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Abstract

Understanding a neuron's transfer function, which relates a neuron's inputs to its outputs, is 

essential for understanding the computational role of single neurons. Recently, statistical models, 

based on point processes and using generalized linear model (GLM) technology, have been widely 

applied to predict dynamic neuronal transfer functions. However, the standard version of these 

models fails to capture important features of neural activity, such as responses to stimuli that elicit 

highly reliable trial-to-trial spiking. Here, we consider a generalization of the usual GLM that 

incorporates nonlinearity by modeling reliable and nonreliable spikes as being generated by 

distinct stimulus features. We develop and apply these models to spike trains from olfactory bulb 

mitral cells recorded in vitro. We find that spike generation in these neurons is better modeled 

when reliable and unreliable spikes are considered separately and that this effect is most 

pronounced for neurons with a large number of both reliable and unreliable spikes.

1 Introduction

Neuronal input-output functions relate membrane biophysical properties to the specific 

computations each neuron performs (Koch, 1999; Izhikevich, 2010). Recently there has been 

interest in using statistical models to capture and describe neuronal transfer functions (Kass 

& Ventura, 2001; Paninski, 2004; Badel et al., 2008). Despite the application of these 

models in numerous contexts (Tripathy, Padmanabhan, Gerkin, & Urban, 2013; Mensi et al., 
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2012), a feature of neural activity that these models often fail to capture is the most 

temporally precise trial-to-trial reliable spiking (Butts et al., 2007; Calabrese, Schumacher, 

Schneider, Paninski, & Woolley, 2011). Such reliable spiking has been shown in a number of 

contexts and systems, including as a general feature of neuronal membranes stimulated 

using somatic current injection in vitro (Bryant & Segundo, 1976; Mainen & Sejnowski, 

1995; Padmanabhan & Urban, 2010), as well as resulting from multiple stages of neuronal 

circuit processing in vivo (Butts et al., 2007; Kelly, Smith, Kass, & Lee, 2010). Reliable 

spiking is thought important for computation as it has been shown to be especially effective 

in driving downstream neural activity (Tiesinga, Fellous, & Sejnowski, 2008; Giridhar, 

Doiron, & Urban, 2011).

Here, we extend previous approaches and develop statistical models designed to better 

capture temporally precise and reliable spiking activity. We apply these models to data 

collected from olfactory bulb mitral cells (MCs) recorded in vitro (Padmanabhan & Urban, 

2010; Tripathy et al., 2013), neurons that display extensive electrophysiological 

heterogeneity and varying degrees of spiking reliability (Padmanabhan & Urban, 2010, 

2014; Angelo et al., 2012).

2 Methods

We begin by considering each neuron's spike train as a point process with time-varying 

intensity function λi, as in Kass & Ventura (2001); (Paninski, Pillow, & Simoncelli, 2004; 

Pillow et al., 2008; Doya, 2011; Kass, Eden, & Brown, 2014). In discrete time, with time 

bins of width Δt, the spike train likelihood function is

where yi is 1 if there is a spike in the ith time bin and 0 otherwise; n is the number of spikes; 

xi represents any covariates that are assumed to drive spiking, here the stimulus and spiking 

history prior to the ith time bin; and the firing rate λi is suitably defined in terms of x. The 

simplest generalized linear model (GLM) is

(2.1)

where k⃗ is the neuron's stimulus filter; h⃗ is the postspike or spike history filter; b is the bias 

term; i indicates the ith time bin; and xi is the portion of the stimulus considered potentially 

relevant to spiking probability in the ith time bin. We extend this GLM by defining a 

nonlinear version, which we call the current-thresholded model (CT model), in which the 

stimulus filter is allowed to be different for stimuli that produce reliable and unreliable 

spikes. These reliable-spike and unreliable-spike stimuli are found from two preprocessing 

steps. First, the neuron's trial-averaged peristimulus time histogram (PSTH) is examined to 

determine a set of narrow segments, or PSTH peaks, in which the spikes across trials are 
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highly reliable, defined by having more than 90% of trials containing a spike within this 

peak. Second, the 20 ms of input stimulus prior to each peak is found, the positive-going 

part of the mean of these (actually, a trimmed mean, see the appendix) is computed as a 

template, and then all snippets of stimulus are defined as either reliable-spike stimulus 

snippets or unreliable-spike stimulus snippets, according to their correlation with this 

template. In the CT model, the neuron's firing rate λi is defined as

(2.2)

where k⃗rel and x⃗i, rel denote the stimulus filter and the stimulus preceding reliable spikes 

(respectively) and similarly for k⃗unrel and x⃗i, unrel, which denote the stimulus filter and 

stimulus preceding unreliable spikes. When a = 1 (the default, unless otherwise specified), 

this is a switching model, where two different stimulus filters are used based on classifying 

the preceding input stimulus (the stimulus) as either a reliable-spike stimulus or an 

unreliable-spike stimulus. In both the simple GLM in equation 2.1 and the CT model in 

equation 2.2, we define m = 60 and x⃗i as 50 ms of input stimulus prior to the ith time bin, 

and use a time bin size Δt = 1 ms. Details are given in the appendix.

3 Results

We used equations 2.1 and 2.2 to model the spiking activity of olfactory bulb MCs recorded 

in vitro (see Figure 1A; see also Figure 2). As described in Padmanabhan and Urban (2010) 

and Tripathy et al. (2013), MCs were stimulated using somatic current injection of repeated 

trials of frozen noise plus a DC bias while fast synaptic activity was blocked 

pharmacologically (n = 44 MCs, approximately 40 trials per neuron). The CT model, which 

treats temporally reliable spikes (based on the trial-averaged PSTH) as occurring due to a 

different stimulus waveform than temporally unreliable spikes (see Figure 1B), was better 

able to account for dynamic MC activity than the standard GLM model. We found this to be 

especially true for neurons with epochs of highly precise spiking (see Figure 1A, inset). 

Specifically, based on the PSTH error for reliable spikes (quantified as the sum of squared 

errors in the spike timing of reliable PSTH peaks; see the appendix), we found that on 

average, the CT model reduces the PSTH error relative to the GLM model by 7.5%, but in 

some neurons, the error reduction was as high as 37% of PSTH error (see Figure 1C). 

Applying a likelihood ratio test to both the GLM and CT model, we found that the CT 

model was significantly improved for nearly all neurons, as shown in Figure 3. (P-values for 

40 of 44 were less than .05, and most were much smaller; 8 degrees of freedom difference 

between the two models.)

Furthermore, by allowing the parameter a in equation 2.2 to vary, an additional 16% 

reduction of the PSTH error was obtained for the CT model on average (e.g., an additional 

33% reduction of the PSTH error was found for the neuron in Figure 1A, for a = 1.4). While 

introducing the parameter a to the GLM also facilitates further model improvement (e.g., 
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23% improvement for the neuron in Figure 1A), the CT model still outperformed the GLM 

model.

Moreover, a nonlinear model incorporating an explicit additional interaction term between 

the stimulus and spike history filter (in lieu of the two-filter CT model) showed no 

improvement over the standard GLM (mean improvement = −11%), suggesting that 

temporally reliable spikes do not occur due to the interaction of stimulus and spike-history-

based effects (e.g., stimulus-specific bursting effects). Note that both the GLM and CT 

model contain a linear postspike history term, which we previously found to be essential in 

capturing membrane resonance-like properties of MCs (Tripathy et al., 2013). For example, 

a spike-triggered covariance model is similar to the CT model in that both incorporate two 

stimulus filters (Schwartz, Pillow, Rust, & Simoncelli, 2006), but the STC model does not 

have a post-spike history term. We found the STC model to be qualitatively less effective for 

modeling the MC in Figure 1A than either the GLM or CT model (see Figure 6 in the 

appendix), again highlighting the importance of capturing spike history effects for these 

neurons.

We found that specific MCs were considerably better modeled using the CT model over the 

GLM. Investigating these neurons, we found that the neurons most improved were those 

with relatively low firing rates (10 to 35 Hz) and intermediate values of trial-to-trial 

reliability (see Figure 1D). In other words, the CT model was most influential for neurons 

that displayed a number of both reliable spikes as well as unreliable spikes. One biological 

explanation for this finding of differential explanatory benefits of the CT model may the 

inherent biophysical heterogeneity among MCs (Padmanabhan & Urban, 2010, 2014; 

Angelo & Margrie, 2011; Angelo et al., 2012; Burton & Urban, 2014).

4 Discussion

The empirical approach we developed here is different in spirit and detail from biophysical 

modeling based on intrinsic membrane responses (Hodgkin & Huxley, 1952). Whereas 

Hodgkin-Huxley models are useful and attractive for their direct comparison to neuronal 

membranes and ion channels, point processes provide the natural probabilistic framework 

for analyzing noisy neural spiking behavior.

An interesting shortcoming of the standard stimulus-response GLM in equation 2.1 is its 

failure to adequately account for spike timing reliability. We have shown that the nonlinear 

CT model in equation 2.2 can improve on the standard GLM, specifically, when applied to 

spike trains elicited in vitro during dynamic current injection. The CT model is conceptually 

similar to linear models, which incorporate multiple stimulus filters, such as spike-triggered 

covariance methods (STC) (Schwartz et al., 2006). However, the CT model differs in that it 

dynamically switches between one of two stimulus filters and, critically, allows for a spike 

history term that captures refractory and burst firing, which governs much of the precise 

spiking timing of mitral cells. Thus our approach extends earlier efforts to mitigate the 

influence of spike history effects by separately analyzing spikes well isolated in time from 

preceding spikes using a multi-filter approach (Agüera y Arcas & Fairhall, 2003; Agüera y 

Arcas, Fairhall, & Bialek, 2003).
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However, we do not intend to propose this model as either realistic or empirically definitive. 

In the first place, additional nonlinearities are clearly needed to capture more of the spike 

reliability. Second, the CT model does not appear to be obviously close to any biophysical or 

dynamical model. Moreover, the specific methodology for fitting the CT model is admittedly 

somewhat ad hoc, and it may be possible to define an alternative model using parameters 

that can be fitted in a unified procedure.

An alternative to setting a hard threshold for reliable spiking would be to take a conceptually 

similar approach to that in (Escola, Fontanini, Katz, & Paninski, 2011) and use a hidden 

Markov model to determine whether each epoch of MC spiking activity most corresponded 

to that of two states: a reliable state or an unreliable state. However, since we were injecting 

current directly into each MC's soma, it seemed more natural to classify the neuron's 

effective state using the stimulus waveform directly.

While our focus here was to better model reliable MC spiking elicited during somatic 

current injection, our approach could likely also be extended to capture reliable spiking 

occurring during stimulation via naturalistic sensory stimuli such as visual scenes or 

auditory stimuli (Butts et al., 2007; Calabrese et al., 2011). However, we expect that as the 

dimensionality of the stimulus increases, more data will be required to adequately 

parameterize each of the two stimulus filters used here. Our two-filter approach could also 

be applied in conjunction with other approaches for modeling reliable spiking, such as those 

that explicitly model the effects of threshold nonlinearities of afferent presynaptic neurons 

(Butts, Weng, Jin, Alonso, & Paninski, 2011).

Given these caveats, our intention with the CT model is to use it to stimulate additional 

research. Perhaps a point process regression model, based on GLM methodology but again 

incorporating nonlinearity, might be based on ideas such as the adaptive timescale rate 

version of the exponential LIF model of Ostojic and Brunel (2011). By working at the 

interface between statistical and dynamical system modeling, it may be possible to gain 

further insight into reliable spiking.
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Appendix: Data Collection, Algorithm, and More Results

A.1 Experimental Methods and Data Collection

Whole cell patch clamp recordings of mitral cells were obtained in vitro from mouse 

olfactory bulb slices using methods described previously (Padmanabhan & Urban, 2010). 

Mitral cells were identified under infrared differential interference contrast optics on the 

basis of their laminar position in the olfactory bulb and their morphology. All experiments 
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were performed at 35° C in standard Ringer's solution with excitatory (25 μM AP5 and 10 

μM CNQX) and inhibitory (10 μM bicuculline) synaptic activity blocked.

Current-clamp recordings were performed while injecting neurons with a filtered white 

noise current stimulus. Noise traces were generated by convolving a 2.5 s white noise 

current with an alpha function of the form t * exp(−t/τ), where τ = 3 ms. We chose this 

spectral structure because it generates reliable spiking in these neurons and corresponds to 

the timescale of fast synapses afferent to MCs (Galán, Ermentrout, & Urban, 2008). Each 

neuron received one of a small number of stimuli generated using this method (most neurons 

received one of three stimulus templates) and was presented about 40 stimulus repeats. The 

amplitude (variance) of the noise used was between 5% and 40% of the direct current (100–

800 pA, σ = 20–80 pA) offset for each cell, with the majority of cells receiving 10% to 20% 

of the DC offset. The variance of the noise was selected as previously described (Galán et 

al., 2008), to induce reliable firing without large input fluctuations. For all recordings, a 25 

or 50 pA hyperpolarizing pulse was injected before stimuli were delivered to measure input 

resistance and membrane time constant, allowing us to track the stability of recordings over 

multiple trials. As described in Tripathy et al. (2013) only neurons whose firing patterns 

were stable across trials and fired a sufficient number of spikes in each trial (more than 5 

Hz) were used in this study. Upon stimulation, most neurons usually underwent a brief 

nonspiking adaptation period (111 +/−14 ms) which was assessed visually and excluded 

from the analysis.

A.2 Fitting Procedure

For each neuron, our procedure may be summarized as follows:

1. Use the PSTH to identify reliable and unreliable peaks in the PSTH.

2. Define a reliable-spike current template as the longest positive part to the end of 

the trimmed mean of the 20 ms snippets of current preceding the reliable peaks, 

which is l ms.

3. Consider all l ms snippets of current and separate these into two categories: (1) 

those immediately preceding the reliable peaks and (2) all others. Find the 

correlation of each snippet with the reliable-spike current template and take its 

Fisher z transformation. This produces two distributions of values—one for 

category 1 and one for category 2. Then use a Bayes classifier to determine a 

threshold for classifying each current snippet as either a reliable-spike current or 

an unreliable-spike current. Also, take the snippets that have high correlation but 

small inner-product with current template as unreliable.

The PSTH was examined in step 1. First, we thresholded the PSTH and considered only 

time points within the PSTH that contained a spike in at least three trials (from among 

approximately 40 trials total). For convenience, we define such PSTH time points as PSTH 

peaks. Second, for all the PSTH peaks, we combined the neighboring peaks with time 

difference less than 5 ms. This step is to make sure there is no temporal separation of one 

PSTH big peak into multiple smaller peaks. Finally, for each PSTH peak, we recorded the 

temporal range of the peak and calculated the percentage of trials that spike in that range. If 
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the percentage was bigger than 90% (e.g., 36 of 40 trials) and the temporal range was 

smaller than 12 ms, we regarded that peak as reliable. Otherwise we called it unreliable. 

When we report neuron reliability, it is defined as the proportion of reliable peaks among all 

the peaks for the neuron.

Considering the set of 20 ms current snippets immediately preceding these reliable PSTH 

peaks, in step 2, we computed the mean 20 ms snippet (the mean across all these peaks). 

Because a positive current is required to drive each neuron to spike, we take only the 

positive portion of this snippet. We next computed the correlation of each snippet with the 

mean and excluded as outliers any snippets that have correlation greater than 1.5 times 

standard deviations from the mean correlation. We then recomputed the mean snippet to get 

the reliable-spike current template.

In Figure 4 we display the reliable-spike current templates computed for each of the mitral 

cells. In Figure 5 we show how the reliable-spike current template varies as a function of 

trials and peristimulus time used for model fitting. It may be seen that the parameter fits for 

the reliable spike template stabilized with a relatively small number of trials (n > 10 trials). 

Similarly, for n > 10 trials, more than 90% of the reliable PSTH peaks are recovered relative 

to when all trials are used to identify the reliable PSTH peaks. With respect to stimulus time, 

the reliable spike template converges when at least 30% of the total stimulus is used for 

training data relative to the 70% used previously (.75 s vs 1.75 s).

In step 3, we computed the correlation of each snippet with the reliablespike current 

template, applied the Fisher z transformation , and thereby obtained z-

transformed correlations for the snippets within each of two categories: (1) those 

immediately preceding the reliable peaks (termed R2) and (2) all others (termed R1). We 

then applied a Bayes classifier (Kass et al., 2014; Hastie, Tibshirani, & Friedman, 2011) to 

find the threshold, as the intersection of the density functions for the correlations under both 

cases, that best discriminated these transformed coefficients (see Figure 6).

Also, we computed the inner product of each snippet with reliable current template, and take 

the snippets with inner product larger than mean (Inner-products) – sd (Inner-products). This 

ensures that classified reliable current snippets are those that have high correlation with the 

reliable current template and those that have large absolute current magnitude that could 

inspire a spike.

After these steps, we finally have the classification of stimulus and can define our two 

stimulus kernel k1 and k2 in the model. If time t was regarded as a reliable-spike time, we 

used the convolution of k1 and 50 ms before t in the stimulus term; if unreliable, we used the 

convolution of k2 and 50 ms before t in the stimulus term. Model fitting proceeded by 

maximizing the likelihood function, as usual. We used seven nonlinearly spaced spline knots 

to fit k⃗ and 6 knots to fit h⃗ (Pillow et al., 2008; Tripathy et al., 2013). In practice, we replace 

(k⃗rel∙x⃗i, rel)a with sign(k⃗rel ∙ x⃗i, rel)|k⃗rel x⃗i, rel|a.

Wang et al. Page 7

Neural Comput. Author manuscript; available in PMC 2017 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A.3 Assessing Model Goodness of Fit

We used the summation of squared errors (SSE) as the goodness-of-fit measure for the 

models used here. Specifically, we used the difference between the PSTH for data and 

simulated spike trains. With the initial 70% of original data (with respect to peristimulus 

time, but including all trials) as training data, we fit each model and found model 

parameters. With these fitted filters and given stimuli, we next simulated 300 spike trains for 

each neuron. The simulated spike trains were used as simulated data.

For each reliable peak from test data, we compared the mean spike time of this peak and the 

simulated PSTH. The summation of the squared difference between the mean time of both 

real and simulated PSTH peaks is denoted as SSE for reliable spikes.

To define the likelihood ratio test to compare the GLM and CT models, we use the first 50% 

of the stimulus and spike train data to train the reliable current template for the CT model 

and the last 50% data to fit both models.
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Figure 1. 
Comparison of generalized linear model (GLM) and current thresholded model (CT model) 

in capturing dynamic mitral cell (MC) spiking activity. (A) MC intrinsic properties are 

probed using filtered broadband frozen noise (first row) injected into the soma. MC spike 

rasters (second row; black) and PSTH (third row; black) for repeated stimulus presentations 

(n = 40 trials). Corresponding model-based rasters and PSTHs for GLM (green) and CT 

model (red) show that the CT model better captures temporally precise MC spiking activity. 

PSTH smoothed with gaussian with σ = 2 ms and are slightly offset for visual clarity. The 

inset on the right indicates boxed segment on left. Data shown here include only test data not 

used to train model parameters. (B) Model stimulus filters for GLM (green) and CT model 

(unreliable stimulus filter, light red; reliable stimulus filter, dark red) for a representative 

MC. t = 0 ms indicates current time bin. (C) Relative improvement of CT model (with a = 1) 

compared to GLM. Improvement is quantified by first calculating the sum of squared errors 

between MC and model PSTHs and then calculating the ratio between GLM and CT model 

SSE. Higher ratios indicate that the CT model is a better model for MC activity than GLM. 

The x-axis indicates MC identity (n = 44 MCs). The circle indicates MC shown in panel A. 

(D) Analysis of MC features compared to CT model improvement relative to GLM. The x-

axis indicates neuron trial-to-trial reliability, computed as the proportion of PSTH peaks 

defined as reliable relative to all PSTH peaks. The MCs split into four categories based on 

CT model improvement (with a = 1) relative to standard GLM model: no improvement 

(white; ratio of SSE < 1.0), slight improvement (black; 1.0 ≤ ratio of SSE < 1.05), some 
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improvement (red; 1.05 ≤ ratio of SSE < 1.2), and large improvement (green; ratio of SSE ≥ 

1.2).
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Figure 2. 
Comparison of the spike-triggered covariance model to the CT model and GLM for the 

example neuron highlighted in Figure 1A. (A) Rasters and PSTHs comparing each model to 

MC spike trains. Note that STC rasters are a much poorer model for MC activity relative to 

either the GLM and CT model. (B) Stimulus filters for the STC model. The STC filter 

corresponds to the filter with the largest eigenvalue. (C) Eigenvalues for STC eigenvectors. 

A single STC eigenvector with the largest eigenvalue was chosen for the STC model, in 

addition to the STA. (D) Density plot for stimulus snippet projection onto STA and STC 

bases for all stimuli (raw stimuli) and only those preceding spikes (spike-triggered stimuli). 

This 2D density plot was used for calculating the firing rate nonlinearity.
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Figure 3. 
Log-likelihood ratio p-values for testing CT versus GLM model, on a scale of log10(p), for 

N = 44 mitral cells.
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Figure 4. 
Reliable stimulus current templates shown for all of the mitral cells. N = 44 mitral cells.
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Figure 5. 
Convergence of reliable current stimulus template as a function of the number of trials used 

to fit the model (left) or amount of training data with respect to time for model fitting (right). 

Stimulus filter template shown for the neuron highlighted in Figure 1A. In both cases, a 

relatively small amount of training data, both with respect to trials or peristimulus time, is 

needed for stimulus filter template to empirically converge.
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Figure 6. 
Finding the threshold using distributions of R1 and R2. In this figure, the solid black line is 

the fitted pdf of log((1 + R1)/(1 − R1)), and the solid purple line is the corresponding fitted 

pdf of log((1 + R2)/(1 − R2)). The threshold can be taken at the intersection of the two fitted 

pdfs.
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