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Abstract

Genetic factors that influence the transition from initial drinking to dependence remain enigmatic. 

Recent studies have leveraged chronic intermittent ethanol (CIE) paradigms to measure changes in 

brain gene expression in a single strain at 0, 8, 72 h, and even 7 days following CIE. We extend 

these findings using LCM RNA-seq to profile expression in 11 brain regions in two inbred strains 

– C57BL/6J (B6) and DBA/2J (D2) – 72 h following multiple cycles of ethanol self-administration 

and CIE. Linear models identified differential expression based on treatment, region, strain, or 

interactions with treatment. Nearly 40% of genes showed a robust effect (FDR < 0.01) of region, 

and hippocampus CA1, cortex, bed nucleus stria terminalis, and nucleus accumbens core had the 

highest number of differentially expressed genes after treatment. Another 8% of differentially 

expressed genes demonstrated a robust effect of strain. As expected, based on similar studies in 

B6, treatment had a much smaller impact on expression; only 72 genes (p < 0.01) are modulated 

by treatment (independent of region or strain). Strikingly, many more genes (415) show a strain-

specific and largely opposite response to treatment and are enriched in processes related to RNA 

metabolism, transcription factor activity, and mitochondrial function. Over 3 times as many 

changes in gene expression were detected in D2 compared to B6, and weighted gene co-expression 

network analysis (WGCNA) module comparison identified more modules enriched for treatment 

effects in D2. Substantial strain differences exist in the temporal pattern of transcriptional 

neuroadaptation to CIE, and these may drive individual differences in risk of addiction following 

excessive alcohol consumption.

Keywords

C57BL/6J; DBA/2J; CIE; alcohol; addiction; RNA-seq

Corresponding Author: Megan K. Mulligan, 71 S. Manassas St. Rm. 409, Memphis TN 38163, (901) 448-3548, mmulliga@uthsc.edu, 
mulliganmk@gmail.com. 

HHS Public Access
Author manuscript
Alcohol. Author manuscript; available in PMC 2018 February 01.

Published in final edited form as:
Alcohol. 2017 February ; 58: 61–72. doi:10.1016/j.alcohol.2016.09.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Chronic alcohol intake can lead to the development of tolerance and dependence, which are 

risk factors for sustained excessive alcohol consumption. There are likely many genetic, 

environmental, and neuroadaptive factors that influence the transition from initial drinking to 

dependence, possibly through the complex interplay between brain reward and stress 

mechanisms (Koob & Volkow, 2010). Recent studies have leveraged genome-wide gene 

expression profiles (microarray and RNA sequencing platforms) to identify altered pathways 

in post mortem tissue from human alcoholics (Farris & Mayfield, 2014; Lewohl et al., 2000; 

Liu et al., 2006; Mayfield, Harris, & Schuckit, 2008; Ponomarev, Wang, Zhang, Harris, & 

Mayfield, 2012) and provide insight into the biological processes underlying the transition 

from chronic alcohol exposure to excessive alcohol intake in rodent models (Melendez, 

McGinty, Kalivas, & Becker, 2012; Osterndorff-Kahanek et al., 2015; Smith et al., 2016). 

Factors influencing excessive drinking are not yet well characterized, but recent studies have 

revealed some common themes: 1) chronic alcohol consumption leads to long-lasting 

changes in brain gene expression, 2) some brain regions, such as prefrontal cortex and 

hippocampus, seem to be exquisitely sensitive to chronic alcohol exposure, 3) only a handful 

of genes overlap across studies, and 4) at least in animal models, gene expression changes 

follow a clear time course following a prolonged period of chronic intake. However, few 

studies have chronicled the impact of genetic background on the chronic alcohol engram. To 

address this gap we have compared transcriptional profiles following chronic alcohol 

administration between two highly divergent inbred mouse strains – C57BL/6J (B6) and 

DBA/2J (D2).

Over 5 million loci are polymorphic between B6 and D2, and these strains have been shown 

to differ in a number of alcohol-related traits, including alcohol consumption (Yoneyama, 

Crabbe, Ford, Murillo, & Finn, 2008), initial sensitivity (Crabbe, 1983), withdrawal, and 

tolerance (Metten & Crabbe, 2005). These strains and their recombinant progeny are often 

used to explore individual differences that might influence stages of alcohol addiction. In 

particular, the B6 strain, compared to the D2 strain and most other inbred strains of mice, 

will voluntarily consume large quantities of ethanol mixed only with water. B6 mice also 

demonstrate increased alcohol intake, compared to baseline, after exposure to four cycles of 

continuous ethanol vapor (16 h) and withdrawal (8 h) using a chronic intermittent ethanol 

paradigm (CIE) (Becker & Lopez, 2004). For this reason, the B6 strain has been used to 

explore neurobiological adaptations that influence the transition between chronic alcohol 

exposure and excessive alcohol consumption. The CIE paradigm is also severely stressful 

and leads to long-lasting alterations in hypothalamic-pituitary-adrenal (HPA) axis signaling 

and function, which impacts the behavioral response to subsequent alcohol and stress 

exposure and may drive relapse drinking in susceptible individuals (Becker, 2012; Heilig, 

Egli, Crabbe, & Becker, 2010; Maldonado-Devincci et al., 2016). Several recent studies 

explored the temporal pattern of gene expression changes after multiple cycles of CIE in B6, 

and found a number of transcriptional changes immediately following CIE (time 0) or 

during withdrawal (8 h later); however, very little change was detected at 120 h (Melendez et 

al., 2012; Osterndorff-Kahanek et al., 2015). A more recent study identified a small but 

significant number of long-lasting alterations up to a week following the last CIE cycle 
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(Smith et al., 2016). Here we extend these findings by characterizing transcriptional 

differences across 11 brain subregions at an intermediate 72-h time point following five 

cycles of CIE in both B6 and D2. Our data suggest substantial strain differences in the 

temporal pattern of transcriptional neuroadaptation in response to treatment and support 

differential brain region sensitivity and the existence of a long-lasting engram for chronic 

alcohol exposure.

Materials and methods

Design

Gene expression in response to chronic alcohol treatment was measured in 13 matched brain 

subregions from two inbred strains of mice (C57BL/6J and DBA/2J). The balanced study 

design included two males of each strain assigned to either the air control or chronic 

intermittent ethanol treatment group. The total number of samples was 104 (13 samples for 

each individual per condition). Tissue was collected by laser capture microdissection (LCM) 

followed by RNA extraction and sequencing (RNA-seq). Following quality control measures 

to detect and remove poorly performing samples (see Quality Control section below), the 

final data set included 11 brain regions and 87 samples.

Animals

Male C57BL/6J and DBA/2J mice (10 weeks old upon arrival) were purchased from the 

Jackson Labs and assigned to either the air control or CIE group. Mice were individually 

housed with free access to food (Harland Teklad, Madison, WI) and water throughout all 

phases of the experiments. Body weights were recorded weekly during ethanol-drinking 

weeks or daily during chronic intermittent ethanol (CIE) or air exposure (detailed below). 

Mice were housed in a temperature- and humidity-controlled animal facility under a 

reversed 12-h light/dark cycle (lights on at 0200 h). Mice were not food- or water-deprived 

at any time during the study. All procedures were approved by the Institutional Animal Care 

and Use Committee at the Medical University of South Carolina (MUSC) and followed the 

NIH Guide for the Care and Use of Laboratory Animals (8th edition, National Research 

Council, 2011). Brain tissue was removed at MUSC and shipped to UTHSC for laser capture 

microdissection (LCM).

Chronic ethanol exposure

Mice were allowed to self-administer alcohol (15% v/v vs. water) for 2 h a day (5 days a 

week) 6 weeks prior to treatment in order to establish baseline consumption. Access to 15% 

alcohol versus water started 30 min prior to the start of the dark cycle. Following 

establishment of baseline drinking, two male mice representative of each strain were 

separated into two groups to be exposed to either weekly cycles of CIE exposure (CIE 

group) or air control (AIR group) exposure. There was no difference in baseline 

consumption or preference within strain prior to assignment to AIR or CIE treatment groups 

(Supplemental Fig. 1). As expected, there was a significant difference in alcohol 

consumption and preference between strains at baseline (B6 > D2, p < 0.01, Supplemental 

Fig. 1).
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Mice assigned to the CIE treatment group were exposed to alcohol vapor for 16 h a day 

followed by 8 h of withdrawal for 4 days. Following the fourth vapor exposure, mice were 

given a 72-h abstinence period before resuming ethanol intake in the home cage for 5 days. 

Mice in the AIR control treatment group were similarly treated but exposed only to air in the 

inhalation chambers. This pattern of CIE or air control exposure followed by 5 days of 

ethanol self-administration was repeated for four cycles. A fifth cycle of CIE (or air) 

exposure followed the fourth ethanol intake evaluation period, and brain tissue was collected 

72 h after the last cycle ended.

Pyrazole (1 mmol/kg) was used to stabilize blood ethanol levels (BEC) and was 

administered to both CIE and AIR groups. Average BEC across cycles was 212.11 ± 6.68 

mg/dL for B6 and 269.96 ± 13.15 mg/dL for D2. There was a significant difference between 

strains in ethanol preference during AIR and CIE exposure (B6 > D2, p < 0.01, 

Supplemental Fig. 1). Although the number of individual replicates here is small, the 

variation in consumption of alcohol between strains and treatment groups is reflective of the 

larger population, and all individuals were included for LCM followed by RNA-seq.

LCM

Whole brain tissue was sectioned at 10 μm using a Leica cryostat and mounted in series with 

6–8 sections per slide onto uncharged and uncoated glass slides. Mounted sections were 

dehydrated in 100% methanol (90 sec), 70% ethanol (1 min), 95% ethanol (1 min), 100% 

ethanol (1 min × 2), xylene (5 min). Slides were then allowed to air dry for 10 min under a 

fume hood.

Series were created from distinct coronal sections (bregma positions based on a C57BL/6J 

reference brain atlas) and individual regions were matched across section and harvested by 

LCM (Supplemental Fig. 2). Prelimbic (PrL) and infralimbic (ILC) cortex included a series 

spanning from bregma 1.98 to 1.54 mm. The accumbens core (NAc) and shell (NAs) series 

were collected from bregma 1.54 to 0.98 mm, and dorsolateral (DLS) and dorsomedial 

(DMS) striatum and bed nucleus stria terminalis (BST) were collected from bregma 0.38 to 

−0.10 mm. Basolateral (BLA) and central nucleus (CeA) of the amygdala series were 

collected from bregma −0.58 to −1.22 mm and hippocampus (CA1 and CA3) was collected 

from bregma −1.46 to −2.46 mm. Finally, the ventral tegmental area (VTA) and primary 

visual cortex (VCX) series were collected from bregma −3.28 to −3.80 mm.

Arcturus XT (Life Technologies) was used to capture 13 brain areas. The infrared laser was 

then used to capture the tissue onto CapSure LCM caps (Life Technologies, laser spot power 

set to 70 mV with a duration of 25 msec).

RNA extraction

RNA from tissue trapped in the CapSure LCM caps was extracted using the PicoPure RNA 

isolation kit (Life Technologies) according to the manufacturer’s instructions (RNA was 

eluted from provided capture columns in 13.5-μL nuclease-free water). RNA quality was 

analyzed using a Bioanalyzer (Model 100, Agilent, Foster City, CA). Samples with an 

associated RNA integrity number (RIN) greater than 6 were subsequently used for RNA 

sequencing.
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RNA sequencing

Poly-A enriched mRNA was sequenced on two platforms, ABI SOLID 550XL Wildfire (65 

samples) and Ion Proton (39 samples). Read length was 50 nt for the SOLID system and the 

average read length for the Proton system was ~180 nt. Reads generated on the SOLID 

system were aligned to the mm10 reference genome using the LifeScope aligner, and BAM 

files were subsequently generated using custom scripts for third-party downstream analysis. 

For the Proton system, reads were also aligned to the mm10 (Ensemble GRCm38) reference 

genome using TopHat2. Settings for TopHat2 are as follows: “-p 15 -N 4 --read-gap-length 6 
--read-edit-dist 8 --max-insertion-length 6 --max-deletion-length 6 --max-intron-length 
300000 --b2-very-sensitive”. Alignments on both platforms are splice-aware. RSeQC-2.6.1 

(RPKM_count.py) was used to generate count data based on mm10 GENECODE Basic 

transcript annotation (43,320 transcripts detected). We selected this annotation for greater 

reproducibility with existing microarray data sets and to simplify downstream analysis by 

limiting the number of transcript models for each gene. On average, 2.5 million and 7.8 

million reads uniquely aligned to transcript models on the SOLID and Proton platforms, 

respectively. Data were further filtered to remove transcripts that had less than 1 count in 

90% or more samples. After filtering, 24,597 transcripts representing 12,011 unique genes 

remained (Supplemental Table 1). The variance stabilizing transform (R package DESeq2, 

FitType = local) was applied to the count data, and transformed data were corrected by 

dividing by transcript length to generate log2 reads per kilobase gene model (RPK) values. 

The use of two different sequencing platforms was corrected using batch correction 

(ComBat, Supplemental Fig. 3). All data filtering, transformations, and batch correction 

were performed using custom R scripts. Batch-corrected and transformed log2 RPK and log2 

count values are available in Supplemental Tables 2 & 3, and log2 RPK data are also 

available at GeneNetwork (www.genenetwork.org; Group = Chronic Intermittent Ethanol, 

Type = LCM Brain Regions mRNA, Data set = INIA LCM [11 Regions] CIE/AIR RNA-seq 

Transcript Level [Dec15]).

Quality control

Principal component analysis (PCA), a data-reduction technique, was used to identify 

sample outliers, visualize the data, and explore the main sources of variation driving 

expression. PCA analysis was performed in R using the prcomp function. Several tissues 

showed poor sample clustering and were excluded from analysis (BLA and DLS). The PrL 

sample from B6 mouse 34 (CIE treatment) was an extreme outlier in the PCA and was also 

excluded. All cortical samples (collected from ILC, PrL, and VCX) were considered as one 

sample type (CTX) due to the high degree of similarity in expression. The resulting data set 

included 9 tissue types (BST, CA1, CA3, CeA, CTX, DMS, NAc, NAs, VTA) and 87 

samples.

Estimating effects on expression using Generalized Linear Models (GLM)

Differential gene expression was determined using the glm function in R where gene 

expression (Y) is dependent on treatment, strain, region, or treatment interactions with strain 

and region: Y ~ Treatment + Strain + Region + Treatment*Strain + Treatment*Region.
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Treatment was coded as 0 for AIR and 1 for CIE, 0 for B6 and 1 for D2. Regions were 

collapsed into three groups based on the PCA clustering and coded as 0 for hippocampus 

(CA1 and CA3 regions), 1 for cortex (Prl, ILC, and VCX), and 2 for the remaining 

subcortical and limbic and mesolimbic tissue (VTA, NAc, NAs, DMS, CeA, and BST).

The local false discovery rate (q value) for each effect on expression in the model was 

estimated from the p value distribution in R using the q-value package (Storey & Tibshirani, 

2003).

In many cases, the same gene is represented by multiple transcript models; however, the 

gene level analysis performed here cannot discriminate between transcript isoforms. For this 

reason, in the vast majority of cases, expression is similar for transcript models representing 

the same gene. In a few instances, a significant effect of treatment, region, or strain is 

detected for one isoform and a significant interaction is detected for another. In these cases, 

all transcript models for the gene are assigned to the interaction effect.

Confirmation of expression differences

Expression differences due to strain and region were confirmed using a bioinformatics 

approach since excess RNA for QPCR was not available. For regional expression 

differences, in situ expression data from the Allen Brain Atlas (mouse.brain-map.org) were 

compared with the top 27 genes with robust effects of region on expression. Log2 raw 

expression values based on quantified values for each structure at a grid voxel level were 

obtained for isocortex, hippocampal formation (HPF), striatum (STR), and midbrain (MB) 

for each gene and compared with average Prl, ILC and VCX; CA1 and CA3; DMS, NAc and 

NAs; and VTA log2 RPK expression data. Correlation was determined using the Pearson 

correlation coefficient. For strain differences, a list of genes modulated by locally acting 

(cis) polymorphisms was computed using resources available at GeneNetwork. Affymetrix 

M430 microarray data sets generated from hippocampus (Hippocampus Consortium 

M430v2 [Jun06] RMA), cortex (VCU BXD PFC Sal M430 2.0 [Dec06] RMA), striatum 

(HBP Rosen Striatum M430V2 [Apr05] RMA Clean), and nucleus accumbens (VCU BXD 

NAc Sal M430 2.0 [Oct07] RMA) of BXD strains were mined for cis-expression 

quantitative trait loci (cis eQTLs) using the GenomeGraph tool. Summarized eQTL data for 

each data set were downloaded and probe sets that had: 1) a maximum QTL (defined as the 

peak marker position) within (±) 2 Mb of the gene locus, and 2) a log of the odds (LOD) 

score greater than 2 (equivalent to a likelihood ratio statistic or LRS greater than 10) were 

nominated as cis eQTLs. A list consisting of unique Affymetrix M430 probe set IDs 

representing a transcript with a significant cis eQTL in one or more brain regions was 

generated. Ensembl BioMart was used to extract associated M430 probe set information for 

each Ensembl transcript ID associated with a significant strain effect in the RNA-seq data 

set, and the resulting list was overlapped with the significant brain cis-eQTL list. Some false 

positives are expected using this approach due to SNP effects on probe set expression 

(Ciobanu et al., 2010).
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Enrichment analysis

WebGestalt was used for Gene Ontology (GO), KEGG pathway, miRNA binding site, and 

protein-protein interaction module enrichment (Zhang, Kirov, & Snoddy, 2005). Enrichment 

was determined based on the hypergeometric distribution, and FDR was estimated using 

Benjamni and Hochberg’s method (adjP < 0.05). Gene sets were selected after glm based on 

a nominal p-value threshold (p < 0.01). Gene sets and background gene lists contain unique 

genes only, and the identifier used was Ensemble transcript ID.

CIE time course overlap

A comparison of gene expression changes was performed between our study and a similar 

study from Smith and colleagues (Smith et al., 2016). The studies differ in strains included, 

expression platform used, number of CIE cycles, and whether or not subjects were allowed 

to self-administer alcohol. In the study from Smith et al., B6 mice underwent four cycles of 

CIE by vapor chamber. After the fourth CIE cycle, 12 mice (6 CIE and 6 air-control) were 

sacrificed, and brains were harvested at each of four time points: 0 h, 8 hours, 72 h, and 7 

days. RNA was extracted from the prefrontal cortex, nucleus accumbens, hippocampus, bed 

nucleus of the stria terminalis, and central nucleus of the amygdala, and hybridized to 

Affymetrix Mouse Gene Chip 430, type 2 microarrays. Microarrays were processed, and 

differential gene expression was quantified using linear models for microarrays (LIMMA) as 

previously described (Smith et al., 2016). B6 time course genes were significantly 

differentially expressed between CIE and AIR mice at each time point and brain region, at a 

false discovery rate of 0.1 from Smith and colleagues. The B6 time course genes were used 

for comparison to RNA-seq genes that were significantly differentially expressed by 

treatment, or treatment-region interaction, in B6 and/or D2 mice in the current study. 

Significance of overlap was determined using Fisher’s Exact Test through the 

‘GeneOverlap’ package for R. Overlaps with a false discovery rate of ≤0.05 were considered 

significant.

WGCNA

We used the Weighted Gene Co-expression Network Analysis (WGCNA) package in R 

(version 1.49) to define correlated networks of transcripts from the gene expression data 

(Langfelder & Horvath, 2008). All 9 tissue types and 87 samples used for differential 

expression were included in WGCNA. For this, the transcripts were further filtered such that 

each gene had only a unique transcript. Specifically, for a gene with multiple transcripts, we 

retained the transcript with the highest variance across the samples as the representative 

expression trait, which resulted in a non-redundant list of 12,590 genes. WGCNA is a 

dimension-reduction procedure that first generates a gene-by-gene similarity matrix by 

computing pairwise correlations for each transcript. The similarity matrix is transformed 

into an adjacency matrix using soft thresholding power, β. The β is chosen so that the 

transformed data will fit a scale-free network topology. Finally, the connectivity between 

each node (i.e., transcript) is estimated from the topological overlap matrix, and modules 

that represent networks of tightly correlated transcripts are constructed. For more detail on 

the computation procedure for WGCNA please see Zhang & Horvath, 2005. Modules for B6 

and D2 were constructed independently but using the same β of 6. In B6, this has a mean 
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connectivity (k) = 56.8 and maximum k = 445 and fits a scale-free topology by R2 = 0.86. In 

D2, this has a mean connectivity (k) = 57 and maximum k = 429 and fits a scale-free 

topology by R2 = 0.83. Using this parameter, co-expression adjacencies and the topological 

overlap matrix were constructed, and hierarchical clustering of genes was done using the 

‘hclust’ function using the average linkage method. Modules were defined using the 

dynamic cut-tree method with default cut height of 0.99 and a minimum module size of 35 

with deepSplit set to 2. Highly correlated modules were merged at a cut height of 0.2 and 

transcripts with low overall connectivity were filtered into the grey module. Following 

module construction, transcripts with low overall connectivity are filtered into the grey 

module. Once modules are defined, the expression pattern of each module is summarized by 

the module eigengene (ME, the first principal component), and this can be used to examine 

inter-module correlations and association with other variables such as brain region, strain, 

and treatment. This allows the identification of factors that are associated with the 

summarized variance of a network of transcripts. We used linear regression analysis to test 

association between the MEs and Treatment + Region + Treatment*Region for the B6 and 

D2 modules. To examine overlap of transcript members between B6 and D2 modules, we 

performed a contingency analysis and counted how many transcript members in a particular 

D2 module are in a B6 module. Significance of overlap was derived from Fisher’s exact test.

Results

Differential expression results from region, strain, and treatment effects

The main source of variation in expression in the data set as a whole is tissue type. The first 

four principal components (PCs) reflect brain region and explain ~55% of the cumulative 

proportion of variance. Each PC captures approximately 27, 15, 8, and 5% of the variance in 

expression, respectively. Samples collected from hippocampus (CA1 and CA3), cortex, and 

ventral tegmental area (VTA) cluster together well after principal component analysis 

(PCA), regardless of strain or treatment group (Supplemental Fig. 3). Few samples fall 

outside the normal distribution probability ellipse for each region. Overlap in expression 

profiles is evident for samples from similar tissues such as DMS and NAc, NAs and CeA, 

and CeA and BST.

To capture expression patterns due to region, strain, and treatment or their interactions, we 

applied a linear model to the expression data: y ~ Treatment + Strain + Tissue + 

Treatment*Strain + Treatment*Region (Supplemental Table 4). At a nominal p value (p < 

0.01), most expression differences are due to the effect of region (5464 unique genes) or 

strain (1111 unique genes), but there are many transcripts that demonstrate differential 

expression due to the effect of treatment – treatment alone (70 unique genes), treatment by 

strain (415 unique genes), or a treatment by region interaction (60 unique genes) (Fig. 1, 

Supplemental Table 5).

Robust detection and validation of regional and strain differences in gene expression

Over 40% of the unique genes surveyed show robust (FDR < 0.1) expression variation by 

region (Supplemental Table 6). In general, the effect of region is small – the average fold 

change is 1.35 (average log2 RPK estimate of 0.44). Within this gene set, 27 genes 
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demonstrate a large effect of region with an estimated effect on expression of more than 2 

log2 RPK units, which amounts to a greater than 4-fold difference (Fig. 2A–D). Expression 

patterns were confirmed for 21 of these genes (Fig. 2E) using in situ hybridization data 

available for the B6 strain (mouse.brain-map.org) from the Allen Brain Atlas project (Lein et 

al., 2007).

Over 8% of the unique genes surveyed demonstrate robust (FDR < 0.1) expression 

differences driven by strain. Over half of these genes are regulated by a strong cis eQTL 

(logarithm of the odds or LOD score > 2) in one or more brain tissues from the BXD 

recombinant inbred panel derived from B6 and D2 (Supplemental Table 6).

Small but significant strain differences in response to CIE treatment

At a false positive rate of 10% (q < 0.1), no significant main effect was detected for 

treatment or the interaction between region and treatment. However, 20 unique genes were 

significantly differentially expressed due to a treatment by strain interaction (Table 1, 

Supplemental Table 6). The top genes with treatment by strain interaction effects (q < 0.1) 

fell into two categories based on pattern of expression (Fig. 3). Some genes, such as mt-Rnr1 
and Yme1l1, demonstrate differences in expression between AIR or CIE treatment groups in 

one strain (usually D2) only. Others demonstrate a transcriptional response to treatment that 

is opposite in each strain. For example, levels of Atp5a1, H1f0, Timm10, Denr, and Parn are 

increased after CIE compared to AIR exposure in B6, but decreased in D2. In contrast, levels 

of Creb1 are decreased after CIE treatment in B6 and increased in D2. No enrichment of 

biological function was detected for this small class of genes.

The lower number of significant results for treatment effects at FDR < 0.1 compared with 

region and strain effects are expected given: 1) a high level of variation associated with gene 

expression measurements, 2) the low number of biological replicates (n = 2), and 3) a much 

smaller effect size for treatment compared to region or strain. The use of LCM precludes 

validation by quantitative PCR; however, these data are sufficient for an exploratory analysis 

using nominal p values in order to identify biological pathways that are exquisitely sensitive 

to chronic alcohol exposure and may mediate long-lasting changes involved in the 

development of tolerance, dependence, and addiction.

Long-lived transcriptional changes after CIE treatment reflect mainly divergent biological 
processes between strains

Selecting a nominal p-value threshold of p < 0.01 results in 72 and 415 unique genes with 

differential expression due to a main effect of Treatment and a Treatment by Strain 

interaction, respectively (Supplemental Table 5). For treatment (independent of strain or 

region), 42 and 30 unique genes were up- or down-regulated, respectively. No GO categories 

were significantly enriched for either the combined or up- or down-regulated list at an FDR 

< 0.05 (Benjamini & Hochberg method), probably due to the small size of the gene set.

Genes with a significant Treatment by Strain interaction effect on expression display 

differential regulation in each strain and were split into two categories: 1) general down-

regulation in B6 and up-regulation in D2 due to treatment (140 unique genes) and 2) general 

up-regulation in B6 and down-regulation in D2 due to treatment (262 unique genes). Genes 
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in category 1 were significantly enriched (FDR < 0.05) for a number of GO categories 

related to transcription, including regulation of gene expression, regulation of RNA 

biosynthetic process, regulation of transcription, DNA-dependent, SMAD binding, and 

sequence-specific DNA binding transcription factor activity (Supplemental Fig. 4, 

Supplemental Table 7). The gene set also included significant enrichment for the KEGG 

TGF-beta signaling pathway and binding sites for MIR-142-5P, MIR-505, and MIR-29 (A, 

B, & C) (Supplemental Table 7). Although no protein-protein interaction (PPI) networks 

were significantly enriched in the gene set, there was a suggestive enrichment (FDR = 6.3%) 

for a PPI network module related to transcription in which several genes with altered 

expression in category 1 are positioned as hub genes or highly connected genes. These genes 

include Ube2d3, Ep300, Ercc6, Cul1, Taf5, Pou2f1, Myobp1a, Papola, Cpsf2, and Fos 
(Supplemental Fig. 5, Supplemental Table 7).

Category 2 genes show differential strain expression (up-regulation in B6 and down-

regulation in D2) after CIE treatment and are significantly enriched for many GO categories 

related to mitochondria, oxidation-reduction processes, and energy production, including: 

electron transport chain; oxidative phosphorylation; mitochondrial ATP synthesis coupled-

electron transport; iron-sulfur cluster binding, oxidoreductase activity; and localization to 

mitochondrion (Supplemental Fig. 6, Supplemental Table 8). Many overlapping KEGG 

pathways are also significantly enriched in this gene set, including Parkinson’s, 

Huntington’s, and Alzheimer’s disease, oxidative phosphorylation, drug metabolism-

cytochrome P450, metabolism of xenobiotics by cytochrome P450, cardiac muscle 

contraction, metabolic pathways, and tyrosine and glutathione metabolism pathways 

(Supplemental Table 8). PPI modules related to mitochondrial proton-transporting ATP 

synthase complex (Supplemental Fig. 7), unfolded protein binding (Supplemental Fig. 8), 

proteasome (Supplemental Fig. 9), and microtubule-based movement (Supplemental Fig. 10) 

were also enriched with several category 2 genes positioned as hub genes.

Markedly different transcriptional responses between B6 and D2 were observed due to CIE 

treatment using our regression analysis. To further explore this difference, linear models 

were used in a post hoc analysis to evaluate the effect of treatment and region (y ~ 

treatment*region) on gene expression within each strain. The results of this analysis are 

striking. At a nominal significance threshold (p < 0.05), 1516 unique genes are differentially 

expressed due to a treatment or treatment by region interaction in D2 compared to 369 in B6 

(Fig. 4, Supplemental Table 9). Only 59 genes overlap and the direction is often inconsistent. 

No significantly enriched GO categories were detected for the B6 gene set after correction 

for multiple testing. For the D2 gene set, localization to mitochondrial respiratory chain 

complex 1 (n = 16, adjP = 1.66E−05) was significantly enriched.

Marked regional differences in response to treatment

Sixty genes show significant (p < 0.01) expression differences due to an interaction between 

treatment and region (Treatment*Region). The effect of region on expression is quite small 

for this subset; average estimated effect of the interaction on expression is 0.32 (1.24-fold) 

with a maximum value of 0.5 log2 RPK units (1.4-fold). To further investigate the effect of 

treatment within each region, regression analysis was performed for all 11 brain areas (y ~ 
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Treatment*Strain). PrL, VCX, CA1, BST, and NAc show the largest number of treatment 

and treatment by strain interaction effects (p < 0.01) 72 h following CIE treatment (Fig. 5). 

In addition, BST (n = 78), CA1 (n = 60), and PrL (n = 65) have the highest number of 

nominally significant changes in expression due to the effect of treatment.

Overlap with previous studies

Smith and colleagues recently performed a comprehensive time course of expression 

changes in multiple brain regions following CIE treatment in B6. Top significant genes at 

each time point and region were compared with nominally significant expression changes 

detected in B6 and D2 following CIE in our study (Fig. 6, Supplemental Tables 10 & 11). 

There was significant overlap at an FDR of 0.05, detected primarily at 0 and 8-h time points 

in prefrontal cortex (PFC), nucleus accumbens, BNST, and hippocampus, potentially 

indicating a persistent molecular signal, or engram, following chronic alcohol treatment. The 

pattern of overlap across brain regions likely reflects the larger number of significant 

treatment differences detected in CA3, BNST, NAc, and cortex detected in our study. 

Remarkably, no significant overlap was detected for the 72-h time point across studies, 

perhaps due to the small number of significant changes in B6 detected in both the Smith et 

al. study and our own.

WGCNA reveals a more robust effect of treatment on network organization of the D2 
transcriptome

Statistical analysis of gene expression patterns in the data set indicated that D2 was more 

sensitive to CIE treatment in terms of gene expression changes at 72 h post-exposure. To 

evaluate global patterns of organization within each strain, co-expression networks were 

constructed independently for B6 and D2. This organized the D2 transcriptome into 25 

modules ranging in size from 42 to 1949 members (Supplemental Table 12). The B6 

transcriptome was organized into 24 modules that range in size from 48 to 2923 members 

(Supplemental Table 13). Each module is a network of correlated transcripts that have 

similar expression patterns across samples. To test if treatment has an influence on the 

correlated network of transcripts, we extracted the first principal component for each module 

(i.e., the module eigengene or ME) and used this in a multiple regression analysis to test 

association with treatment, region, or treatment by region interactions. As expected, brain 

region had the most pervasive influence on the global organization of expression traits and 

most modules show significant association with brain region in both strains. This indicates 

that the co-expression of these transcripts is strongly driven by brain region-specific 

expression patterns. By comparing the network members in the D2 and B6 modules, we 

found that for the most part, modules constructed in D2 overlap extensively with B6 

modules. However, 6 D2 modules have limited overlap with B6 modules, and we consider 

these to be D2 strain-specific modules (Supplemental Table 14).

In B6, only 1 ME (B6darkolivegreen) showed a modest association with a treatment by 

region interaction effect at the 72-h post-exposure time point. However, this did not reach 

significance following multiple test correction (Bonferroni p < 0.05). None of the B6 

modules was enriched for transcripts with altered expression due to treatment or treatment 

by region interaction effects (Supplemental Table 15). In contrast, the ME of 9 D2 modules 
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was associated with a treatment or treatment by region interaction effect (Supplemental 

Table 16). Even after setting a Bonferroni-corrected threshold, 4 D2 MEs (D2blue, 

D2darkgreen, D2darkorgange, and D2salmon) had a highly significant association with 

treatment or treatment by region interaction. When we examined the members of these 

modules, we found that several are enriched for transcripts differentially expressed due to a 

treatment or interaction effect in D2. In particular, we highlight three modules: D2blue, 

D2darkorange, and D2salmon. These represent tightly correlated networks of transcripts that 

are responsive to treatment. Taken together, the network analysis shows that while CIE has a 

strong influence on the global organization of gene expression in the D2 brain, the B6 brain 

is less responsive to CIE.

Discussion

In this study, we generated an extensive set of brain-region RNA-seq profiles for two inbred 

strains at a single time point following chronic exposure to alcohol. We identified and 

validated regional changes in expression using in situ profiles available at the Allen Brain 

Atlas. We also identified strain differences in expression and leveraged cis-eQTL data from 

the BXD panel to determine that over half of these differences may result from variants 

segregating between B6 and D2. Despite a low number of biological replicates and the 

potential for sampling bias, the detection and replication of brain region and strain 

differences from our study using independent data sets from the Allen Brain Atlas and 

GeneNetwork indicate that our data set is robust. We leveraged these data to identify 

differential expression due to the effect of treatment using linear models and WGCNA and 

found a marked difference in the transcriptional response between B6 and D2, both at the 

level of single gene expression and at networks of genes. Previous studies using microarray 

platforms have examined expression changes across brain regions at different time points 

following the last cycle of CIE in a single strain, B6 (Melendez et al., 2012; Osterndoff et 

al., 2015; Smith et al., 2016). Our study is the first to explore the lasting impact of CIE on 

gene expression 72 h following treatment in multiple brain regions in both B6 and D2 using 

the RNA-seq platform. Although the number of individuals profiled here is small, the depth 

of sampling across tissues is broad. The data presented here provide a rich snapshot of 

strain-dependent transcriptional changes following CIE, and provide the impetus for future 

focused studies in a larger number of individuals.

As expected based on findings from previous studies, the effect of treatment on gene 

expression 72 h after multiple cycles of CIE is small compared to regional and strain effects. 

We identified only a handful of common transcriptional responses to treatment. Studies 

using B6 have reported a smaller number of significant changes in gene expression 120 h 

following repeated cycles of CIE (Smith et al., 2016). This is in contrast to gene expression 

changes at 0 and 8 h following chronic exposure, time points thought to represent response 

to and withdrawal from alcohol (Melendez et al., 2012; Osterndorff-Kahanek et al., 2015; 

Smith et al., 2016). Interestingly, a cross-study comparison of gene expression changes 

(Smith et al., 2016) revealed significant overlap for both B6 and D2 at earlier time points 

following exposure (0 h and 8 h) in several brain regions that are particularly sensitive to 

chronic alcohol treatment, including hippocampus and cortex. Genes altered by CIE in both 

B6 and D2 over an expanded time course may serve as biomarkers or even drive 
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dependence-induced escalation of drinking. Interestingly, there was no significant overlap 

detected between data sets for the matched time point 3 days after the last CIE cycle. The 

lack of overlap at the 72-h time point between the Smith study and our own may reflect 

differences in expression platform or experimental paradigm. For example, microarrays can 

produce a broader signal range, whereas coverage of low abundance transcripts is sparse in 

our study. In addition, the mice included in our study consumed alcohol between vapor 

exposures whereas the mice in the Smith study did not. It is also highly likely that the lack 

of overlap at matched time points reflects the paucity of transcriptional changes detected in 

B6. Similar to previous studies, we found fewer than 400 genes with differential expression 

due to treatment (air control versus CIE treatment) in B6, even at a nominal p value (p < 

0.05). Smith and colleagues found only 3 and 238 genes altered by CIE in B6 hippocampus 

and prefrontal cortex at the 72-h time point at a stringent 1% FDR. However sparse, changes 

in expression in B6 have been reported at 72 h, 120 h, and even a week following CIE 

(Smith et al., 2016), suggesting the presence of a lasting transcriptional imprint or engram. 

Here we report an even larger long-lasting imprint in D2. This signature may reflect long-

lasting alterations that underlie susceptibility or resistance to addiction.

Strikingly, we observed a large number of strain-dependent (and often divergent) responses 

to CIE treatment, which is known to produce both metabolic stress and dysregulation of the 

HPA axis. Nearly four times as many nominally significant changes due to treatment were 

detected in D2 compared to B6, and many of the genes significantly modified by a main 

effect of treatment (independent of strain) after FDR correction were either unchanged in B6 

or reflected a divergent response in both strains. These genes may serve as biomarkers for 

disruptions in mitochondrial function, protein metabolism, epigenetic modification, and 

telomerase maintenance. For example, Parn is required for telomere function, and mutations 

in this gene are part of a collection of Mendelian disorders that result in telomere shortening 

(Bertuch, 2015; Moon et al., 2015; Tseng et al., 2015). Interestingly, H1f0 has been 

identified as a potential biomarker of acetylation based on response to pharmacological 

application of histone deacetylase inhibitors (Reardon et al., 2015). Yme1l1 is an oxidative 

stress-sensitive mitochondrial inner membrane protein that is up-regulated in response to the 

mitochondrial unfolded protein response (Aldridge, Horibe, & Hoogenraad, 2007; Rainbolt, 

Saunders, & Wiseman, 2015; Stiburek et al., 2012), and Atp5a1 functions as a component in 

mitochondrial complex V and is involved in energy production (Hejzlarová et al., 2014; 

Lucas et al., 2014). mt-Rnr1 encodes the catalytic subunit of the ribonucleotide reductase 

complex that is the rate-limiting step in dNTP production – vital for a number of biological 

processes, including mitochondrial replication and DNA repair. Rplp0 is a member of the 

ribosomal P complex involved in protein synthesis; down-regulation of this complex leads to 

autophagy, ER stress, and the unfolded protein response (Artero-Castro et al., 2015). Hspa8 
is also involved in chaperone-mediated autophagy (Chiang, Terlecky, Plant, & Dice, 1989; 

Kaushik & Cuervo, 2012). Eif2d is an initiation factor that plays a key role in delivering 

initiator tRNA to the ribosome (Holcik, 2015) and may be involved in ribosome recycling 

(Dever & Green, 2012). Similarly, Denr is involved in ribosome recycling and reinitiation at 

uORFs, and has been recently linked to circadian periodicity in protein levels (Janich, Arpat, 

Castelo-Szekely, Lopes, & Gatfield, 2015; Schleich et al., 2014). Finally, ORF19 (Wash1) is 
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involved in endosome-to-Golgi retrieval of membrane proteins (Harbour et al., 2010; Wang 

et al., 2014).

Changes in mitochondrial function, DNA levels, and telomere length have been reported as 

biomarkers of chronic stress and depression (Cai et al., 2015), and changes in protein 

function and epigenetic modifications have long been posited as mechanisms driving 

neuroadaptation and response to environment. Our strain comparison based on linear models 

suggests that these pathways diverge between strains following chronic alcohol treatment. 

These results are mirrored by global WGCNA. Despite a high degree of module overlap 

between B6 and D2 primarily driven by brain region differences, following multiple test 

correction, no modules were associated with treatment effects on expression in B6 compared 

to four in D2. Only the darkorange module is unique to D2 with relatively poor overlap with 

B6 modules. This relatively small module (164 members) is both significantly associated 

with treatment and treatment by region interaction effects and is enriched for transcripts that 

are altered in expression by treatment. The D2 darkorange module represents an expression 

signature unique to D2 that is responsive to CIE treatment. The remaining three treatment-

associated modules (D2blue, D2darkgreen, D2salmon) are larger (346 to 1394 members) 

and have significant overlap with B6 modules. These modules represent genes that show a 

differential strain response to treatment.

The large and generally opposite response to treatment between strains observed in this 

study was unanticipated. Most recent experiments have been performed in a single strain – 

B6 – due to the robust enhancement in alcohol consumption and behavior observed in this 

strain following CIE (Lopez, Becker, & Chandler, 2014; Lopez, Griffin, Melendez, & 

Becker, 2012) and following CIE and exposure to additional environmental stressors 

(Anderson, Lopez, & Becker, 2016a). These studies demonstrate concomitant changes in 

neurotransmitters (Griffin, Ramachandra, Knackstedt, & Becker, 2015) and neuropeptides 

(Maldonado-Devincci et al., 2014) following CIE, and suggest alterations in specific circuits 

and regions (Anderson, Lopez, & Becker, 2016b; Lopez, Moorman, Aston-Jones, & Becker, 

2016; Samantaray et al., 2015). Whether or not these changes are unique to B6 or represent 

common mechanisms in the addiction process remains an open question. However, 

accumulating evidence suggests that the D2 strain also exhibits behavior associated with 

addiction. This includes observations that alcohol dependence can elicit a high rate of self-

administration in D2 using methods that bypass the innate alcohol avoidance demonstrated 

in this strain, such as intragastric delivery (Cunningham, Fidler, Murphy, Mulgrew, & 

Smitasin, 2013; Fidler et al., 2012) and the clever use of tastant-substitution procedures 

(McCool & Chappell, 2014). Indeed, McCool and colleagues found a robust increase in 

alcohol self-administration in both B6 and D2 following multiple cycles of CIE using an 

umami-fading procedure that produces high levels of baseline alcohol consumption in both 

strains (McCool & Chappell, 2015). B6 and D2 also show profound differences in the 

behavioral and physiological response to acute (Belzung, El Hage, Moindrot, & Griebel, 

2001; Jacobson & Cryan, 2007; Jones, Sarrieau, Reed, Azar, & Mormède, 1998; Millstein & 

Holmes, 2007) and chronic (Mozhui et al., 2010; Pleil et al., 2012; Pothion, Bizot, Trovero, 

& Belzung, 2004; Shea et al., 2015) stress. This differential response to stress could account 

for some of the transcriptional differences between strains following CIE. Our results, 

combined with recent studies, provide evidence that the D2 strain is a unique and genetically 
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distinct model for investigating the contribution of stress and alcohol interactions to 

addiction and alcohol-use disorders. However, it is also possible that the gene expression 

patterns we observed, especially with regard to the enrichment of genes localized to 

mitochondria in D2, may represent increased toxicity and metabolic stress to the alcohol 

inhalation paradigm in this strain. Most CIE paradigms involve the use of pyrazole to 

increase blood alcohol levels and reduce ethanol elimination through inhibition of alcohol 

dehydrogenase. Pyrazole is a known hepatotoxin that increases oxidative stress through 

upregulation of cytochrome P450 2E1 (Cyp2e1) – which is also up-regulated by alcohol 

(Song, 1996). Interaction between chronic alcohol exposure and pyrazole, combined with 

strain differences in mitochondrial supercomplexes (Buck, Walter, & Denmark, 2014), could 

result in a divergent, and perhaps more profound and long-lasting, metabolic response to 

CIE treatment in D2. Indeed, D2 typically have elevated BEC compared to B6 (212.11 

± 6.68 mg/dL for B6 and 269.96 ± 13.15 mg/dL for D2 in this study), and this may account 

for some of the strain differences in treatment effects on gene expression. Disentangling the 

effects of treatment and BEC on expression is difficult and will require studies with a larger 

number of individuals that either match across BECs or identify correlated expression 

signatures. Future studies in both strains that include additional time points following CIE 

without the use of pyrazole will be also be required to elucidate the influence of pyrazole, 

chronic alcohol exposure, and strain on gene expression.

Similar to previous human and mouse studies, we observed a differential impact of treatment 

across brain regions with cortical, hippocampal region CA1, BNST, and NAc showing the 

most pronounced response to treatment. This suggests that the chronic alcohol engram may 

be unique across structures and especially pronounced in areas important for cognition and 

reward. Surprisingly perhaps, given the role of the amygdala in stress and addiction 

pathways, we did not detect a large number of changes in this structure (at least in the 

central nucleus). Previous work has demonstrated reduced baseline alcohol consumption 

following lesions of the lateral posterior bed nucleus of the stria terminalis and central 

nucleus of the amygdala, but these lesions did not block dependence-induced drinking in B6 

(Dhaher, Finn, Snelling, & Hitzemann, 2008), suggesting that other regions may contribute 

more to this behavior. A caveat to this analysis is that tissue dissection and heterogeneity can 

contribute to the ability to detect significant changes within a tissue. In addition, 

neuroadaptation is expected to occur partly at the level of circuits and protein function, 

neither of which can be reliably inferred from gene expression studies. Nevertheless, our 

findings agree well with recent work in mice and suggest long-lasting alterations in cortex 

and hippocampus that are conserved between two different inbred strains and also overlap 

with critically impacted brain areas in human alcoholics.

In summary, we have generated transcriptional profiles for two inbred strains across 11 brain 

regions and identified genes whose expression is altered by CIE treatment as well as 

interactions between treatment and brain region or strain. Although changes in expression 

due to the effect of chronic ethanol inhalation are small 72 h post-exposure, these alterations 

may represent a chronic alcohol engram. This transcriptional signal is highly divergent 

between strains, and may be related to individual differences in the response to metabolic 

and physiological stress, development of tolerance, dependence, and excessive alcohol 

consumption.
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Highlights

• This is the first study to compare expression profiles across 11 brain regions 

and between two inbred strains following CIE.

• We report long-lived alterations in expression – a putative chronic alcohol 

engram – 72 h following chronic alcohol exposure.

• Several brain regions, including the cortex and hippocampus, show long-

lasting enhanced sensitivity to CIE treatment.

• Strikingly divergent transcriptional responses are observed between strains 

with 3 times more genes altered by CIE in D2.
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Fig. 1. Frequency of significant p values by model fit
The number of genes associated with a main effect of strain, treatment, region, or a 

treatment by strain or treatment by region interaction is shown at an FDR of 10%. Values of 

approximately 100 or less are indicated on the chart for clarity. Only unique genes were 

included. Region and Strain have the strongest effect on gene expression, but the expression 

of a small number of genes shows either a main effect of treatment or an interaction 3 days 

following the fifth and final cycle of CIE exposure.
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Fig. 2. Regional differences in expression
Genes with a significant main effect of region on expression are shown in panels A through 

D with average log2 RPK values shown on the Y-axis. Only the top genes with a greater than 

4-fold change in expression are shown. Genes with higher expression in HIP and cortical 

regions are shown in panel A and genes with higher expression in limbic and mesolimbic 

tissues are shown in panels B and C. Note that the genes in panel B have comparatively 

lower expression in HIP, cortex, and DMS and that Foxp2 in panel C has less expression in 

CeA and BST compared to DMS, NAc, NAs, and VTA. Genes in panel D have similar 

expression profiles that are opposite in HIP, cortical tissue, and VTA compared to limbic and 

mesolimbic tissue. Expression values and the correlation between the top 27 genes with 

regional expression (left matrix) and in situ expression (B6) from Allen Brain Atlas (right 

matrix) are shown in panel E. Expression strength (orange shading) is indicated by 

increasing hue intensity. Correlation strength is indicated by more intense hues and direction 

is indicated by color (yellow shading for positive correlations and blue shading for negative 
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correlations). Genes not found in the Allan Brain Atlas have no corresponding expression 

value.
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Fig. 3. Differential strain response to treatment
At a 10% FDR level, 20 genes are associated with a treatment by strain effect on expression. 

Genes that show a significant effect of treatment on expression primarily in a single strain 

are shown in the top panel and genes that show a divergent expression response between 

strains following treatment are shown in the bottom panel. Significance levels based on pair-

wise comparisons as follows: * = p < 0.05, ** = p < 0.01, *** = p < 0.005, **** = p < 

0.001. Average log2 RPK values are shown on the X-axis for each group.
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Fig. 4. Higher number of significant expression differences due to treatment in D2
There is a striking difference in the number of significant differences (p < 0.05) detected 

following within-strain regression analysis (y ~ treatment + region + treatment*region). 

Counts of differentially expressed genes are shown on the X-axis and are based on unique 

genes only. A greater number of genes are differentially expressed due to treatment or 

treatment*region (interaction) effects in D2 compared to B6.
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Fig. 5. Differential response to CIE treatment across brain regions
The number of significant differences (p < 0.01) based on within-region regression analysis 

(y ~ treatment + strain + treatment*strain) is shown by region. The number of differentially 

expressed genes with a main effect of treatment or an interaction between strain and 

treatment is shown for each region and includes unique genes only. Prefrontal cortex (and 

visual cortex), hippocampus (CA3), BS, and NAc show the largest number of expression 

differences due to treatment effects.
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Fig. 6. Overlap between CIE paradigms
Smith and colleagues (2016) measured expression differences between AIR control and 

CIE-treated B6 mice in multiple brain regions at several time points following four cycles of 

CIE. We compared expression changes due to treatment or treatment by region interactions 

within strain generated from our study (tissue collected 72 h after five cycles of CIE 

combined with voluntary alcohol self-administration). Heatmaps show overlap for each 

study category (the current study as columns and Smith et al., 2016 as rows) and associated 

FDR-adjusted p value. Criterion for overlap is FDR < 0.05. Despite the lack of overlap at 72 

h (probably due to the low number of expression differences due to treatment detected in B6 

in both studies), overlap across brain regions and at 0- and 8-h time points suggests that 

some of the changes we detect at the 72-h time point may also be altered at earlier time 

points following CIE treatment.
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