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Abstract

We present a constitutive modeling framework for contractile cardiac mechanics by formulating a 

single variational principle from which incremental stress–strain relations and kinetic rate 

equations for active contraction and relaxation can all be derived. The variational framework 

seamlessly incorporates the hyperelastic behavior of the relaxed and contracted tissue along with 

the rate – and length – dependent generation of contractile force. We describe a three-element, 

Hill-type model that unifies the active tension and active deformation approaches. As in the latter 

approach, we multiplicatively decompose the total deformation gradient into active and elastic 

parts, with the active deformation parametrizing the contractile Hill element. We adopt as internal 

variables the fiber, cross-fiber, and sheet normal stretch ratios. The kinetics of these internal 

variables are modeled via definition of a kinetic potential function derived from experimental 

force–velocity relations. Additionally, we account for dissipation during tissue deformation by 

adding a Newtonian viscous potential. To model the force activation, the kinetic equations are 

coupled with the calcium transient obtained from a cardiomyocyte electrophysiology model. We 

first analyze our model at the material point level using stress and strain versus time curves for 

different viscosity values. Subsequently, we couple our constitutive framework with the finite 

element method (FEM) and study the deformation of three-dimensional tissue slabs with varying 

cardiac myocyte orientation. Finally, we simulate the contraction and relaxation of an ellipsoidal 

left ventricular model and record common kinematic measures, such as ejection fraction, and 

myocardial tissue volume changes.
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1. Introduction

An electromechanical material model based on cardiomyocyte physiology and myocardial 

microstructure is essential to correctly simulate cardiac contraction and relaxation and to 
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understand cardiac mechanics. A microstructurally based material model links changes at 

the cardiomyocyte and myocardial tissue level to changes in the overall cardiac kinematics 

and mechanics. The possibility to explore causal links across scales allows us to understand 

which factors are responsible for perturbations to clinical biomarkers observed during the 

cardiac cycle, e.g., ejection fraction, longitudinal base to apex motion, wall thickening, and 

ventricular twist. Establishing these causal links is important to gain better understanding of 

cardiac mechanics in healthy subjects and essential to identify effective diagnostic and 

therapeutic strategies in patients with heart disease.

The myocardial mechanical response is fundamentally different during contraction (systole) 

– active phase where actin and myosin are bound together – and filling (diastole) – passive 

phase where actin and myosin are unbound. Since the underlying muscle microstructure is 

different during the active and passive states, the myocardial hyperelastic response is 

modeled using two different constitutive laws. Both constitutive laws are defined in the finite 

kinematics regime to allow for large deformations and are anisotropic to account for the 

complex microstructural organization of myocardial tissue and the preferential alignment of 

cardiomyocytes and collagen, which together form myolaminar sheetlets.

Currently, the most commonly used models of cardiac contraction are separated into two 

categories: (i) active stress and (ii) active strain. The active stress model additively 

decomposes the stress tensor into active and passive stresses [1–3]. The passive stress is 

computed using a hyperelastic strain energy law with experimentally measured coefficients. 

The active stress is determined by modeling the biochemical processes in the sarcomere of a 

cardiacmyocyte fiber that are required to generate the active tension TA in the muscle. TA 

may be a function of cell electrophysiology parameters: transmembrane voltage, 

intracellular calcium concentration, sarcomere length, actin–myosin kinetics, etc. [2,4–6]. In 

the active stress model, note that the underlying microstructural changes are indirectly linked 

to the observed macroscale deformations (e.g. through TA).

Alternatively, the active strain model [7–11] multiplicatively decomposes the total 

deformation gradient into active and elastic components. The force generation, which is due 

to the elastic part of the deformation gradient, arises from a hyperelastic strain energy law 

(as in active stress). The deformation in the contractile element, understood as the stretch 

along the fiber, cross fiber, and sheet directions, is directly imposed as a function of cell 

electrophysiology parameters. The active strain framework allows direct manipulation of the 

fiber deformation but there is only one elastic element controlling the stiffness of the 

myocardium during the cardiac cycle. However, it has been shown [3] that the myocardial 

stiffness is different during the passive (diastolic) and active (systolic) phases.

In our work we formulate a unifying model based on the physiology of cardiac contraction 

and myocardium microstructure. Muscle contraction and elongation are the results of the 

interaction between actin and myosin in a sarcomere. We describe this interaction using a 

modified Hill model [12] as described in Section 2, and similar to [13]. The interaction 

between actin and myosin in a sarcomere is tightly connected to the cellular 

electrophysiology. During myocardium activation, as a result of complex ion channel 

interactions, calcium ions are released from the sarcoplasmic reticulum and initiate muscle 
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contraction. In the current work, we account for a calcium initiated contraction by scaling 

the force–velocity curve with the intracellular calcium transient (Section 2.4), but the same 

framework allows for tighter electromechanical coupling.

Drawing from the work of Ortiz and Stainier [14] in viscoplasticity, we present a constitutive 

modeling framework for contractile cardiac mechanics by formulating a single variational 

principle from which incremental stress–strain relations, and kinetic rate equations for active 

contraction and relaxation can all be derived (Section 3). This variational update framework 

has been recently used to model electrically active soft-tissues [15] but differs from this 

work in the way that the internal variables are interpreted. In our work, the internal variables 

capture the microstructural deformations and their updates are governed by a kinetic 

potential.

Finally, to show the applicability and key features of our Hill-type model, we embed the 

described variational framework into the finite element method to simulate the contraction of 

3D cardiac tissue and an ellipsoidal ventricular geometry (Section 4).

2. General formulation of the three-element model

The model of muscle mechanics introduced by A.V. Hill [12,16] (see Fig. 1) consists of 

three elements: a parallel element (P), a series element (S), and a contractile element (C). 

The parallel and series elements together give the elastic response of the myocardium to 

external loadings. The parallel element models the “passive” response of the tissue—i.e., the 

response when the acto–myosin cross-bridge machinery of the sarcomeres is inactive. The 

series and contractile elements together define the mechanics of muscle activation. The 

series element accounts for the additional elastic stiffness that arises when the cross-bridges 

are engaged. The contractile element generates the active force, representing the kinetics of 

cross-bridge sliding.

The decomposition of the mechanical response into these three elements enables 

straightforward modeling control over the instantaneous elastic response during both 

contraction and relaxation, and the time-dependent kinetics of contractile force generation 

throughout the cardiac cycle. As an illustration of the model's features, consider a schematic 

description of the main stages of the cardiac cycle (Fig. 1). Taking the reference state as the 

beginning of diastole, the diastolic filling of the heart following the opening of the mitral 

valve passively stretches the parallel and contractile elements, leaving the serial element 

relaxed due to free sliding of the inactive cross-bridges. The systolic phase begins with 

isometric contraction, wherein overall stretch is prevented (as mitral valve closure fixes 

ventricular volume) while the contractile element shortens due to active myosin cross-bridge 

sliding. The active stresses developed during shortening of the contractile element in turn 

produces an additional elastic stretch of the serial element, representing the elastic stretching 

of the sarcomere components (e.g., actin, myosin, and titin). During ejection the parallel and 

serial elements – which have been stretched during filling and contraction – are allowed to 

relax. Finally during isometric relaxation the force in the contractile element is relaxed as 

cross-bridges relax.
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Here we establish a general mathematical framework for quantitative description of the 

three-element model. At time t, the deformation map φ maps a material point X in the 

muscle tissue in the reference configuration Ω0 to a point x in the current configuration Ωt, 

i.e., x = φ(X, t). The deformation gradient tensor F = ∇Xφ(X, t) is the tangent map between 

the tangent spaces TΩ0 and TΩt (Fig. 2 (left)). We note that in general the reference state 

might not be stress-free. The current configuration is the net result of internal 
microstructural state (e.g., cross-bridge sliding), which change the length of a 

cardiomyocyte, and external macroscopic tissue deformations which may also alter cell 

shape. Similar to [7-9], the situation bears resemblance to the case in viscoelastic solids, 

with cross-bridge motion playing a role similar to dislocation plastic deformation, which 

involves no distortion or rotation of the crystalline lattice. By analogy then with metal 

plasticity, we characterize the kinematics of the contractile element by an active deformation 
Fa. Additional cardiomyocyte shape changes are described by an elastic deformation Fe, 

which combines with the active deformation to give

(1)

This multiplicative deformation is analogous to the elastic–plastic decomposition introduced 

by Lee for plasticity [17]. Note that the active deformation, like plastic deformations, need 

not be compatible. That is, there need not exist an active deformation mapping for which Fa 

is a gradient. Nevertheless, we find it helpful to think of the active deformation as describing 

a local change in the kinematic state of a material point in isolation, producing an 

intermediate configuration Ωa, which may be kinematically incompatible with the 

configurations of neighboring points. Compatibility of the total deformation F to the current 

configuration Ωt is restored by the (possibly incompatible) elastic deformation Fe.

2.1. Elastic elements

According to the three-element model (Fig. 2), the response of the parallel element depends 

on the total deformation, with an elastic response governed by strain energy

(2)

The serial element, in contrast, should be insensitive to deformations that involve free sliding 

of inactive cross-bridges. To this effect we define the serial active response according to an 

energy that depends only on the elastic part of the deformation gradient

(3)

The total free energy density A is then a sum of the passive and active energies,
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(4)

The equilibrium part of the first Piola–Kirchhoff stress P follows as A,F(F, Fa).

2.1.1. Passive elasticity—The passive elasticity of the myocardial tissue, represented by 

the parallel element, has been the subject of extensive study with experiment and modeling. 

Cardiac muscle has a highly nonlinear, anisotropic elastic response, which is modeled by an 

elastic energy density function Wp(F). Histology and diffusion tensor MRI have revealed 

that the microstructure of cardiac tissue is made up of a continuously branching syncytium 

of cardiomyocytes that are further organized into myolaminar sheetlets [18,19]. This 

microstructural organization gives rise to a natural definition of a myocardial orthonormal 

frame (f, s, n) aligned with the principal microstructural axes, where f is aligned with the 

fibers, s orthogonal to the fibers and in the local sheet plane, and n normal to the sheet. The 

most general microstructurally informed strain energies [1,20] for the passive response 

define Wp as a function of orthotropic invariants of the right Cauchy–Green deformation 

tensor C = FT F with respect to the myocardial orthonormal frame. Such models are able to 

fit experimental data from ex vivo myocardial tissue samples placed under shear and biaxial 

loadings [20]. Earlier biaxial experiments [21,3] were also fit rather well by transversely 

isotropic models [3,22], of the general form

(5)

where

(6)

are the standard isotropic invariants of C, and

(7)

is the square of the stretch ratio along the cardiacmyocyte axis, as described by a fiber-

directed unit vector f. For the sake of illustration in this paper, we use the energy presented 

by Lin and Yin [3]

(8)
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2.1.2. Active elasticity—Biaxial stretch experiments performed during steady-state 

contraction have revealed that the elastic response of cardiac tissue is significantly altered 

during cross-bridge activation [3]. During barium contracture or tetanus, the cross-bridge 

force generation is steady, such that any change in stress produced by instantaneous strains 

can be identified with the elastic elements (P + S) in the three-element model.

Lin and Yin [3] found this “active” response to be well modeled by a low-order polynomial 

strain energy in I1 and I4. Consistent with these findings, we define the energy of the serial 

element as

(9)

where  and  are the standard invariants of Fe.

2.2. Viscosity

The passive response of biological tissue is not entirely without dissipation. To account for 

this we may consider additional viscous stresses Pυ, such that

(10)

Following [14] we consider viscosity laws that derive from a potential, meaning that there 

exists a function ϕ(Ḟ, F) such that

(11)

To be precise, for the sake of illustration we assume Newtonian viscosity and according to 

[14], the viscous potential is

(12)

where η is the viscosity and ddev is the deviatoric part of the rate of deformation tensor d = 

sym(ḞF−1). This gives rise to viscous stresses

(13)
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2.3. Crossbridge kinematics

The kinetics of activation are determined by the contractile element, parameterized 

kinematically by Fa. Again mirroring the formulation of viscoelasticity by [14] we assume 

the kinematics of Fa to be restricted by a general “contractile flow rule” of the form

(14)

where Q is an array of internal variables quantifying the local change in sarcomere structure 

due to cross-bridge sliding, and M an array of tensors that determine the geometric structure 

of the active deformation. To interpret this flow rule in the context of cardiac mechanics, 

note that the spatial gradient of a velocity field v = χ ,t (X, t) = χ̇ (X, t) is given by the 

standard identity [23, e.g.,]

(15)

with F = χ,X. The left-hand side of (14) can be interpreted as a local velocity gradient of the 

local (incompatible) active part of the motion, La = ḞaFa−1. Thus we can see the flow rule 

(14) as reparametrizing the time evolution of the active deformation Fa in terms of internal 

variable rates Q̇, which represent magnitudes of active velocity gradient.

Example 2.3.1 (One-Dimensional Flow Rule). To put the above relations into the context of 

microscale physiology, let ℓ(t) denote the current length of a sarcomere (i.e., the distance 

between adjacent z-lines, as depicted in Fig. 3), and let ℓ0 be the un-stretched reference 

length (i.e., prior to diastolic filling). The kinematics of muscle contraction are most 

commonly described in terms of the “velocity” of contraction for a single sarcomere, υ = ℓ̇. 
While the (extensive) velocity may be useful in the context of experiments at microscopic 

scales, or with fixed length samples, a general theory requires description of an intensive 

measure at each material point. Normalization by current sarcomere length suggests a one-

dimensional flow rule for sarcomere length

(16)

Defining cardiomyocyte stretch ratio

(17)

the total active deformation is
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(18)

with rate

(19)

The full tensorial flow rule is then

(20)

Example 2.3.2 (Triaxial Flow Rule). Eq. (20) is the simplest example of a contractile flow 

rule, with arrays Q = {Q} and M = {f⊗f} each containing only a single degree of freedom. 

More generally, we may model the contraction as involving active motion along a number of 

geometric modes QM = ΣiQiMi. While contractile modes Mi could, in general, include 

extension and shearing of the fiber and sheet structure, at present we consider triaxial 

contractile flow, i.e., flow in each of the three microstructural directions (fiber, sheet, sheet-

normal)

(21)

such that flow rule (14) becomes explicitly

(22)

2.4. Cross-bridge kinetics

To model the development of active contractile stresses, we must provide some kinetic 

equations Defining the evolution of internal variables Q. Assuming these are governed by 

local thermodynamics, the kinetic equations will be of the general form

(23)

Eq. (23) must model cross-bridge cycling, generally reflecting the relationship between 

shortening velocity and contractile force, as regulated by biophysical processes in the 

sarcomere such as Calcium (Ca2+) binding and tropomyosin kinetics. Calcium concentration 
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is, in turn, controlled by the electrophysiological response of the cell [24,25], which is 

modeled locally by first order rate equations similar in form to (23). Thus, it would be 

possible to expand the internal variable array Q to include electrophysiological variables, 

pointing the way toward a fully coupled electromechanical formulation. For now we assume 

the right-hand side of (23) to have time varying coefficients that are determined by the 

electrophysiology.

The next step is to design a rate function r in (23) that models the evolution of shortening 

and contractile force in the sarcomere. While detailed models of cross-bridge kinetics are 

available [26,6] here we are particularly interested in developing a model that retains a 

variational structure. Toward this goal, as in [14], we define the thermodynamic force 

conjugate to Fa as

(24)

Taking the time derivative of A while holding F fixed, we obtain

(25a)

(25b)

(25C)

where we used the flow rule Eq. (14) in Eq. (25b). Writing Ȧ = −YQ̇, from Eq. (25c) the 

thermodynamic force conjugate to the internal variables Q is

(26)

We consider kinetic equations that derive from a potential ψ(Y), i.e.,

(27)

Given a function ψ we may alternatively treat Q̇ as the independent variable, and perform a 

Legendre transformation, to obtain a dual potential
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(28)

such that

(29)

Example 2.4.1 (One-Dimensional Contraction). We may relate these new variables back to 

the 1-D context of Example 2.3.1. In general, the energy density of the three-element model 

(4) has no explicit dependence on Q, so A,Q = 0, and

(30)

Furthermore, differentiation of (4) gives

(31)

(32)

where

(33)

are the first Piola–Kirchhoff stresses of the parallel passive and serial active elements. Also

(34)

For a purely one-dimensional contraction (cf. Example 2.3.1) with Q = {Qf} and M = 

{f⊗f}, this simplifies to

(35)

Ponnaluri et al. Page 10

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which we can identify as an equivalent uniaxial contractile stress.

Q̇f represents the rate of contractile shortening such that Eq. (29) simplifies to

(36)

specifying an effective force–velocity relation for the sarcomere.

Example 2.4.2 (Hill's Force–Velocity Curve). To model ψ* we return to the work of A.V. 

Hill [12,16], which proposes the phenomenological hyperbolic force–velocity relation for a 

single sarcomere in tetanic contraction

(37)

where F is the tension, υ is the shortening velocity, and F0, a, and b are constants. Defining 

ϕF ≡ a/F0 and ϕυ ≡ b/υ0, we can write Eq. (37) more conveniently as

(38)

Identifying Yf with F and Q̇f with −υ we find dψ* = YfdQ̇f = −Fdυ, which we can integrate 

to obtain, within an arbitrary constant,

(39)

From the plot of (38) in Fig. 5(a) we can see that F0 is the isometric force (where Q̇f = 0), 

and υ0 represents the maximum or unloaded shortening velocity (Q̇f → −υ0 as Yf → 0).

However, the kinetic potential Eq. (39) derived from Hill's force–velocity relation presents a 

singularity as Qḟ → ϕυυ0, i.e., during retrograde motion or lengthening of the contractile 

element C. In practice, care must be taken to avoid this singularity either by a judicious 

choice of time steps or by an alternative definition of ψ*.

For our study, we propose a new version of ψ*, which does not have such a singularity but 

also preserves the hyperbolic force–velocity relationship of (38)
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(40)

where β is a non-dimensional parameter that controls the shape of the force–velocity 

response. By differentiating Eq. (40) with respect to Q̇f, we compute the force along the 

cardiomyocyte direction as

(41)

For the purpose of comparison, we plot the force–velocity relationship and the kinetic 

potential using both Hill's equation and our modified Hill's equation in Fig. 4.

The contraction of sarcomeres is driven by electrophysiological changes within the cell. 

During myocardial electrical activation, calcium is released into the cell membrane space, 

allowing for actin–myosin binding and the initiation of crossbridge cycling. Therefore, in 

our current formulation, we scale F0(t), and consequently the force–velocity curve, with the 

calcium transient. Here we use the Mahajan et al. [25] cell model to compute intracellular 

calcium during a cardiac cycle (Fig. 5).

3. Variational constitutive updates

As discussed in [14], a potential function D can be formulated to yield the above constitutive 

equations in a variational manner:

(42)

Optimizing D with respect to Q̇ returns the kinetic relations and further yields Deff(Ḟ) which 

acts as a rate-potential for the first Piola–Kirchhoff stress tensor

(43)

In solving the above problem, we concern ourselves with a time increment from tk to tk+1 

where a material point evolves from its current state (Fk, , Qk) to a new state (Fk+1, , 

Qk+1). Following [14], we integrate the flow rule (Eq. (14)) to yield an update for Fa
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(44)

where ΔQ = Qk+1 − Qk.

Example 3.0.1 (Flow Rule Updates for 3D Sarcomere Mechanics). Since {f s n} and {ΔQf 

ΔQs ΔQn} are, respectively, the eigenvectors and eigenvalues of ΔQM, the flow rule update 

is

(45)

(46)

Following [14] and using the viscous (Eq. (12)) and kinetic (Eq. (40)) potentials, we can 

define the incremental energy density function as

(47)

where the parameter α controls the state at which the viscous and kinetic potentials are 

evaluated, i.e.,

(48)

(49)

Taking the first variation of W with respect to F and using the stationarity condition for 

Qk+1, we write the first Piola–Kirchhoff stress tensor as

(50)
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The tangent moduli are found by linearizing Pk+1 with respect to Fk+1

(51)

Using the stationarity condition of W with respect to Qk+1

(52)

we can rewrite Eq. (51) as

(53)

4. Numerical examples

In the numerical examples discussed below, we use energy laws published in the literature 

and modify them such that the material response they describe is nearly incompressible. To 

this effect, we penalize the volumetric deformation by adding two terms whose coefficients 

are marked with * to the energy laws, as seen in Eqs. (54) and (55). Additionally, we remove 

the terms in the energy laws that produce a non-zero stress free reference state. For the 

parallel (passive) element, we use a modified version of the Humphrey [22,28] energy law:

(54)

For the serial (active) element, we use the following strain energy law (modified from Lin 

and Yin [3]):

(55)
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In the following numerical examples, the values for the Newtonian viscosity and the 

sarcomere force/shortening velocity curves were varied to yield a physiologic contraction. A 

summary of the parameter values is provided in Table 1.

4.1. Material point

Using the presented variational approach, we first test two classes of simulations, 

characteristic of muscle experiments from literature, at a single material point. In the first 

type of experiments, a section of muscle tissue is pre-stretched from its resting state and then 

released to allow free contraction. To reproduce these experiments in our simulations, we 

start by imposing the following purely uniaxial deformation gradient:

(56)

During this phase, force Yf in the contractile element is zero and thus the element slides 

freely without a resisting force, i.e. F = Fa. Consequently, the stress generated in the three 

element model results only from the parallel passive element. Next, the length constraint is 

released and the model is allowed to return to its relaxed state while the peak isometric force 

F0(t) in the kinetic potential is increased. In order to study the effect of viscosity in these 

experiments, we vary the viscous parameter η and set it to one of the following values: 0 (no 

viscosity), 0.1 (low viscosity), 1.0 (medium viscosity), and 10.0 (high viscosity). In Fig. 6 

(left), we see that viscosity plays a large role in the contraction/relaxation of the model. 

When there is no viscosity in the system, the reference length changes by approximately 

12%. In contrast, at high viscosity, the effect of contraction is overshadowed by the slow 

relaxation. During relaxation starting from the release of the length constraint, the elastic 

stresses, the sum of the stresses in the parallel and serial elements, decay to zero. As seen in 

Fig. 6 (right), the rate of relaxation decreases as the viscosity increases. Having the ability to 

tune the viscous parameter is important for modeling lusitropy (i.e., the rate of relaxation 

following contraction) that, for example, is decreased in several forms of heart failure.

In the second class of experiments we simulate a section of cardiac muscle tissue that is held 

at a constant length (F = I) and contraction is then initiated. In this case, as F0(t) increases, 

the contractile element shortens, i.e., Qf decreases, and the tensile force Yf increases. 

Through the flow rule (Eq. (14)), the component of the active deformation gradient in the 

fiber direction also decreases (Fig. 7 (left)). As a result, a time-varying stress is generated in 

the serial active element (Fig. 7 (right)). However, since the model length is held fixed, the 

stress in the parallel passive element is zero.

4.2. Strip of myocardial tissue

In this numerical example, we simulate the contraction of a rectangular cuboid 

representative of a strip of myocardial tissue oriented transmurally across the left ventricle 

wall. The rectangular cuboid has dimensions 1 cm × 0.20 cm × 0.20 cm and is meshed with 

1920 linear tetrahedral elements with an approximate edge length of 0.05 cm (Fig. 8). As a 
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boundary condition, a spring foundation was imposed on the yz-plane and additional roller 

supports were added to remove the rigid body rotation about the x-axis.

As previously discussed, the contraction at each location is controlled using isometric force 

F0(t) in the kinetic potential ψ*. In order to simulate a wave of activation/contraction along 

the long-axis of the cuboid (x-axis), we impose a 60 cm/s conduction velocity. In this 

experimental setup, we examine two different fiber distributions:

a. Fibers all aligned along the x-axis (Fig. 9 (left)).

b. Fibers perpendicular to the long axis and rotated about this axis from −60° 

(epicardium) to +60° (endocardium) (Fig. 9 (right)), which is representative of a 

transmural block of myocardium.

In the first stage of the simulation, a wave of activation travels from the left to the right of 

the rectangular domain and initiates contraction as seen by the distribution of Qf along the 

long axis in Fig. 10. The fiber strain Qf peaks at approximately 200 ms, which corresponds 

to the maximum of the calcium transient and consequently, to the maximum isometric force 

F0(t). Subsequently, following the decay of the calcium transient (corresponding to the 

reuptake of calcium by the sarcoplasmic reticulum) the tissue undergoes relaxation, which 

completes at approximately 400 ms.

The mechanisms of deformation of the models with the two different fiber distributions 

show key differences. If the fibers all point along the long-axis, the tissue compresses across 

the wall with no torsion. In contrast, with rotating fibers about the long-axis, we obtain 

tissue thickening and twisting across the wall. Reproducing thickening and twisting is 

important since both features are observed clinically during contraction.

4.3. Ventricular geometry

In our final numerical example, we simulate a contractile event in an ellipsoidal geometry 

representative of the left ventricle of a human heart. The ellipsoidal geometry was meshed 

with 16 583 linear tetrahedral elements (Fig. 11 (left)). Rule-based fibers were computed at 

the barycenters of each tetrahedral element such that their orientation varies linearly from 

−53.5° (epicardium) to 39.5° (endocardium) in accordance with [29] (Fig. 11 (right)).

In order to simulate the electromechanical coupling, we first solve the monodomain equation 

of electrophysiology [30] using the Mahajan et al. [25] cell model. To begin the activation 

sequence, we apply a stimulus current to 145 nodes at the apex of the ventricle and then 

measure the time required to reach 0 mV in every element in the model (Fig. 12). This 

activation time is used to begin the modulation of F0(t) at each element and initiate 

contraction.

As boundary conditions in the mechanics problem, we apply an elastic spring foundation to 

the epicardial wall of the left ventricle to simulate the pericardium. That is, a spring force is 

applied to every node on the surface in the normal direction computed by averaging the 

normals of the surface elements to which the node is connected. During contraction we note 

(Fig. 13): (i) wall thickening, (ii) a twist angle of 20°, and (iii) reduction of the cavity 

volume corresponding to an ejection fraction of 49%. These findings are consistent with 
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clinically observed phenomena. We also notice that the myocardial volume decreases by 

approximately 10% at maximum contraction. This result deviates from the literature 

according to which the myocardium is incompressible or nearly incompressible [31,32].

5. Conclusion

In this work, we use the variational formulation for a viscoplastic constitutive model [14] as 

the basis for modeling electrically active soft tissue where the internal variables are the 

sarcomere stretches. We have also shown how this model can be coupled to the 

electrophysiology through the kinetic potential. In future research, we aim to refine the 

model and validate it with experimental evidence. The first step consists in improving the 

constitutive models that describe the active (Ws) and passive (Wp) responses of the 

myocardium, e.g., by enforcing the tissue incompressibility constraint. Further, it is crucial 

for this modeling framework to identify the correct kinetic potentials that describe active 

force generation and sarcomere shortening velocities. In this work, we have used a Hill-type 

force–velocity relation and modulated peak force with respect to the calcium transient. A 

more involved set of relations will consider other parameters such as actin–myosin binding 

kinetics, sarcomere length, etc. Finally, our goal is to apply this model to an anatomically 

accurate ventricular geometry and microstructure (i.e., fiber orientations) and to study the 

effect of more realistic boundary conditions.
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Highlights

• Unifying constitutive modeling framework to simulate cardiac contraction.

• Hill-like three element model together with a viscous dashpot.

• Single variational principle for stress–strain relations and kinetic rate 

equations.

• Hill's force–velocity relationship as the basis for the kinetic equations.

• Simulated contraction of a representative left ventricle geometry using FEM.
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Fig. 1. 
Hill's three element model consists of parallel (P), series (S), and contractile (C) elements. 

The schematic shows four different stages of the cardiac cycle. Starting from its resting state 

(top), the model undergoes passive stretching (left). During this process, passive stress is 

introduced through the P but there is no active stress due to free sliding in the C. 

Subsequently, during isometric contraction, the length is held fixed but contraction occurs in 

the C (bottom). This process introduces an active stress due to stretching of the S. During 

active relaxation (right), the total length of the model is decreased while the length of C is 

increased. This reduces the active and passive stresses. Finally, during isometric relaxation, 

C further relaxes to its resting length and the model returns to its stress-free state (top).
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Fig. 2. 
Left: Decomposition of the total deformation gradient tensor F into active Fa and elastic Fe 

components. Right: Three element model with a viscous dashpot composed of a parallel 

passive response Wp, a series active response Ws, a contractile element C, and viscous 

response η.
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Fig. 3. 
Schematic representation of the sarcomere in its current configuration. The current distance 

between z-lines is denoted by ℓ and its instantaneous rate of change by ℓ̇.
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Fig. 4. 
Left: force versus velocity relationship obtained using Hill's equation and our modified Hill's 

equation to avoid the singularity shown in Eq. (39). Right: the force–velocity relationships 

are integrated to produce the kinetic potentials from Hill's equation and our modified 

equation. For Hill's equation, the parameters chosen are F0 = 25 m N, , a = 4.4 

m N, and  as described in [27]. For our exponential function F0 = 25 m N, 

, and β = 4.0.
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Fig. 5. 
Left: the calcium transient from the Mahajan et al. [25] cell model is used to modulate the 

peak force in the fiber. Right: the force–velocity relationship from Eq. (41) is plotted for 

various values of F0(t).
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Fig. 6. 
In the first class of material point experiments, a 20% stretch is imposed in the fiber 

direction and then released. Isometric force modulation F0(t) also begins at time 0 ms. (Left) 

Stretch versus time plotted for various viscous parameters, 0 (no viscosity), 0.1 (low 

viscosity), 1.0 (medium viscosity), and 10.0 (high viscosity). Note that in the case of high 

viscosity, the slow relaxation overshadows the effect of contraction. (Right) Elastic stress in 

the model plotted against time for the same viscous parameters.
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Fig. 7. 
In the second class of material point experiments, the model undergoes contraction while its 

length is held fixed (F = I). The internal variable Qf and the component of the active 

deformation gradient Fa in the fiber direction decrease (left) while tensile stresses increase in 

the series (active) element (right).
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Fig. 8. 
Rectangular cuboid representative of a strip of tissue across the ventricular wall: simulation 

setup and geometry.
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Fig. 9. 
Fiber distributions used in the simulation of contraction in a strip of cardiac tissue: (left) 

fibers aligned along the long-axis and (right) fibers perpendicular to the long axis and 

rotated from −60° (epicardium) to +60° (endocardium).
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Fig. 10. 
Contraction simulation of a strip of cardiac tissue. A left to right wave of activation initiates 

contraction as shown by distribution of the internal variable Qf . The fiber strain peaks at 

approximately 200 ms and relaxes by about 400 ms. Left: the simulation with fibers aligned 

along the long-axis shows wall compression and no twisting. Right: the simulation with 

fibers perpendicular to the long-axis and varying across the wall shows wall thickening and 

twisting as expected for in vivo myocardium.
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Fig. 11. 
Ellipsoidal geometry representative of the human heart left ventricle. (Left) Mesh composed 

of 16583 tetrahedral elements. (Right) Rule-based fibers linearly varying from −53.5° 

(epicardium) to 39.5° (endocardium) about the axis perpendicular to the ellipsoid mid-

surface [29].
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Fig. 12. 
Wave of activation computed by applying a stimulus current to the apex of the ellipsoidal 

geometry and solving the monodomain equation of cardiac electrophysiology. The time 

required for each element to reach 0 mV is shown. These activation times are used to initiate 

contraction, i.e., to determine the beginning of the isometric force modulation.
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Fig. 13. 
Snapshots during contraction of an ellipsoidal geometry. We observe wall thickening, base-

to-apex twisting, and reduction of the cavity volume, which corresponds to a maximum 

ejection fraction of 49%.
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Table 1

Parameter values for numerical examples.

Passive parameters (C1–C4 taken from Humphrey [22])

C1 = 15.98 g/cm2

C2 = 55.85 g/cm2

C3 = 3.590 g/cm2

C4 = 30.21 g/cm2

Active parameters (C1–C3 taken from Lin and Yin [3])

D1 = −38.70 g/cm2

D2 = 40.83 g/cm2

D3 = 25.12 g/cm2

Kinetic potential parameters (υ0 taken from Edman and Nilsson [27])

F0 = 50.0 − 100.0 m N

β = 4.0

υ0 = 3.0/s

Newtonian viscous potential parameters η = 0.0, 0.1, 1.0, 10.0 g s/cm2
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