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Abstract

Background: The plants in the Erigeron genus of the Compositae (Asteraceae) family are commonly called fleabanes,
possibly due to the belief that certain chemicals in these plants repel fleas. In the traditional Chinese medicine, Erigeron
breviscapus, which is native to China, was widely used in the treatment of cerebrovascular disease. A handful of bioactive
compounds, including scutellarin, 3,5-dicaffeoylquinic acid, and 3,4-dicaffeoylquinic acid, have been isolated from the
plant. With the purpose of finding novel medicinal compounds and understanding their biosynthetic pathways, we propose
to sequence the genome of E. breviscapus. Findings: We assembled the highly heterozygous E. breviscapus genome using a
combination of PacBio single-molecular real-time sequencing and next-generation sequencing methods on the Illumina
HiSeq platform. The final draft genome is approximately 1.2 Gb, with contig and scaffold N50 sizes of 18.8 kb and 31.5 kb,
respectively. Further analyses predicted 37 504 protein-coding genes in the E. breviscapus genome and 8172 shared gene
families among Compositae species. Conclusions: The E. breviscapus genome provides a valuable resource for the
investigation of novel bioactive compounds in this Chinese herb.
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Background

Erigeron breviscapus (also known as dengzhanhua in Chinese) is a
perennial flower in the Erigeron genus of the Compositae (Aster-
aceae) family. Its flower head is comprised of yellow disk flo-
rets and multiple surrounding blue to purple ray florets (Fig. 1).
This species is endemic to Southwestern China, and it grows in
mid-altitudemountains, subalpine open slopes, grasslands, and
forest margins from 1000 m to 3500 m [1, 2]. In traditional Chi-
nese medicine, E. breviscapus is believed to improve blood circu-
lation and ameliorate platelet coagulation [3, 4]. Since the 1980s,
herbal extracts and bioactive compounds from E. breviscapus
have been widely used for the treatment of cerebral embolism
and its complications, cerebral thrombosis, coronary heart dis-
ease, angina pectoris, acute renal failure, and nephritic syn-
drome [5]. At present, more than 1000 tons of dry E. breviscapus
are collected and used in the pharmaceutical industry each year,
greatly exhausting thewild resources of this species [6, 7]. In this
study, we report the draft genome assembly of E. breviscapus. Be-
cause of the high heterozygosity of the E. breviscapus genome,we
adopted both Illumina sequencing and PacBio single-molecular
real-time sequencing in the assembly procedure.

Data Description
Whole-genome shotgun sequencing of E. breviscapus
on Illumina platform

E. breviscapus seedlings were provided by Longjin Pharmaceu-
tical Co., Ltd., and maintained in a greenhouse at the Yunnan
Agricultural University. Genomic DNA was extracted from the
leaf tissues of a single E. breviscapus plant using the GenEluteTM

Plant Genomic DNA Miniprep Kit (Sigma-Aldrich, USA). Paired-
end libraries with insert sizes ranging from 150 bp to 800 bpwere
constructed using NEBNext Ultra II DNA Library Prep Kit for Illu-
mina (NEB, USA), and mate pair libraries with insert sizes from
2 kb to 20 kb were constructed using Illumina Nextera Mate Pair

Library Preparation Kit (Illumina, USA). All constructed libraries
were sequenced on a HiSeq 2500 platform (Illumina, USA) using
either a PE-100 or PE-90 module (Additional File 1: Table S1). In
total, about ∼413.4 Gb of raw data were generated on the Illu-
mina platform. All reads were preprocessed for quality control
and filtered using our in-house Perl script. The rawdatawere ini-
tially filtered by removing reads with more than 10% N or more
than 40 bp low-quality bases. Next, redundant reads resulting
in duplicate base calls were filtered at a threshold of Euclidean
distance ≤3 andmismatch rate of ≤0.1. Only one copy of any du-
plicated paired-end reads was retained. Finally, both read 1 and
read 2 were removed if they contained an adapter ≥10 bp with
a mismatch rate ≤0.1. This process yielded ∼275.1 Gb of clean
data for the de novo assembly of the E. breviscapus genome (Ad-
ditional File 1: Table S1).

Single-molecule real-time sequencing of long reads on
PacBio platform

Single-molecule real-time (SMRT) sequencing of long reads on
a PacBio RS II platform (Pacific Biosciences, USA) was used to
assist the subsequent de novo genome assembly process [8]. In
brief, 40 μg of sheared DNA was used to construct 26 SMRT Cell
libraries with an insert size of 17 kb. These libraries were se-
quenced in 105 SMRT DNA sequencing cells using the P6 poly-
merase/C4 chemistry combination and a data collection time of
240 minutes per cell. The sequencing produced about 62.4 Gb of
clean data, consisting of 6 802 553 reads with an average read
length of 9175 bp (Additional File 1: Table S1).

Estimation of the E. breviscapus genome size

The genome size of E. breviscapus was estimated by flow cytom-
etry using Oryza sativaNipponbare as internal standard and pro-
pidium iodide as the stain. The result showed that the genome

Figure 1: Example of the E. breviscapus (image from Shengchao Yang).
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size of E. breviscapus was approximately 1.52 Gb (Additional File
1: Figure S1).

Estimation of the E. breviscapus genome heterozygosity
using k-mer analysis

Quality-filtered reads from the Illumina platformwere subjected
to 23-mer frequency distribution analysis with Jellyfish (v. 2.2.5)
[9]. Analysis parameterswere set at -k 23, and the final resultwas
plotted as a frequency graph (Additional File 1: Figure S2). Two
distinctivemodeswere observed from the distribution curve: the
lower peak at a depth of 57 reflected the high heterozygosity of
the E. breviscapus genome.

Hybrid de novo genome assembly of E. breviscapus

A hybrid genome assembly pipeline was used to overcome chal-
lenges posed by the heterozygous E. breviscapus genome (Fig. 2).
HiSeq reads were first assembled using MaSuRCA (v. 3.1.3) [10]
with default parameters, and also using Platanus (v. 1.2.1) [11]
with parameters “-m 500 -k 43 -s 5 -d 0.3 -u 0.15 -c 3,” result-
ing in two contig assemblies. The Platanus-generated contigs,
together with PacBio reads, were used to generate a third contig
assembly by DBG2OLC with default parameters [12]. The three
different contig assemblies were merged together by Minimus2
Amos (v. 3.1.0) using default parameters [13]. To eliminate pos-
sible errors of the merged contig assembly: (i) Bowtie2 (v. 2.1.0)
[14] was used to align Hiseq reads back to this contig assem-

bly. The resultant SAM file was changed into a BAM file by SAM-
tools (v. 0.1.19-44428cd) [15] with the command “samtools view
-bS.” (ii) Redundant sequences resulting from polymerase chain
reaction amplification were removed with PICARD (v. 1.134;
http://picard.sourceforge.net) using the command “MarkDupli-
cates.” (iii) The single nucleotide polymorphisms and indels
were called from short-read alignments and used to correct the
contigs by GATK (v. 3.4-0-g7e26428) [16, 17] with the command
“HaplotypeCaller” and “FastaAlternateReferenceMaker,” respec-
tively. The final polished contig number was 464 088 with N50 of
18.8 kb. Polished contigs were then used to build scaffolds using
OPERA (v. 2.0.1) [18] with a k-mer of 39. This process yielded a
final draft E. breviscapus genome of 1.2 Gb, with a contig N50 size
of 18.8 kb and a scaffold N50 size of 31.5 kb (Additional File 1:
Table S2).

Evaluation of the completeness of the E. breviscapus
genome assembly

We evaluated the completeness of the final assembly using
the Core Eukaryotic Genes Mapping Approach (CEGMA; v. 2.5)
[19] with a set of 248 ultra-conserved core eukaryotic genes
and Benchmarking Universal Single-Copy Orthologs (BUSCO; v.
2.0) [20] with the Embryophyta gene set. CEGMA assessment
showed that our assembly captured 240 (96.9%) of the 248 ultra-
conserved core eukaryotic genes, ofwhich 217 (87.5%)were com-
plete (Table 1). BUSCO analysis showed that 80.6% and 6.3% of

Figure 2: Assembly pipeline for the E. breviscapus genome.
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Table 1: Statistics of the completeness of the hybrid de novo assembly genome of E. breviscapus by CEGMA.

Group Protein Numa Completeness (%)b Total Numc Average Numd Ortholog (%)e

Complete 217 87.50 633 2.92 82.95
Group 1 58 87.88 158 2.72 77.59
Group 2 49 87.50 126 2.57 77.55
Group 3 53 86.89 171 3.23 96.23
Group 4 57 87.69 178 3.12 80.70
Partial 240 96.77 856 3.57 89.58
Group 1 63 95.45 206 3.27 85.71
Group 2 55 98.21 185 3.36 83.64
Group 3 59 96.72 232 3.93 98.31
Group 4 63 96.92 233 3.70 90.48

aProtein Num.: Number of 248 ultra-conserved core eukaryotic genes (CEGs) present in the E. breviscapus genome.
bCompleteness (%): Percentage of 248 ultra-conserved CEGs present in the E. breviscapus genome.
cTotal Num.: Total number of CEGs including putative orthologs present in the E. breviscapus genome.
dAverage Num: Average number of orthologs per CEG.
eOrtholog (%): Percentage of detected CEGs that have more than one ortholog.

Table 2: Statistics of the completeness of the hybrid de novo assem-
bly genome of E. breviscapus by BUSCO.

BUSCO benchmark Number Percentage (%)

Total BUSCO groups searched 1440 –
Complete BUSCOs 1161 80.63
Complete and single-copy BUSCOs 635 44.10
Complete and duplicated BUSCOs 526 36.53
Fragmented BUSCOs 90 6.25
Missing BUSCOs 189 13.13

the 1440 expected embryophytic genes were identified as com-
plete and fragmented, respectively (Table 2).

Transcriptome sequencing

Total RNA was extracted from the leaf, root, stem, and flower
tissues of a cultivated E. breviscapus individual using Qiagen
RNeasy Plant Mini Kits. Additional RNA samples of the leaf tis-
sues were acquired from sixmore cultivated individuals and five
wild individuals (Additional File 1: Table S3). All cultivated sam-
ples were acquired from the greenhouse, and all wild samples
were collected from Dali, Yunnan Province. Total RNA-seq li-
braries were prepared using TruSeq RNA Library Preparation Kit,
v. 2 (Illumina, CA, USA), according to themanufacturer’s instruc-
tions and subsequently sequenced on the HiSeq 2500 platform.
In total, about 1.1 billion RNA-seq reads were obtained, repre-
senting ∼117.6 Gb of raw data. We aligned all the RNA-seq reads
back to the E. breviscapus genome assembly using TopHat (v.
2.0.10) [21] with default parameters (Additional File 1: Table S3).
The percentage of aligned reads ranged from 60.6% for the root
to 80.9% for the leaf.We also calculated that 177 886 122 RNA-seq
reads were mapped outside of the annotated regions using HT-
Seq (v. 0.6.1p1) [22] with the command “htseq-count –a 0.” The
FPKM value was calculated for each protein-coding gene by Cuf-
flinks (v. 2.1.1) using default parameters. FPKM >0.05 was used
as the cutoff value to identify expressed genes.

Repeat annotation of the E. breviscapus genome
assembly

The E. breviscapus genome was searched for tandem repeats
using the Tandem Repeat Finder (v. 4.07b) [23]. RepeatMasker

(v. 3.3.0) and RepeatProteinMasker [24] were used against Rep-
base library (v. 18.07) [25] to identify known transposable ele-
ment repeats. De novo evolved transposable element annota-
tion was performed using RepeatModeler (v. 1.0.8) [24] and LTR
FINDER (v. 1.0.5) [26]. The combined results show that the total
length of repeated sequences is about 664.2 Mb, accounting for
∼54.58% of the E. breviscapus genome assembly (Additional File
1: Tables S4 and S5).

Gene prediction

We used multiple methods to annotate protein-coding genes
in the E. breviscapus genome, including homology-based pre-
dictions, de novo predictions, and transcriptome-based pre-
dictions. For homology-based predictions, protein sequences
of Arabidopsis thaliana, Fragaria vesca, Malus domestica, Oryza
sativa, Prunus persica, and Vitis viniferawere obtained from Phyto-
zome, v. 9.1 (http://www.phytozome.net/), Pyrus communis from
Genome Database for Rosaceae (https://www.rosaceae.org), and
Prunus mume from the National Center for Biotechnology In-
formation (ftp://ftp.ncbi.nih.gov/genomes/Prunus mume). First,
query sequences were subjected to TBLASTN analysis with
a cutoff E-value of 1e−5. BLAST hits corresponding to refer-
ence proteins were concatenated by Solar (v. 0.9.6; The Bei-
jing Genomics Institute [BGI] development) [27] after low-quality
records were removed. The genomic sequence of each refer-
ence protein was extended upstream and downstream by 2000
bp to represent a protein-coding region. GeneWise (v. 2.2.0)
[28] was used to predict the gene structure contained in each
protein region. For de novo predictions, AUGUSTUS (v. 2.5.5)
[29], GENSCAN (v. 1.0) [30], SNAP (released 29 November 2013)
[31], and glimmerHMM (v. 3.0.2) [32] analyses were performed
on the repeat-masked genome, with parameters trained from
A. thaliana. For transcriptome-based predictions, RNA-seq data
from the leaves of six cultivated individuals were used for gene
annotation, processed by Tophat and Cufflinks. The homology,
de novo–, and transcriptomic-based predicted gene sets were
merged to form a comprehensive and non-redundant reference
gene set using Evidence Modeler (released 25 June 2012) [33]. We
filtered gene models using our in-house Perl script in by the fol-
lowing criteria: (i) genes with incomplete open reading frames,
(ii) small genes with a protein-coding region <150 bp, (iii) stop
codons present in the middle of the gene, (iv) genes contain-
ing only one exon, and not supported by transcriptome-based

http://www.phytozome.net/
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evidence. Our analysis indicates that the E. breviscapus genome
contains 37 504 protein-coding genes with an average coding
DNA sequence length of 1034 bp (Additional File 1: Table S6).

Non-coding RNA annotation

tRNAscan-SE (v. 1.3.1) [34] with default parameters for eukary-
otes was used for tRNA annotation. Homology-based rRNA an-
notation was performed by mapping plant rRNAs to the E. bre-
viscapus genome using BLASTN with parameters of “E-value =
1e−5.” miRNA and snRNA genes were predicted by INFERNAL (v.
1.1) [35] using the Rfam database (release 11.0) [36]. The final re-
sults include 504 miRNAs, 751 tRNAs, 159 rRNAs, and 385 snR-
NAs (Additional File 1: Table S7).

Gene family clustering analysis

To identify and estimate the number of potential ortholo-
gous gene families between E. breviscapus, Helianthus annuus,
Cynara cardunculus, Solanum tuberosum, Solanum lycopersicum,
V. vinifera, and O. sativa, we applied the OrthoMCL (v. 2.0.9)
pipeline [37] using standard settings (BLASTP E-value <

1e−5) to compute the all-against-all similarities. Gene se-
quences from S. tuberosum, S. lycopersicum, V. vinifera, and
O. sativa were downloaded from Phytozome, v. 11.0. Gene
sequences from H. annuus and C. cardunculus were down-
loaded from the Sunflower Genome Database (http://www.
sunflowergenome.org) and Globe artichoke GBrowse
(http://gviewer.gc.ucdavis.edu/cgi-bin/gbrowse/Artichoke v1 1),
respectively. Among the total 13 076 E. breviscapus gene families,
2336 (17.9%) appear to be lineage specific. There are 8172 (41.8%)
gene families shared among Compositae species including
E. breviscapus, H. annuus, and C. cardunculus. In addition, E.
breviscapus shared 8421 (64.4%) gene families with S. tuberosum
(Fig. 3).

Phylogenetic tree construction and divergence time
estimation

All 389 single-copy orthologous genes identified in the gene
family clustering analysis from the S. lycopersicum, V. vinifera, O.
sativa, E. breviscapus, H. annuus, C. cardunculus, and S. tuberosum
were used to construct a phylogenetic tree. Orthologous genes
from the seven specieswere aligned usingMUSCLE (v3.8.31)with
default settings [38] for each gene. Four-fold degenerate sites
were extracted from each gene and concatenated into a “su-
per gene” for each species. PhyML (v. 3.0) [39] was used to re-
construct phylogenetic trees between species. We implemented
a Monte Carlo Markov chain (MCMC) algorithm for the estima-
tion of divergence times using the program MCMCtree from the
PAML package [40]. The result showed that E. breviscapus shared
a closer phylogenetic relationship with H. annuus than C. cardun-
culus in the Compositae family (Additional File 1: Figure S3). The
estimated divergence time was 29.7 million years ago between
E. breviscapus and H. annuus (Additional File 1: Figure S4).

Expansion and contraction of gene families

CAFE (v. 2.1) [41] is a tool for analyzing the evolution of gene fam-
ily size based on the stochastic birth and death model. With the
calculated phylogeny and the divergence time, this softwarewas
applied to identify gene families that had undergone expansion
and/or contraction in S. lycopersicum, V. vinifera, O. sativa, E. bre-
viscapus, H. annuus, C. cardunculus, and S. tuberosum with the pa-
rameters “P= 0.05, number of threads= 10, number of random=
1000, and search for lambda.” We identified 5730 expanded gene
families in the E. breviscapus genome, which is more than that
in two other species, C. cardunculus (1336) and H. annuus (3897)
in Compositae (Additional File 1: Figure S5).

In summary, we reported the genome sequencing, assem-
bly, annotation, and evolution analysis of the E. breviscapus. This
genome assembly will provide a valuable resource for studying
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Figure 3: Venn diagram showing unique and shared gene families among four sequenced dicotyledonous species.

http://www.sunflowergenome.org
http://www.sunflowergenome.org
http://gviewer.gc.ucdavis.edu/cgi-bin/gbrowse/Artichoke_v1protect unhbox voidb@x kern .06emvbox {hrule width.3em}1


6 Yang et al.

the biosynthetic pathways of the medicinal components in E.
breviscapus. This information will also help find novel bioactive
compounds and improve the molecular breeding of this medic-
inal herb.
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