mRNA and protein
levels are increased in explanted fibroblasts from idiopathic
pulmonary fibrosis lungs in comparison to cells from control lungs.
Interestingly, although the TGF-b1–induced increase in TNS1
is associated with myofibroblast differentiation, the disruption
of canonical Smad-mediated TGF-b1 prevented the increased
a-SMA expression associated with myofibroblast differentiation
without affecting TNS1, demonstrating that TNS1 is regulated
by non-Smad signaling downstream of the TGF-b receptors.
Implicating MKL-1 in the regulation of TNS1, disruption of actin
polymerization prevented an increase in TNS1, whereas induction
of actin polymerization with Jasplakinolide was sufficient to
promote increases in TNS1. Loss-of-function studies using
pharmacologic and/or genetic approaches to inhibit or knock-
down MKL-1 prevented TGF-b1– and Jasplakinolide-mediated
induction of TNS1, confirming the mechanistic association
between actin polymerization, MKL-1 nuclear localization, and
TNS1 expression.

Given that TGF-b1–induced myofibroblast differentiation was
Smad-dependent, whereas TNS1 induction was Smad-independent,
it was somewhat surprising that knockdown of TNS1 prevented
myofibroblast differentiation and ECM expression in response to
TGF-b. To address this, the authors show that knockdown of TNS1
also prevented FAK phosphorylation by TGF-b1. Previous studies
have shown that FAK phosphorylation by TGF-b1 is Smad-
dependent and is critical for myofibroblast differentiation (12, 13).
Taken together, these data suggest that myofibroblast
differentiation requires the integration of both Smad-dependent
and Smad-independent signaling downstream of the TGF-b
receptor complex. Further studies to delineate the Smad-
independent mechanisms involved in TNS1 regulation, and how
these Smad-independent pathways affect fibroblast phenotypes, are
needed.

This manuscript demonstrates a mechanistic hierarchy by
which actin polymerization promotes MKL-1–dependent
transcription of TNS1, which is necessary for FAK
phosphorylation, focal and fibrillar adhesion formation, and
myofibroblast differentiation. In addition to understanding the
non-Smad–dependent signaling mechanisms, several questions
regarding the regulation of TNS1 and its role in fibroblast
phenotypes and fibrosis remain to be examined. For example, the
role of matrix biomechanics remains unclear. The experiments in
this study were done on rigid substrates suggesting that the
fibroblasts were already “skewed” toward a myofibroblast
phenotype. This begs the question of the role of TNS1 in the
regulation of fibroblast phenotypes on more compliant matrices,
and whether a “stiff” matrix is necessary for the phenotypic
responses detailed in this publication. A priori evidence supporting
this pathway in the development of lung fibrosis (before the
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establishment of the rigid substrate that characterizes lung fibrosis)
is provided by studies showing that MKL1 knockout mice are
protected from lung fibrosis (9, 10). However, in vivo studies
defining a role for TNS1 in developing and established fibrosis are
necessary.

Studies have established roles for the proteins that regulate
and interact with TNS1, such as MKL-1 and FAK, as essential
contributors in lung fibrosis (8–10, 14–16). Thus, it remains to be
determined whether TNS1 has a unique role in the regulation of
fibroblast phenotype such that this scaffolding protein might
present a specific target for antifibrotic therapy. Other
transcriptional co-activators, such as those in the Hippo pathway (17),
have also been linked to fibroblast phenotypes and fibrosis; it
remains to be determined whether TNS1 represents a convergence
point for multiple profibrotic pathways or whether its role is
limited to the TGF-b/MKL-1 pathway. There continues to be an
urgent need for the development of novel effective therapies to
treat patients with lung fibrosis. Further studies are necessary to
determine whether TNS1 is a viable target. n
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