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Muscular dystrophies, myopathies, and traumatic muscle injury and loss encompass a large group of conditions that currently have
no cure. Myoblast transplantations have been investigated as potential cures for these conditions for decades. However, current
techniques lack the ability to generate cell numbers required to produce any therapeutic benefit. In utero stem cell
transplantation into embryos has been studied for many years mainly in the context of hematopoietic cells and has shown to
have experimental advantages and therapeutic applications. Moreover, patient-derived cells can be used for experimental
transplantation into nonhuman animal embryos via in utero injection as the immune response is absent at such early stages of
development. We therefore propose in utero transplantation as a potential method to generate patient-derived humanized
skeletal muscle as well as muscle stem cells in animals for therapeutic purposes as well as patient-specific drug screening.

1. Introduction

Skeletal muscle is the most abundant tissue in the human
body, comprising 40-50% of body mass and playing vital
roles in locomotion, heat production, and overall metabo-
lism. Loss of muscle is a serious consequence of many chronic
diseases including muscular diseases such as Duchenne
muscular dystrophy (DMD) and aging-related sarcopenia
because it leads to muscle weakness, loss of independence,
and increased risk of death. In addition, traumatic muscle
injury and loss caused by accident, surgery, and wartime
injuries needs prolonged recovery.

Muscular dystrophies are a large and diverse group of
genetic disorders that are associated with progressive loss of
muscle mass and strength. The most common forms, DMD
and Becker muscular dystrophy (BMD), are a result of muta-
tions of the DMD gene on the X chromosome that code for
the large sarcolemmal protein dystrophin. The rate of occur-
rence of DMD is reported to be in between 1:3802 and
1:6291 male births [1] and that of BMD is about 1:18,450
male births [2]. DMD is a more severe form and is caused

by a complete absence of the dystrophin protein, whereas
BMD is a milder form associated with lower levels of expres-
sion of dystrophin or a truncated dystrophin protein. DMD
patients experience a loss of ambulation and are normally
wheelchair dependent by 12 years of age followed by cardiac
and respiratory failure in the second decade of life that are
the main causes of death [3]. The dystrophin protein is one
of the largest proteins produced in the human body contain-
ing several distinct domains. The N-terminus sequences are
highly homologous to actin-binding domain responsible for
interaction with the cytoskeleton. The central region consists
of 24 rod-shaped spectrin-like repeats made up of triple heli-
ces. Each repeat is separated by nonhelical regions called
hinges. The C-terminus region shows homology with utro-
phin and is responsible for binding and interacting with mul-
tiprotein dystrophin-associated protein (DAP) complex and
the extracellular matrix (ECM) [4]. The large size and multi-
ple domains of the dystrophin protein signify that it is capa-
ble of binding to multiple proteins and may perform a variety
of functions. A common belief is that it acts as a spring that
disperses the forces experienced by the sarcolemma during
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muscle contractions and prevents membrane damage [5, 6].
The lack of dystrophin in DMD prevents this force disper-
sion causing excessive damage to the sarcolemma which is
responsible for the progressive degeneration of the muscle
fibers with age. While the skeletal muscle possesses a tremen-
dous capacity for regeneration, this potential ultimately
declines with DMD. No treatments are currently available
for DMD, terminal muscle diseases.

Most organs in the body contain a population of tissue-
resident stem cells that are able to proliferate and differenti-
ate to repair the organs in the case of damage while undergo-
ing self-renewal to maintain a constant pool of stem cells. In
the skeletal muscle, this cell population is known as satellite
cells due to their anatomic location between the myofiber
and the basal lamina [7]. They proliferate in response to
damage to give rise to muscle progenitor cells or myoblasts
that then fuse to existing muscle fibers to repair the damage
or give rise to new fibers [8], while myoblasts also possess
adipogenic and osteogenic differentiation potential in vitro
[9]. Apart from satellite cells, many atypical cell types such
as side population cells, neural stem cells, hematopoietic stem
cells, mesoangioblasts, pericytes, CD133+ circulating cells,
and mesenchymal stem cells (MSCs) have been shown to
possess myogenic differentiation potential [10-15]. One of
the most promising uses for stem cells is the possibility to
treat muscle diseases including those that have their origins
in genetic anomalies and traumatic muscle injury and loss
caused by accident, surgery, and wartime injuries.

2. Myoblast Transplantation for DMD Therapy

Due to the highly proliferative capacity of satellite cells, their
transplantation has been investigated for the treatment of
muscular dystrophies. In some of the earliest myoblast trans-
plantation studies performed by Partridge in the late 1980s,
they transplanted mononuclear cells isolated by disaggrega-
tion of normal neonatal muscle into nude, phosphorylase
kinase- (PhK-) deficient mice. Upon harvesting the muscles
and checking for PhK expression, they found that the trans-
planted cells contributed to the formation of new myofibers
as well as fused to existing myofibers enabling them to
express PhK. Different isoenzymes of glucose-6-phosphate
isomerase (GPI) in donor versus recipient muscle were used
to determine the animal of origin [16]. Similar experiments
performed in the mdx mouse model for DMD showed
dystrophin-positive fibers in injected muscle. Interestingly,
they observed higher levels of engraftment compared to the
previous study, indicating that actively regenerating muscle
may be important for better engraftment of transplanted cells
[17]. Experiments performed by Morgan et al. showed long-
term engraftment and regenerative capacity of transplanted
myoblasts. Their experiments showed better engraftment in
irradiated muscle when compared to nonirradiated contra-
lateral controls [18]. Furthermore, myoblast transplantation
performed in nonhuman primates using an immunosup-
pressive agent (tacrolimus) showed significant levels of
survival and engraftment of transplanted cells when com-
pared to control [19]. However, the prolonged use of
tacrolimus is toxic, and therefore, to reduce the effective
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dosage, Skuk et al. combined it with mycophenolate mofetil
(MME), another immunosuppressive, and observed fewer
levels of serum antibodies and CD8+ T cells at the sites of
injection in their nonhuman primate experiments [20].

The above experiments taken together provide compel-
ling evidence for the potential of myoblast transplantation
as a therapeutic technique for the treatment of muscular
dystrophies in humans. These inspired multiple clinical
trials in the early 90s that did not prove to be very suc-
cessful due to insufficient amounts of research done in
preclinical trials to determine the best protocol for myo-
blast transplantation [21]. Among the many reasons for
the failure of the trials were the large amounts of cell
death observed in the transplanted myoblasts as well as
immune reactions against the donor myoblasts and fibers
that were previously thought to not express the MHC class
II. Furthermore, the limited migration of the transplanted
myoblasts from the sites of transplantation added to the
inefliciency of the procedure [22].

3. iPSC-Derived Myogenic Cells for Muscular
Dystrophy Therapy

Recently, pluripotent stem cells have been investigated as
sources of muscle progenitor cells for therapy due to their
ability to differentiate into all three germ layers as well as
their ease of expansion. The discovery of induced pluripotent
stem cells (iPSCs), which enable the conversion of somatic
cells to pluripotent cells by the introduction of a specific tran-
scription factors, makes it possible to generate patient-
specific stem cells, thus bypassing complications associated
with immune rejection in case of transplants. Additionally,
the iPSCs can be genetically corrected before transplantation,
thus providing long-term cures for conditions like muscular
dystrophies [15]. To overcome the problem of immune reac-
tions and the large quantities of cells required to observe
therapeutic benefits in large muscles, the use of autologous
patient-derived iPSCs that can be proliferated indefinitely
can be used for transplantation (Figure 1(a)). There are mul-
tiple methods including utilizing forced expression of myo-
genic transcription factors such as Pax3, Pax7, and MyoD
and step-by-step induction methods which recapitulate
embryonic myogenesis [23]. These protocols have been
investigated to derive a variety of cell types having myogenic
potential that has been reviewed by Darabi and Perlingeiro
[24]. They identified some of the major hurdles to the use
of iPSCs in therapeutic applications, such as the heavy
dependence on gene overexpression to derive the myogenic
precursors and the safety concerns associated with the use
of these cells. However, efficient myogenic differentiation
and the scale-up of myogenic differentiation remain elusive
and must be developed further in order to generate effective
cellular therapies. In addition, in vitro-induced myogenic
cells from pluripotent stem cells only show embryonic mus-
cle phenotypes but not mature muscle phenotype [23], limit-
ing the use of iPSC-derived myogenic cells for clinical
situation. It is therefore essential to develop alternative
approaches to induce and obtain large numbers of satellite
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F1GURE 1: Current and new approaches for iPSC-derived stem cell transplantation for muscle diseases. (a) Patient-derived skin fibroblasts will
be reprogramed into iPSCs by reprogramming factors. Patient-derived iPSCs will be used for DNA correction of dystrophin mutation by
DNA-editing technologies. These corrected iPSCs will be induced to myogenic differentiation to generate myogenic progenitor cells which
will be used for autologous cell therapy for patients suffering from muscle diseases and traumatic muscle injury and loss. (b) Patient-
derived skin fibroblasts will be reprogramed into iPSCs by reprogramming factors. Patient-derived iPSCs will be used for DNA correction
of dystrophin mutation by DNA-editing technologies. These corrected iPSCs will be used for myogenic progenitor cell induction followed
by in utero injection into animal embryos carrying a defect of myogenic master genes such as MyoD, Myf5, and MRF4, allowing chimeric
animal to develop human skeletal muscle. Chimeric animal-derived patient-specific myoblasts or satellite cells will be used for autologous

cell therapy for muscle diseases and traumatic muscle injury and loss.

cells if the potential of myoblast transplantation as a thera-
peutic method is to be realized.

4. In Utero Stem Cell Transplantation (Table 1)
In utero transplantation (IUT) is based on the idea that the
introduction of donor cells into a fetus at an early stage of
development can result in the development of chimerism
without the risk of rejection of the donor cells due to the
undeveloped fetal immune system. The first evidence for this
came in 1945 with Owen’s observations on the blood types of
bovine twins [25]. In his observations, Owen noticed that

when a twin sire mated, it failed to transmit some of the anti-
gens present on its own blood cells in any of his twenty prog-
enies. Examination of the antigens present in his twin
pointed to the possibility that these antigens could be derived
from the twin. In a second observation of a case of superfe-
cundation, he noticed that the twins possessed two antigens
each that could not have been inherited from their respective
sires or the dam but could have been obtained from the
cosire. These observations led him to conclude that the cells
containing these antigens were derived from a subset of cells
that were interchanged during early embryonic development
and were able to give rise to these erythrocytes throughout
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their lives. We now know these cells to be hematopoietic stem
cells (HSCs).

Following these observations, a series of experiments
were performed by Billingham and colleagues in which they
grafted a variety of skin combinations in between monozy-
gotic and dizygotic twins with the aim to use this as a method
to distinguish between the two types of twins [26, 27]. Their
experiments were unable to find a significant difference in
response to homografts between dizygotic and monozygotic
twins, and they also observed varying levels of tolerance to
the homografts in the dizygotic twins. These results further
bolstered evidence for acquired for tolerance towards the
homograft during early embryonic development. The final
study that showed that exposure to antigens early in fetal
development could result in the acquisition of tolerance
towards those antigens was performed by Billingham et al.
Here, they injected tissue homogenates from the spleen, tes-
tes, and kidneys of adult mice from A-line mice into 6
embryos of CBA mice. Five embryos survived and were
grafted with the skin of A-line mice at eight weeks of age.
Two of the five mice showed complete tolerance of the graft,
whereas one mouse showed prolonged tolerance followed by
rejection after 90 days. The two mice that showed complete
tolerance were then injected with lymph nodes of CBA mice
that were previously immunized against A-strain mice which
resulted in rapid rejection of the previously tolerated skin
grafts showing that the tolerance was due to tolerance of
the graft by the mice and not due to antigenic modifications
by the graft [28].

With this evidence in mind, a number of experiments
were carried out to demonstrate the feasibility of IUT for
therapeutic purposes. Hematopoietic stem cells (HSCs)
being easy to isolate and the most well-studied stem cells
were used most commonly in these studies. Moreover,
tests for engraftment of HSC could be easily performed
through blood draws and biopsies of the spleen, liver,
and thymus to check for progeny of the transplanted cells.
The first attempt to show the feasibility of IUT of HSCs
(IUT-HSCs) was conducted by Fleischman and Mintz
[29] who utilized W/W mice that are lethally anemic as
well as WY/W" mice that are viably anemic. They injected
C57BL/6 fetal liver HSCs into the W/W mice and DBA/2
fetal liver HSC into the W"/W" mice at gestational day 11.
Blood tested at different time points for the type of hemo-
globin in the RBCs that showed most of the RBCs were of
donor origin indicating successful engraftment of the fetal
liver HSCs. Engraftment of in utero-transplanted cells into
normal mice was also shown in another study using PCR
to detect donor cells, which proved to be a more sensitive
assay [30]. They were also able to transplant allogeneic
skin grafts onto the chimeric mice and observe varying
degrees of tolerance towards the grafts. Further studies
have shown that the mode of injection [31] is also impor-
tant for improving engraftment in IUT-HSCs. IUT-HSCs
have also been shown to be successful in dogs [32], sheep
[33], and monkeys [34, 35]. Following these studies, [UT-
HSCs have been used in a number of experimental treat-
ments in humans to treat diseases like SCID [36-39] and
bare lymphocyte syndrome [40].

IUT has also been shown to be successful for other cell
types. Human MSCs have also been shown to successfully
engraft in multiple tissues in sheep following in utero intra-
peritoneal transplantation and could be detected over a
period of 13 months [41]. Similar results have been shown
for fetal liver-derived MSCs in sheep and human placenta-
derived MSCs in rats [42, 43]. Due to the multipotentiality
of MSCs, they can possibly be used to treat a variety of con-
ditions. In rats, MSCs injected into the spinal cord of fetuses,
which were induced to have spina bifida by the administra-
tion of retinoic acid, engrafted and expressed markers of
motor neurons, neurons, sensory neurons, and neural pre-
cursor cells while inducing the expression of neurotrophic
factors from the surrounding tissue [44, 45]. Transplanted
MSCs also showed improved bone mineralization in mouse
models of osteogenesis imperfecta and could be detected in
a human patient suffering from the same disease after trans-
plantation, indicating their potential as a possible therapeutic
avenue for osteogenesis imperfecta [46, 47]. Engraftment
post IUT has also been shown for amniotic fluid-derived cells
[48, 49] and hepatocytes [50, 51].

A recent study conducted by Cohen et al. [52] further
added to the growing body of studies proving the feasibility
of IUT of human stem cells. In their study, they utilized pri-
mary mouse neural crest cells (NCCs) obtained from E8.5
GFP expressing embryos from C57BL/6 back%round and
injected these cells into a nonpigmented W*/W" ¢-Kit
mutant mouse lacking endogenous melanoblasts. They then
examined the coats of postnatal mice for pigmentation which
would arise only from the donor cells, which was confirmed
by checking for GFP. They were also able to obtain similar
results from mouse ESC-derived NCCs and rat iPSC-
derived NCCs. To prove that human cells could obtain sim-
ilar levels of chimerism, they used hESC-derived NCCs and
hiPSC-derived cells from an African American donor that
were transfected with GFP. They examined the mice between
E10.5 and E13.5 as well as postnatally for human chimerism
and using immunohistochemistry, microscopy, and qPCR
for analyzing human mitochondrial DNA. They obtained
around 35% human chimerism at lower efficiencies than
the mouse-mouse chimeras. However, this study highlights
the potential for generating human tissue in animal models
that can then be used as a model to study disease develop-
ment, used to determine a cure for the condition, or used as
a source of cells/tissue for transplantation.

5. Potential for Use of IUT in Treatment of
Muscle Diseases

Prenatal diagnosis allows for the detection of genetic dis-
eases early in gestation. While parental genetic screening
and testing to identify carriers of mutations that can cause
myopathies followed by in vitro fertilization (IVF) and
preimplantation genetic screening could prevent many
cases of BMD or DMD from occurring, these will only
lead to a reduction and not an eradication of the disease
since a third of DMD cases occur due to de novo muta-
tions and cannot be preemptively screened for [53]. To
combat this prenatal screening of fetuses could provide



an avenue to identify fetuses that carry mutations that can
cause BMD or DMD. Traditionally, this is done through
chorionic villus sampling (CVS) and amniotic fluid sam-
pling which are invasive procedures and pose a 0.5% to
1% risk of embryonic death [54]. Moreover, these procedures
often involve ex vivo culturing of the cells isolated to get a
sufficient amount of DNA to be tested which can introduce
variabilities and culture-associated abnormalities. Recent
advances in these technologies however have made it easier
to detect these diseases with lower risks of mortality. For
example, the discovery of cell-free fetal DNA (cfIDNA) pres-
ent in maternal plasma enabled new noninvasive techniques
of detection to be researched. Using this cffDNA and cou-
pling it with relative haplotype dosage analysis (RHDA),
Parks et al. have been able to accurately predict the occur-
rence of DMD and BMD [54]. In spite of the limitation of
using cffDNA in the case of twins, or if the mother has
been the recipient of transplants, the technique is a step
forward in enabling earlier diagnoses of congenital diseases
which can then be coupled with in utero interventions to
cure the condition.

Naturally, the logical step following early detection of a
disease-causing mutation is the early remediation of the
mutation. To this end, many groups have investigated the
potential of in utero gene transfer or in utero gene correction
as a potential method to treat monogenic myopathies. VSV-
G-, Mokola-, and Ebola-pseudotyped lentiviral vectors, ade-
noviral vectors, and adeno-associated viral vectors have been
shown to be highly efficient in targeting cardiac muscle and
skeletal muscle including satellite cells following intramuscu-
lar or intraperitoneal injections in utero [55-57]. Utilizing an
equine infectious anemia virus (EIAV) of the VSV-G pseudo-
type, the B-galactosidase (lacZ) gene was successfully deliv-
ered to most of the respiratory muscles and limb skeletal
muscle via combined intrathoracic, intraperitoneal, and
intramuscular injections, and notably, no immune responses
were detected towards the viral proteins for up to 5 months of
age [58]. To prevent the chances of deleterious mutations due
to nonspecific integration of the transgene into the genome,
nonintegrating viral vectors may be a better option. The
delivery of the HC-Ad adenovirus that has a large insert
capacity into the muscles of E16 mouse limbs showed stable
expression of lacZ up to 5 months of age and was also able
to successfully deliver dystrophin cDNA and restore dystro-
glycan complex expression in the limbs of mdx mice; how-
ever, functional recovery was meagre [59, 60]. Similar
results were observed utilizing AAVS8 vectors carrying the
minidystrophin gene [61, 62]. For a large animal model, a
protocol for in utero ultrasound-guided adenoviral vector
delivery to the sheep fetal muscle has been published for skel-
etal muscle repair. Finally, in utero delivery of oligodeoxynu-
cleotides into mdx mice has been examined for dystrophin
gene correction [63].

Following the success of ITUT-HSCs, many groups have
tried to replicate similar successes for myogenic tissue
repairs. Multiple cell types have been utilized for these stud-
ies. Liechty et al. were able to show successful engraftment of
normal human MSCs following in utero intraperitoneal
transplantation into fetal sheep. They observed human cells
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in multiple organs including skeletal muscle and cardiac tis-
sue [41, 64, 65]. Mackenzie et al. also transplanted bone mar-
row (BM) cells and fetal liver cells isolated from Rosa26
donor mice (transgenic for lacZ) into mdx mouse embryos
(E14) and characterized their chimerism and engraftment
at 4 weeks after birth. After determining hematopoietic chi-
merism, they discovered the presence of donor derived myo-
genic cells in the diaphragm, cardiac, and skeletal muscles of
the chimeric mice but were unable to show dystrophin
expression due to the low levels of engraftment [66]. Utilizing
a more primitive group of cell type isolated from the somites
of E11.5 mice and a less invasive procedure of injection into
the uterine continuation of medial circumflex femoral veins
of mdx mice, Torrente et al. were able to show the restoration
of dystrophin expression in various skeletal muscles [67].
Surprisingly, the transplanted cells were able to cross the pla-
centa and migrate to the sites of myogenesis. More recently,
human fetal MSCs have been shown to successfully differen-
tiate into cardiac and skeletal muscle following IUT into mdx
mice [68]. In this study, different routes of cell transplanta-
tion (intramuscular, intraperitoneal, and intravascular) were
compared, and the authors identified that intraperitoneal
injection allows for the most widespread distribution of the
cells while intravascular injection led to complete mortality
of the embryos. Intramuscular injection resulted in more
localized engraftment and reduced differentiation of the cells.
Although this method was not tested in the mdx mice, the
limitation might be overcome by matching the transplanted
cells to the developmental stage of the embryos.

Although TUT may not be an ideal method in the case of
muscular dystrophies and myopathies due to the complexity
of myogenesis and the enormity of the tissue, it could be used
to generate an unlimited source of myoblasts for transplanta-
tion into patients, addressing one of the main limitations to
myoblast transplantation previously discussed in this paper.
The generation of humanized organs in a host animal is a
potential approach for regenerative medicine to repair mus-
cle in patients suffering from myopathic diseases. For the cre-
ation of humanized organs in animals, it is essential to
selectively knock out genes in the blastocysts that are critical
for organ development [69]. MRFs, Pax3, or Lbx] mutant
mice provide an ideal model since mice carrying the gene
mutation(s) display a complete absence of muscle as a whole
or at the level of the limb, respectively [70-72], supplying the
empty niche for myogenesis. However, since injection of
human stem cells into pregastrulation embryos has an ethical
issue [73], IUT of stem cells into genetically modified mouse
embryos is a potential approach for generating humanized
organs. The clinical significance of this approach is the pro-
duction of humanized muscle using specific gene mutant
mouse embryos via IUT of iPSCs, which are developmentally
vacant of the limb muscle. These humanized organs created
in mice will serve as an animal model to study human muscle
diseases and responses to pharmacological agents. In addi-
tion, muscle engineered in these strategies holds potential
as a source for muscle stem cell transplantation for patients
suffering from myopathic diseases. Therefore, they can be
used as a platform to develop IUT for the purposes of gener-
ating human limb muscle in these mice. Translation to large
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animal models following these studies can result in the
generation of patient-specific myoblasts that can then be
harvested and transplanted as a possible therapeutic option
(Figure 1(b)). Our preliminary results in normal mice show
that transplanted myoblasts or iPSC-derived myogenic cells
can survive in the developing embryo post IUT; however,
their contribution to myogenesis is currently undetermined.
If successful, IUT of gene-corrected iPS-derived precursors
into growing fetuses of animals like pigs, sheep, or goat can
be used to generate patient-specific muscle for a source of
autologous myoblast transplantation.

The generation of patient-specific myogenic cells in host
animals can be directly used for stem cell-based therapeutic
transplantation in DMD and myopathic diseases. In addi-
tion, we can develop personalized muscle model carrying
individual disease-associated mutations in the humanized
animals. Potentially, such insights and developments will
lead to new therapeutic interventions for myopathic diseases
including DMD. With respect to expected outcomes, the
work proposed in the aims of this study is collectively
expected to provide new therapeutic interventions that will
aid the growing number of people in this country who suffer
from muscle degenerative diseases and traumatic muscle
injury and loss. In addition, it is expected that the results will
fundamentally advance the fields of muscle regeneration and
stem cell biology.
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