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Abstract

Introduction—Non-invasive imaging plays a critical role in managing patients with 

cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, 

quantitative analysis facilitates objective, evidence-based management, and advances in clinical 

research. This has driven developments in computing and software tools aimed at achieving fully 

automated image processing and quantitative analysis. In parallel, machine learning techniques 

have been used to rapidly integrate large amounts of clinical and quantitative imaging data to 

provide highly personalized individual patient-based conclusions.

Areas covered—This review summarizes recent advances in automated quantitative imaging in 

cardiology and describes the latest techniques which incorporate machine learning principles. The 

review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses 

key issues and obstacles for these tools to become utilized in mainstream clinical practice.

Expert commentary—Fully-automated processing and high-level computer interpretation of 

cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of 

quantitative data generated per scan and integration with clinical data also facilitates a move to 

more patient-specific interpretation. These developments are unlikely to replace interpreting 

physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and 

optimize patient-specific treatment. However, with each technological advance, we move further 

from human dependence and closer to fully-automated machine interpretation.
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1. Introduction

Noninvasive imaging plays a critical role in the diagnosis, outcome prediction and 

management of patients with cardiovascular disease. The quality and amount of imaging 

data acquired with each scan are continuously increasing in all modalities including 

computed tomography (CT), nuclear cardiology, echocardiography, and magnetic resonance 

imaging (MRI). In-depth reviews comparing various cardiac imaging modalities are 

available [1]. An overall, simplified comparison of primary cardiac imaging modalities is 

shown in Table 1. To date, the most fully automated approaches have been developed for 

nuclear cardiology, likely due to the lower image resolution and therefore simpler image 

analysis. However, advanced methods for other widely used cardiac modalities are being 

rapidly developed. This review focuses on the efforts in full automation of the widely used 

clinical imaging techniques – and on the efforts to derive the final diagnosis or prognosis by 

such automated techniques.

The importance of quantitative analysis – that is, deriving precise numerical physiological 

parameters from the imaging data – has become increasingly recognized for more 

sophisticated diagnosis, therapeutic monitoring, prognostication, and novel research 

purposes. Quantitative analysis has, therefore, become routine and even mandatory in many 

situations – this, in turn, has driven the development of advanced post-processing software 

tools which in some instances allow virtually fully automated image processing starting with 

the raw images. In recent reports, especially for nuclear cardiology, little if any physician 

supervision is required.

Currently, when automated processing methods are employed, a common workflow is that 

the physician performs a final quality control check and overview in their concluding report. 

However, with advancing machine intelligence, this final human check may also become 

surplus to requirements. Instead, software tools could provide this final quality check and in 

fact offer a more sophisticated, reproducible conclusion drawn from comparison with, not 

just one physician's career experience, but with massive ever-increasing training databases. 

Given the ever-abundant need for cost-effective diagnostic and treatment algorithms, 

supplanting the physician to achieve completely automated image processing, data analysis, 

quality control check, and final interpretation is not just an inspiring technical challenge but 

a valid option for reducing costs. It could be an imminent reality if this strategy is actively 

pursued by researchers and developed over the coming years.

Additionally, there is scope for machine learning to infiltrate and even outperform in skills 

traditionally reserved for expert readers. For example, could a disease diagnosis, or precise 

estimation of patient risk also be done by automated software tools? Can clinical 

information be rapidly integrated with imaging data to offer a more accurate final diagnosis 

and help select the most appropriate treatment on an individual patient basis? The 

possibilities for a sophisticated machine analysis are endless and not limited to a particular 

career experience or subjective biases, and not dependent on years of clinical training to 

reach their peak. This article provides insights into these probing questions, summarizes 

recent advances in automated quantitative imaging in cardiology and describes the latest 

techniques which incorporate machine learning principles. Finally, we offer an opinion into 
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the direction of future development and the stand-off between machine and physician within 

cardiac imaging.

2. Automated image interpretation in cardiology

The multimodal images in cardiology require complex interpretation to arrive at patient 

diagnosis or assessment of patient risk. Often the first step is some form of image 

quantification either based on visual scoring or on computer analysis which will help the 

physician to diagnose the disease or assess patient risk. We will review some of the recent 

studies in this area, which describe automated methods for quantification of diagnostic 

cardiac images,

2.1. Nuclear cardiology

Myocardial perfusion SPECT and PET imaging (MPI) plays a crucial role in the diagnosis 

and management of coronary artery disease, providing key information concerning 

myocardial perfusion and ventricular function. At least 7 million patients undergo MPI in 

the USA annually [6]. As compared to SPECT, PET may provide benefits of lower radiation 

exposure and short image acquisition time. Quantitative PET techniques such as coronary 

blood flow may be superior for cardiovascular applications [7]. Nevertheless, by far most 

MPI worldwide are performed by SPECT. Consequently, the advanced methods allowing the 

full automation of the quantification are primarily optimized and validated for SPECT MPI. 

There are, however, equivalent automated tools available for PET image processing, 

including automated quantification of myocardial blood flow. Nuclear cardiology techniques 

are the most advanced with respect to image automation as compared to other imaging 

modalities in cardiology. It is, therefore, most likely that in this modality, the fully 

automated analysis and interpretation will become routine first. However, current reporting 

of nuclear cardiology scans remains primarily visual.

Despite the availability of automated tools, visual scoring of perfusion is typically currently 

performed by physicians with summed stress and summed rest scores based on the 

American Heart Association's (AHA) standard 17-segment polar map. This visual approach 

is time-consuming, subjective, and suffers from inter- [5], and intraobserver [4] variability, 

even when such scoring is performed by experienced physicians. Manual scoring of the 

stress and rest perfusion scans in nuclear cardiology is associated with significant variability. 

In Figure 1, we show the interobserver variability of two experienced physicians when 

interpreting MPI SPECT scans.

An alternative approach to visual perfusion analysis is an automatic quantification of 

myocardial perfusion. This quantification approach is increasingly used in the clinical 

practice [3,8-10]. The initial step in the quantification of perfusion and function from MPI is 

the computer definition of the myocardium from gated and static perfusion image data and 

subsequent automatic reorientation of the images to standard coordinates (short axis/long 

axis of the heart) by the computer software. The accurate computer segmentation of the 

myocardium may be challenging due to potential perfusion defects, activity outside the 

myocardium, and image noise. Finally, the polar map representation of the myocardium is 

derived which is subsequently used for the quantification.
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The quantification process is subsequently accomplished by statistical comparisons of pixels 

from test patients to other scans of normal patients internally stored by the quantification 

software. These comparisons allow identification of local areas of reduced myocardial 

perfusion, typically in polar map coordinates. The set of normal patients internally stored by 

the software is usually referred to as ‘normal database’ or ‘normal limits’ (when a collection 

of databases is considered, for example, stress and rest databases). This entire image analysis 

process can be almost entirely automated, with only a minority of image contours required 

some quick adjustments [11]. Incorrect definition of the myocardial contours in the minority 

of cases can result in false/positive defects, which can be mistaken for actual perfusion 

abnormalities. Therefore, currently, supervision by an operator is still required to verify 

myocardial segmentation. Typically, this is performed by the imaging technologist, before 

the scan interpretation by the physician.

Further automation of this process continues to be an active field of research, with several 

recent developments. For example, a new method that checks automatically derived 

myocardial contours for potential segmentation failures has been shown to reduce further the 

level of human supervision

Differences in summed stress scores (SSS) and summed difference scores (SDS) between 2 

experienced observers reading 995 myocardial perfusion studies. The overall diagnostic 

agreement (SSS threshold 4) was 87%. required [11,12]. This approach has been compared 

to expert technologists and was found to be virtually equivalent (AUC = 0.96–1.00) to expert 

readers in the identification of failures.

Another recent development is group analysis where multiple studies are processed jointly to 

improve contour detection by avoiding interstudy inconsistencies. These new algorithms can 

lead to almost full automation of the image analysis steps with contour failure rate generally 

below 1% [2]. These recent software developments, combined with quality controls for 

automated left ventricle (LV) contours, would allow readers to target manual adjustment 

only to those few remaining studies flagged by the algorithm for potential errors. These 

tools, with further refinement, will ultimately allow entirely unsupervised automated 

perfusion scoring and quantification of myocardial function without compromising accuracy.

Relative quantification of MPI with normal databases is a powerful clinical tool which has 

been documented to rival expert physician's reading. For MPI SPECT, automated 

quantification of perfusion can be diagnostically equivalent to experienced readers [11], and 

has higher reproducibility [4]. In Figure 2, we show an overall diagnostic accuracy of the 

myocardial perfusion as compared to two experienced readers in a large population. The 

visual analysis in this study was performed in 4 steps. In the final step, the physicians had all 

the clinical information available. Despite that, we can see that the overall diagnostic 

accuracies of the physician reading and the computer analysis are similar. Most MPI scans in 

the USA are reported by provider-practice physicians outside of experienced academic 

settings; therefore, the accuracy and reproducibility of these readings may be even lower 

than that of the best experts. The automated systems are increasingly used clinically, but the 

final diagnosis and potential override of the results are possible by the clinician. To ensure 

standardization, we believe the fully automated results should be included in the final report.
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Although perfusion information is the primary information derived from MPI, several other 

imaging parameters can also be obtained in a fully automated fashion from the perfusion 

dataset. These include ejection fraction, diastolic/systolic volumes, motion thickening, 

transient ischemic dilation, myocardial mass, dyssynchrony parameters and myocardial 

blood flow. In total, several hundred quantitative image variables can be derived from a 

complete myocardial rest/stress MPI dataset. Currently, although these parameters are 

calculated by automated computer analysis, there are typically only subjectively 

incorporated in the final MPI diagnosis. This final human step introduces a layer of 

subjectivity into an otherwise fully quantitative dataset.

2.2. Cardiac CT

Coronary CT angiography (CTA) has recently emerged as a useful diagnostic test in selected 

stable but symptomatic patients needing noninvasive assessment of the coronary arteries 

[13–18]. It allows direct, noninvasive evaluation of the entire coronary tree. In 2014, 

∼500,000 studies were performed in the USA and over 2 million worldwide, and these 

numbers are growing rapidly. The current clinical interpretation of coronary CTA uses 

subjective visual assessment of stenosis grade, with ≥50% considered significant. Coronary 

CTA is increasingly used for direct, noninvasive evaluation of the coronary arteries. Beyond 

stenosis, coronary CTA also permits assessment of atherosclerotic plaque (including total 

and non-calcified plaque burden) and coronary artery remodeling, previously only 

measurable through invasive techniques. However, standard visual interpretations have been 

shown to have a high rate of false-positive findings [14], which can lead to unnecessary 

additional testing and increased overall cost [19].

Over the last several years, several automated methods have been developed for 

standardized, semiautomated quantification of noncalcified and calcified plaques, and lumen 

measures from coronary CTA with [20–23], with research studies supporting this approach 

[23–25]. Such comprehensive quantification has been applied to large consecutive cohorts 

(800–1000 patients) [24]. An example of standardized software quantification in a plaque 

with high-risk adverse features is shown in Figure 3. Recent preliminary work has 

demonstrated that total plaque, non-calcified plaque burden measured by these tools – 

individualized per-patient measures of the coronary atherosclerotic burden – significantly 

improves prediction of lesion-specific ischemia by fractional flow reserve (FFR) over 

stenosis alone (area-under-receiver operator characteristics curve [AUC] 0.83 vs. 0.68) in 

lesions with intermediate stenosis [26]. Other automated approaches which can estimate 

FFR at any point of the vessel by computer processing from CTA have also been 

demonstrated [27].

Currently, although centerline extraction determination is mostly unsupervised, the accurate 

lumen segmentation for the determination of stenosis and detection and quantification of 

plaque may still require some manual subjective adjustments by the reporting physician. The 

CTA tools are not yet fully automated to the level achieved in nuclear cardiology, and still 

require significant time from a skilled operator for the contour adjustments. Nevertheless, it 

is probably a matter of time when these methods reach much higher level of automation, 

such as seen in nuclear cardiology studies. Unsupervised methods for the automated 
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detection of subtle and significant coronary lesions from CTA have been recently 

demonstrated [28].

Apart from the primary application of cardiac CT in the coronary vessel analysis, CTA could 

be used for the assessment of perfusion and function and automated tools for these protocols 

that are being evaluated [29]. Furthermore, non-contrast cardiac CT can be utilized for 

detection of coronary calcium and thus the presence of atherosclerosis. These non-contrast 

images have lower resolution than CTA, and the lack of contrast can present difficulties in 

the automatic assignment of calcified lesions to correct coronary vessels. Several 

semiautomated and automated calcium scoring algorithms have been proposed using a 

publicly available standardized framework for the evaluation with 72 datasets [30]. 

Furthermore, methods for semi-automated measurements of epicardial coronary fat from 

non-contrast CT have also been developed and validated [31]; development of fully 

automated methods are currently in progress. These additional CT applications can in the 

future add to the comprehensive automated image assessment by this modality.

2.3. Echocardiography

Echocardiography is widely available, does not utilize any ionizing radiation and can be 

performed at the bedside. As a result, it is the most widely used noninvasive imaging 

technique in cardiology, with estimates as high as 7 million procedures annually in the USA, 

just under the Medicare program in 2011 [32]. In general, echocardiography is characterized 

by an excellent temporal resolution, allowing for real-time imaging and a relatively low cost. 

Echocardiography can be extended to the assessment of myocardial perfusion [33] in rest 

and stress conditions by administration of contrast material which changes reflective 

properties of the tissues, depending on the amount of contrast (which in turn depends on the 

blood flow). The high temporal sampling, the ability of realtime visualizations, and the 

absence of radiation dose make echocardiography an excellent imaging tool, not only for 

obtaining functional and structural insights about the myocardium, but also for the real-time 

image-guided cardiac interventions [34].

The acquisition of ultrasound images is still usually performed in 2D [35] using several 

standardized views from various parasternal, apical, and subcostal configurations of the 

transducer. The correct alignment of those views presents a challenge for sonographers. 3D-

mode cardiac echo, which can be obtained with more complex transducers, solves this 

problem by the acquisition of volumes containing the myocardium. The 3D mode has the 

potential to derive more accurate and new quantitative parameters but suffers from reduced 

temporal resolution [36,37] and image quality compared to the 2D mode. The ultrasound 

imaging is constantly being improved by vendors who introduce new generation traducers 

(2D and 3D), faster electronics, and novel signal/ image processing methods. Over the years, 

this progress has led to radical improvements in image quality obtained in 2D and 3D 

echocardiography, and we expect this trend will continue in the future. The progress in 

technology also allows for the miniaturization of the ultrasound devices. It is currently 

possible to perform echocardiography studies using transducers which are directly 

connected to hand-held displays with no additional hardware needed. The signal from the 

transducer is processed by the hand-held device and displayed realtime to sonographer. This 
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unprecedented mobility and flexibility in performing ultrasound examinations make the 

echo-cardiography one of the most important cardiac imaging modality with great prospects.

2.3.1. Segmentation—The most popular automated quantitative measurements obtained 

by echo are the ejection fraction and estimates of regional motion. These measurements can 

be obtained by tracking the endocardial wall in 2D and 3D movies. In a standard approach, 

automated image segmentation techniques are used to track the location of the endocardial 

wall and based on this, ejection fraction and myocardial wall motion are computed. The 

majority of analyses are done for 2D echo, where it is assumed that the main component of 

motion is visualized in the acquisition view. The process of tracking the endocardial wall is 

challenging and results in a relatively high interobserver variability [38,39]. Many 

approaches have been investigated in the past [40–45] in attempts to provide a robust 

solution. A thorough review of the segmentation algorithms for 2D ultrasound has been 

published [35].

For 3D transthoracic echocardiography, fully automated quantification software was 

developed that simultaneously detects LV and left atrium (LA) based on the detection of 

endocardial surfaces. In one approach, a model template describing the initial global shape 

and LV and LA chamber orientation is defined based on a large database of prior scans and 

followed by a patient-specific adaptation [46]. Once the model adopts to a current dataset, 

ventricle volumes, ejection fractions (EFs), 2D views and other parameters are derived from 

the 3D model and used for the cardiac function evaluation. The automatic model shows an 

excellent correlation with manually derived volumes from a single-beat 3D 

echocardiography in challenging atrial fibrillation patients [47].

2.3.2. Automated strain measurements—In recent years, quantitative values derived 

from echo sequences such as strain or strain rate have been shown to provide added 

diagnostic value. Strain is the fractional change in the length of myocardial tissue relative to 

its base length and is expressed as a percentage. Strain rate is the change in strain over time 

providing information on the speed of the deformation. Two general approaches can be used 

to measure strain which are based on tissue Doppler imaging (TDI) and speckle-tracking 

echocardiography (STE). In TDI, the strain rate can be directly calculated from the velocity 

calculated from Doppler measurements [48]. The strain can be obtained by integrating the 

strain rate over time. In STE, the noise structures (called speckles) on B-mode ultrasound 

images are identified and tracked by automated software frame-by-frame [49,50]. Based on 

those tracks and frame timings, the strain and the strain rate are computed. TDI measures the 

strain in a single direction whereas the STE measures the strain in 2D and 3D for a 2D 

ultrasound and 3D ultrasound, respectively. The ability to measure the strain and the strain 

rate in more than one dimension is a significant advantage of STE over TDI and contributed 

to substantial growth in the clinical utilization of this approach. One of the frequently used 

quantitative strain values is the global longitudinal strain (GLS) [51], which represents the 

average strain in longitudinal views. The GLS can be displayed either as a parametric map 

overlaid on original echo views or 17-segment AHA map. It has been shown that the GLS 

improves the diagnostic and prognostic accuracy of echocardiography in many LV 
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dysfunctions. For example, the GLS and other strain-derived indicators are predictors of 

cardiac events [52], adverse events, and all-cause mortality [53].

For 2D ultrasound, the GLS can be measured on three standard apical echo views. The 

tracking points are first defined using semiquantitative approach. The strain is then 

automatically determined and can be displayed either as a parametric map or as a 17-

segment AHA map. For the 3D ultrasound, the standard apical 2D views can be generated 

from the 3D data, and the strain can be obtained using 2D processing of those 2D-derived 

views.

2.3.3. Blood flow—Another potential application of quantitative imaging in echo-

cardiography is the use of contrast echocardiography for estimation of the myocardial blood 

flow [54]. This approach may be useful for identification of patients with coronary stenosis 

[55]. According to a meta-analysis, the stress echocardiography with contrast has a similar 

diagnostic accuracy as SPECT MPI [56]. Although currently, the myocardial perfusion with 

contrast echocardiography is not a routine clinical examination, unlike other MPI 

techniques, it has the potential to be used at the bedside in the critical care setting [57]. The 

blood flow measurements with echocardiography are based on different principles as 

compared to other MPI modalities. The intravascular contrast agents used in myocardial 

perfusion contrast echocardiography consist of microbubbles (1–8 micro-millimiters in 

diameter) which have a high acoustic impedance created by water-gas interfaces. In a 

semiautomated quantification approach, the user defines the region of interest and the 

function of the microbubble concentration vs. time after the destruction of the microbubbles 

is determined. The slope of this curve is automatically analyzed to estimate the quantitative 

value of the blood flow [58]. Automated tools will be required for this method to reach 

broad clinical use.

2.4. Cardiac MRI

A standard clinical cardiac MRI (CMR) scan requires one hour of imaging time, followed by 

significant time for image postprocessing. Many automated approaches for CMR heart 

segmentation have been described [59–61]; however, large-scale clinical adoption of fully 

automated analysis methods for CMR analysis has not yet occurred. In many ways, CMR 

has the most to gain from automated segmentation because of the current lengthy and 

variable manual post-processing. Attempts at analysis automation are complicated by the 

variety of different CMR pulse sequences, scanning parameters and imaging protocols – 

each of which is tailored to the individual patient and the particular clinical question. 

Despite these limitations, there is a vast amount of ongoing work attempting to overcome 

these challenges and automate the key steps in CMR workflow.

2.4.1. Image acquisition—CMR requires highly skilled radiographers with sufficient 

knowledge of cardiac anatomy to prescribe appropriate imaging planes. Vendors have 

therefore invested in developing software tools capable of automated planning and 

acquisition. Some user input is still required for protocol selection, adjusting for patient 

parameters, identifying key anatomic reference points and providing final quality control. 

Nonetheless, semi-or near-automated image acquisition for CMR is a huge technological 
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advance. Some of these tools have entered clinical mainstream providing highly 

reproducible acquisition, with increased time efficiency and minimal user input. 

Nevertheless, nonconventional anatomy such as congenital heart disease, complex scan 

protocols, and full user independence still pose significant challenges.

2.4.2. Segmentation & function—Heart chamber segmentation from CMR is an 

essential first step for the computation of functional indices such as ventricular volume, 

ejection fraction, mass, wall thickness, and wall motion. Manual delineation by experts is 

currently a standard practice – but it is a tedious, time-consuming process, prone to intra- 

and interobserver variability.

Although some relatively efficacious methods are commercially available for segmenting the 

LV on CMR [62], most still require a degree of user input for selecting key anatomic 

reference points, and confirmation that end-diastole and end-systole phases have been 

appropriately selected. Furthermore, quality control and fine adjustment remain user 

dependent. Moreover, as the geometry of the right ventricle (RV) is highly variable, 

automated algorithms for this chamber have proven more challenging to develop. Although 

several successful attempts have been described, none have proven robust enough to 

transition to mainstream, and RV segmentation remains a manual task requiring about 20 

min per ventricle by a clinician.

The great need for automation has led to the development of a broad range of potential 

segmentation methods [63–66]. Shape prior information can also be used to guide the 

segmentation process, under the form of a statistical model, in a variational framework by 

using active shape and appearance models or via an atlas, using registration-based 

segmentation [67–73].

The challenges faced by all segmentation methods in CMR are: (i) fuzziness of cavity 

borders due to blood flow, acquisition artifacts, and partial volume effects, (ii) presence of 

papillary muscles in the LV and trabeculations in the RV, which have the same gray level as 

the surrounding myocardium but require exclusion during segmentation, and (iii) the 

complex patient-specific shape of the RV. Because isolated RV pathology is considered less 

common, most research effort has focused on the LV, leaving the problem of RV 

segmentation wide-open. Very recent techniques utilizing machine learning have been 

applied to the detection of motion patterns in RV to predict patient outcomes [74].

In summary, despite some success with semiautomated LV segmentation, fully automated 

chamber segmentation from CMR datasets is still a challenging problem due to several 

technical difficulties – especially for the RV. Current automated techniques suffer from poor 

robustness and accuracy and require large training datasets and a residual degree of user 

interaction.

2.4.3. Perfusion—Stress perfusion CMR, in particular, has become a first-line option in 

patients with suspected ischemic heart disease on the basis of data from several recent 

clinical studies and meta-analyses [75–78]. Studies such as CE-MARC (n = 752) have 

demonstrated higher diagnostic performance compared to SPECT. Higher diagnostic 
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accuracy compared to nuclear MPI is considered to relate to the higher spatial resolution of 

perfusion CMR (2–3 mm in plane vs. 7–15 mm by SPECT vs. 4–10 mm by PET) which is 

particularly advantageous in females due to smaller hearts and in the setting of diffuse 

multivessel disease [79]. The scope for automated quantitative perfusion CMR in clinical 

practice and cardiovascular research is immense, but there remain several limitations that 

currently constrain this advance. The most important of these is a lack of standardization in 

image acquisition, contrast dosing protocols, post-processing and mathematical modeling. 

Efforts to standardize these aspects are currently under way [80,81].

In the interim, there are examples of successful in-house custom software solutions for small 

uniform datasets. For example, Tarroni et al. successfully demonstrated near-automated 

evaluation of stress/rest perfusion CMR using image noise density distribution for 

endocardial and epicardial border detection combined with non-rigid registration (n = 42) 

[82]. Noise characteristics of the blood pool and myocardium were used to facilitate 

automated endo-/ epicardial contouring. The only manual step was the placement of a seed 

point inside the LV cavity in a single frame and identification of the anterior RV insertion 

point. Contrast enhancement–time curves were automatically generated and used to 

calculate perfusion indices. Automated analysis of one sequence required <1 min and 

resulted in high-quality contrast enhancement curves both at rest and stress, showing 

expected patterns of the first-pass perfusion – compared to at least 10 min, and often 30 min 

for manual processing. The derived perfusion indices showed the same diagnostic accuracy 

as manual analysis (area under the receiver operating characteristic curve, up to 0.72 vs. 

0.73).

2.4.4. Flow—The most common flow analysis performed in clinical CMR is that for the 

ascending and descending aorta. Automated quantitative flow analysis is dependent on the 

reliable identification of the vessel or region of interest, as well as its subsequent 

segmentation. To this end, Goel et al. demonstrated the feasibility of a robust fully 

automated tool to localize the ascending (AAo) and descending aorta (DAo) from acquired 

images using the Hough transform [83]. Hough transform assigns high values to circular 

objects and outputs these values as a spatial density map. This approach allowed to 

determine the location and size of the AAo and DAo in each phase of the cardiac cycle. The 

flow was then computed for the AAo and DAo for the whole cardiac cycle, using the Hough 

Transform for the approximate segmentation of the aorta. The final flow curve was 

generated by interpolating these flow values using a cubic spline. The algorithm was applied 

successfully to 1,884 participants. In the randomly selected 50-study validation set, linear 

regression showed an excellent correlation between the automated and manual methods for 

AAo flow (r = 0.99) and DAo flow (r = 0.99). Furthermore, Bland–Altman difference 

analysis demonstrated strong agreement with minimal bias for: AAo flow (mean difference 

(AM) = 0.47 ± 2.53 ml), and DAo flow (mean difference (AM) = 1.74 ± 2.47 ml).

2.4.5. Tissue characterization—Late gadolinium enhancement (LGE) images are 

typically used to detect regions of myocardial infarction or focal fibrosis with CMR. The 

distinction of normal from abnormal myocardium is usually clear -cut, and images can be 

rapidly interpreted visually with simple qualitative analysis. As the latter is not particularly 
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burdensome, automated methods have not become particularly widespread or utilized for 

this purpose. Nonetheless, several studies have successfully shown the feasibility of 

automating segmentation of LGE images and quantifying scar burden as percentage 

myocardium or absolute volume [84–91]. Most methods employed simple standard 

deviation thresholding from a base healthy tissue intensity value. Other methods, such as 

full-width-at-half-maximum, maximum intensity projection and expectation-maximization 

fitting have also been proposed [85]. Any of these methods with appropriate refinement 

could be employed within a fully automated analysis workflow for CMR.

Currently, as with LGE imaging, interpretation of most additional forms of tissue 

characterization with CMR is based on qualitative analysis of visually detectable differences 

in the magnetic properties of tissues such as T1 and T2 relaxation times, rather than the 

quantitative values. Standardization of pulse sequences, as well as several quantitative 

parameters such as T1 and T2 mapping to assess diffuse tissue fibrosis and myocardial 

edema, are beginning to enter clinical routine and may ultimately lend themselves to more 

automated assessment.

3. Machine learning

Machine learning (ML) is a field of computer science that uses mathematical algorithms to 

identify patterns in data. These patterns can be used to predict or estimate various outcomes. 

ML algorithms typically build a model from available training data to make data-driven 

predictions or decisions. In recent years, ML techniques have emerged as highly effective 

methods for prediction and decision-making in a multitude of disciplines, including internet 

search engines, customized advertising, natural language processing, finance trending, and 

robotics [92,93]. These tools are increasingly becoming utilized in the medical field and in 

particular for analysis of images and data in cardiology.

Recently, novel approaches to image analysis and ML based on convolutional deep learning 

(CDL) gained enormous attention in recent years after the publication of CDL architecture 

[94,95] which performed considerably better than other types of state-of-the-art algorithms 

in image recognition task in ImageNet LSVRC-2010 contest for the recognition of natural 

images [96]. The algorithm classified images into 1000 categories and was trained based on 

1.2 million training images. Since the publication of this work, the development of various 

implementations and applications skyrocketed. This growth is attributed to the availability of 

a large amount of data, innovations in CDL implementations (rectified linear units, dropout) 

[95,97] and the availability of relatively cheap computing resources provided by graphic 

processing units (GPUs), developed initially for the gaming industry.

The general idea of CDL is quite simple. In a standard machine learning, feature vectors 

(e.g. measurements) are derived from the images first. Subsequently, the machine learning 

(e.g. regression, support vector machines, random forests) is used to perform the 

classification. In CDL approach, a priori feature extraction is not usually performed, and raw 

images (or minimally processed images) are selected as the input to CDL network (Figure 

4). The most important operations that CDL network performs are the series of convolution 

operations and image size reductions (frequently referred to as ‘pooling’). The number of 
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layers (convolutional and pooling) varies depending on the task difficulty and the amount of 

available data and can vary from two layers for some small networks to 100s. The CDL is 

trained using annotated images (known ground truth). In this process, the parameters of 

convolutional kernels that define convolutional layers of the CDL are determined. Once 

trained, the network can be used for the prediction on previously unseen images.

3.1. Application of machine learning to cardiac image analysis

Several applications of machine learning have been proposed for feature extraction and 

segmentation of cardiology images. Machine learning techniques can be utilized for 

automatic identification of lesions on coronary CTA images. For example, improvements for 

automatic lesion localization have been demonstrated by support vector machine method, 

which integrated several quantitative geometric and shape features (including stenosis, 

minimum luminal diameter, circularity, eccentricity), resulting in high sensitivity, specificity, 

and accuracy (93%, 95%, 94%) (Figure 5) [98]. Very recently, deep learning techniques have 

been applied for the identification of calcified plaques on CTA images, demonstrating 

improved accuracy over the existing methods [99].

Machine learning techniques have also been also applied to echocardiography. One of the 

most frequent tasks in echocardiography is to determine the exact position of the cardiac 

wall on frames of echo movies. This determination is needed for accurate estimation of 

quantitative parameters such as EF or LV mass. Because of high correlated noise and 

possible poor image quality, this task may be quite difficult. Artificial algorithms based on 

deep learning architectures can be used for automatic segmentation of the ventricle walls 

[94,100–102] or the detection of the bounding box containing heart valves in 2D 

echocardiography [103]. Recently published work shows promising results of utilizing 

speckle-tracking data and ML for automated discrimination of hypertrophic cardiomyopathy 

from physiological hypertrophy seen in athletes [104]. These encouraging results are steps 

toward a general artificial intelligence model of 2D echocardiographic data interpretation.

The control of image quality and identification of correction positioning of 

echocardiography views are also interesting applications of machine learning. The quality of 

echo images varies depending on the experience of the sonographer, patient cooperation, or 

ability to position the probe in an optimal location. Performing echocardiography imaging 

on obese or overweight patients may also be difficult due to problems with close positioning 

of the probe to the myocardium. Deep learning can be used to determine the quality of 

ultrasound [104,105] which may be a useful tool if available in real-time.

In CMR, the lack of standard units (compared, for example, to the Hounsfield scale in CT) 

makes it more challenging to directly apply simple intensity-based segmentation techniques, 

and images can also suffer from magnetic field in homogeneities and respiration artifacts. 

Accordingly, a machine learning solution to facilitate automated segmentation to obtain 

consistent measurements, and to save clinicians' time, is highly desirable. Initial approaches 

incorporating deep learning strategies have been demonstrated the segmentation of CMR 

images [106,107]. Nevertheless, for the reasons described above – predominantly the 

heterogeneity of imaging pulse sequences in MRI – this has been a difficult challenge, but it 
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remains an area of active research, especially since societal guidelines push toward more 

standardized acquisition sequences [108].

Machine learning methods could also be used on a higher level to combine multiple 

automatically extracted image (quantitative parameters), into a derived overall metric with 

higher diagnostic power. For example, functional cardiac parameters and perfusion 

parameters both carry some diagnostic information and physicians try to combine this 

information in their minds when arriving at the final diagnosis. Studies have been reported, 

in which the overall diagnostic accuracy of conventional MPI was demonstrated to be 

improved by combining perfusion and functional parameters, utilizing a support vector 

machines (SVM) machine learning algorithm [109]. Perfusion deficits, ischemic changes, 

and ejection fraction changes between stress and rest were derived by the quantitative 

software. The polynomial SVM model demonstrated overall per-patient improvement in 

diagnostic accuracy of MPI as compared to individual quantitative parameters (86% vs. 

81%; p < 0.01). The overall AUCs for detection of the obstructive disease were also 

significantly improved.

3.2. Combining clinical variables and risk factors with images for higher level 
interpretation

The final clinical diagnosis performed by the physician usually includes more information 

than what is available only from the images. When physicians review the patient scan, 

typically they consider information such as patient age, history, and other clinical findings, 

which together form a pre-test risk profile. Although this task is currently routinely 

performed by physicians during reporting, the precise probability of disease based on 

multiple factors cannot be reliably estimated by subjective human interpretation – 

particularly as the number of clinical and quantitative variables available for clinical 

consideration grows.

Several recent studies demonstrated that it is feasible to combine such clinical information 

with quantitative image information and subsequently derive enhanced probability or 

percentile diagnostic or prognostic scores to predict disease or patient outcome. Such tools 

could be valuable for the physicians since they would allow them to assign precise patient-

specific risk scores for a particular outcome. This development could consequently lead to 

the optimized selection of various therapies, based on the quantitative rather than subjective 

risk assessment.

3.3. Studies combining clinical and image information

3.3.1. Enhanced diagnosis—Several studies have been recently reported where such 

high-level interpretation is attempted. In one study, a boosting machine learning method 

(LogitBoost) [110] was utilized. This machine learning algorithm allows ensemble learning 

(a group of weak learners combined) by sequentially applying a classification algorithm to 

repeatedly reweighted versions of the training data and then taking a weighted majority vote 

of the sequence of classifiers. Such boosting algorithms are widely used in machine 

learning. The algorithm was trained in a 10-fold cross-validation experiment and compared 

it to quantitative perfusion assessment from SPECT MPI images (Total perfusion deficit-
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TPD), and visual scores by the experienced physicians in a large patient cohort with MPI 

scans (n = 1181), where expanded clinical information was recorded. When clinical 

information was provided to LogitBoost in addition to the imaging features LogitBoost 

achieved higher accuracy (87%) than one of the expert readers (82%) or automated TPD 

(83%; p < 0.01), and higher AUC (0.94 ± 0.01) than TPD (0.88 ± 0.01) or 2 visual readers 

(0.89,0.85; p < 0.001), for the detection of disease (Figure 6) [111].

3.3.2. Prediction of revascularization and ischemia—One issue facing clinicians is 

the choice of the possible treatments. Machine learning was used to integrate clinical data 

and quantitative image features for prediction of early revascularization in patients with 

suspected coronary artery disease. This approach was evaluated in 713 MPI studies with 

correlating invasive angiography within 90 days after the initial MPI scan. Several 

automatically derived image features along with clinical parameters including patient 

gender, history of hypertension and diabetes mellitus, ST depression on baseline ECG, ECG 

and clinical response during stress, and post-ECG probability were integrated by ML 

algorithm to predict revascularization events. The AUC for revascularization prediction by 

machine learning was similar to that of one reader and superior to another reader (Figure 7). 

Thus, machine learning approach was found to be comparable or better than the experienced 

reader in the prediction of the early revascularization after MPI.

Machine learning has also been applied to integrate coronary CTA imaging to integrate 

biomarkers from quantitative CTA – to improve diagnostic accuracy. It has been 

demonstrated that a machine learning score, combining quantitative stenosis and plaque 

measures with machine learning, significantly improves the prediction of impaired regional 

myocardial flow reserve over stenosis [AUC 0.83 vs. 0.68] [114]. This preliminary data 

provides evidence that objective risk scores combining quantitative stenosis and plaque can 

improve prediction of ischemia from standard CTA, without the need for additional testing.

3.3.3. Machine learning for outcome prediction—Ultimately machine learning 

models are probably most useful in the quantitative assessment of risk. A recent study in the 

European Heart Journal demonstrated that outcomes such as all-cause mortality could be 

accurately predicted by machine learning algorithms which combine image information 

obtained from coronary CTA and clinical information [113]. A large, prospective 

multinational registry of patients undergoing CTA was utilized to assess the feasibility and 

accuracy of ML to predict 5-year all-cause mortality, and then compare the performance to 

existing clinical or imaging metrics.

The analysis included 10,030 patients with suspected coronary artery disease and 5-year 

follow-up from the CONFIRM (Coronary CT Angiography EvaluatioN For Clinical 

Outcomes: An InteRnational Multicenter) registry. All patients underwent coronary CTA as 

their standard of care. 25 clinical and 44 CTA parameters were evaluated, including segment 

stenosis score (SSS), segment involvement score (SIS), modified Duke index (DI), the 

number of segments with noncalcified, mixed or calcified plaques, age, sex, gender, standard 

cardiovascular risk factors and Framingham risk score (FRS). ML involved automated 

feature selection by information gain ranking, model building with a boosted ensemble 

algorithm, and ten-fold stratified cross-validation. ML exhibited a higher area under receiver 
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operator characteristics curve compared to the FRS or coronary CTA severity scores alone 

(SSS, SIS, DI) for predicting all-cause mortality (ML: 0.79 vs. FRS: 0.61, SSS: 0.64, SIS: 

0.64, DI: 0.62; p < 0.001) (Figure 8). By net reclassification improvement metric, it could be 

shown that significant percentage of patients could be more appropriately assigned a risk 

category when such new ML score was used (Table 2). The 5-year risk of mortality was 

significantly better than existing clinical or coronary CTA metrics alone. The observed 

efficacy suggests ML has an important clinical role in evaluating prognostic risk in 

individual patients with suspected coronary artery disease.

4. Issues and potential pitfalls

The technological development described above are encouraging. There are however several 

foreseeable obstacles and possible pitfalls when these technologies are translated into 

clinical use.

4.1. Availability of the data

Although computer modeling and image processing techniques have advanced tremendously 

in the recent years, one key issue is the availability of the data for training and validation of 

the new methods. There are several legal barriers in the medical community when it comes 

to medical data sharing. Even fully de-identified data usually require investigational research 

board approvals before any sharing or analysis, and typically these datasets are not available 

publicly. There are often legal barriers, and the data ownership is not always clear. These 

obstacles, unfortunately, will hinder the optimization of the image processing and analysis 

methods, especially if these methods are based on machine learning. In particular, deep 

learning models require large datasets during the training phase to obtain sufficient accuracy 

[115]. If large repositories of well-characterized image sets and associated clinical outcomes 

were publicly available, it would facilitate further development and optimization of these 

tools for the physicians. Such data sharing should be justified especially when the collection 

of these datasets are funded by public research funds.

Encouragingly, the recent biobanks and international consortia managing medical imaging 

databases, such as the UK Biobank [116], the Cardiac Atlas Project [117], or the 

VISCERAL Project [118], have solved many of these difficult problems in ethics of data 

sharing, medical image organization, and data distribution – in particular, when aggregating 

the data from multiple sources.

For the image segmentation tasks, valuable open datasets have been provided online under 

the Grand Challenge initiative [119]. This site contains large, extensively validated and 

annotated training datasets for the segmentation of LV by MRI, CT, and echocardiography. 

Especially noteworthy, is perhaps the Kaggle (universal platform for testing various machine 

learning algorithms) second annual Data Science Bowl challenge with over 1000 2D cardiac 

MRI datasets [120]. This dataset is larger than any other dataset previously compiled for this 

modality and will facilitate new automated algorithm developments. An online competition 

system with cash prize has been set up for the researchers where their algorithms can be 

evaluated on this dataset. There are also smaller (<100 patients) validated datasets available, 

for example for the segmentation of coronary arteries from CT angiography [121]. Such 
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worthwhile initiatives will facilitate further development of automated tools for cardiac 

modalities, including novel machine-learning approaches.

4.2. Data standardization

The picture archiving and communication system (PACS) and the Digital Imaging and 

Communications in Medicine (DICOM) standards have been invaluable in providing a 

consistency platform for data. However, studies coming from multiple centers often use 

specific nomenclature, follow different guidelines or utilize different acquisition protocols. 

In these cases, even these standards are not sufficient. For example, there is no standard way 

to store some of the key image-related information (e.g. cardiac acquisition plane) as the 

naming often depends on the custom set up of the scanning terminal and the language 

practiced at the imaging center. Even standard DICOM tags often contain vendor specific 

nomenclature. Such differences reduce our ability to effectively query and explore the 

databases for relevant images.

4.3. Physicians resistance

The emergence of high-level image analysis and image interpretation tools may perhaps 

evoke some fear in the medical profession about their work being somehow replaced by such 

automated analysis and interpretation. However, these developments should be viewed by 

the physicians in a positive light, since they will allow to achieve a more optimal, answer 

personalized and a superior tool for the quantitative risk or diagnostic assessment for their 

patients. Indeed, these tools will enable meaningful implementation of precision-medicine 

principles by the physicians. Thus, the overall ability to improve patients' well-being by the 

medical care will be significantly enhanced. That should be a compelling argument in 

overcoming any resistance to the clinical translation of these new tools.

4.4. Integration of the electronic patient record with imaging data

When making a diagnosis, physicians integrate clinical history with imaging data. As 

described above, it has been demonstrated that computer algorithms can derive risk scores 

for patients utilizing such integrated information. However, in clinical practice sometimes 

the electronic patient record is not interfaced directly with the imaging software and 

workstations. It would not be feasible to manually enter and transfer multiple clinical 

variables for each patient to obtain integrated analysis or risk score. There are initiatives in 

the cardiology community which can help in this respect. For example, in nuclear cardiology 

community, the American Society of Nuclear Cardiology has led efforts to gather all 

relevant clinical data via the ImageGuide registry [122]. Reporting software vendors are 

cooperating and will be providing appropriate interfaces to hospital systems to collect and 

transmit such data linking these with the images. This infrastructure could be potentially 

used to feed the machine-learning models. Consequently, this would allow the risk score to 

be automatically computed and be available during reporting.

4.5. External validation

Computer algorithms trained by image and clinical data from one institution or on a 

particular type of equipment may not perform optimally if patient or image characteristics 
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changes. Therefore, machine learning software should be developed and validated with 

multicenter registries covering a broad spectrum of patient demographics. Formal 

validations on data external to the training population may need to be performed. However, 

this may be difficult due to the potential data sharing barriers described above. In addition, 

one key aspect of machine learning in a medical environment is that incoming patient 

characteristics and disease patterns may change in time even in the same center and 

therefore machine learning models may need to be adapted incrementally to adjust for this. 

The exact mechanisms for such continuing evolution of medical decision support systems 

have not yet been worked out in clinical practice.

4.6. Legal issues

One potential obstacle is the issue of the clinical clearance for the fully automated by the 

appropriate agencies (US FDA, CE Mark). Typically, most current diagnostic software tools 

considered as Class 2 (medium-risk) devices, which are involved in the diagnosis but are not 

providing a complete and final diagnosis. Fully automated systems would be likely classified 

as Class 3 (high-risk) devices with much higher bar with respect to performance and 

validation. This issue is similar to that facing the developers of self-driving cars where even 

if the statistical performance may better than that of the best driver, an individual error 

leading to an accident is still a liability. In the medical field, it is probably also not enough to 

demonstrate the higher overall performance as compared to the expert physicians, as there 

may be individual cases (patients) where the automated system would still provide an 

incorrect answer, despite overall superiority. The other potential legal problem is the 

validation and certification of a system which is designed to continuously learn from new 

patient data. Some new guidelines will have to be established for the metrics of performance 

of such devices, as current validation regiments assume static system performance. It is 

likely that a physician override and check will still be required for such systems in the 

foreseeable future.

5. Expert commentary

Computer analysis and high-level interpretation of cardiac imaging are becoming feasible. In 

cardiology, the field of nuclear cardiology is most advanced in this respect and may be 

viewed as a harbinger of things to come. Recent advances in machine learning will facilitate 

further rapid development. It is highly beneficial to combine image information with clinical 

data to provide optimal diagnosis and prognosis. Although quantitative tools are used 

routinely in the clinical practice, especially in nuclear cardiology, the higher-level tools 

combining multiple features and clinical data are not yet prevalent. However, in several 

recent research studies, they have been demonstrated to show a very high potential. These 

upcoming developments will not replace the role of physicians but will provide them with 

highly accurate tools to detect disease, stratify risk in an easy to understand manner and 

optimize patient-specific treatment and further tests.

6. Five-year view

It is likely that in a 5-year time the level of automation for analysis and interpretation will be 

significantly raised, compared to what is possible today. It is likely, that entirely 
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unsupervised extraction of all image parameters will be possible for nuclear cardiology, and 

minimal supervision will be required for other modalities. Greater standardization of 

acquisition protocols will be needed to maximize the potential gains from automation and 

machine learning. This goal will require significant support from the vendors but also from 

the medical centers - to facilitate data sharing. Fully quantitative diagnostic and risk 

stratification scores will be developed for clinicians and these will become integrated with 

the imaging software. Risk stratification will transition from oversimplified population-

based risk scores to machine-learning-based metrics incorporating a large number of clinical 

and imaging variables in real-time beyond the limits of human cognition - this will deliver 

highly accurate and individual personalized risk assessments and facilitate tailored 

management plans. However, the clinical translation of these exciting techniques will 

depend on many factors outside of technological progress, such as aspects related to 

logistical, legal, standardization, and reimbursement.
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Key issues

• Data availability for algorithm training

• Potential resistance from the medical community

• The level of automation for the image processing methods

• Integration of multiple imaging features

• The need to validate algorithms in large populations

• Seamless connection of clinical and imaging data
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Figure 1. 
Inter-observer variability in nuclear cardiology.
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Figure 2. 
Diagnostic accuracy of automated versus visual analysis. A recent study confirmed that 

diagnostic accuracy for detecting CAD (≥70% stenosis) on a per-patient basis using 

automated methods is at least similar or marginally superior to that achieved by two expert 

visual readers. Comparisons were made for both attenuation-corrected (AC) and non-

attenuation corrected (NC) data, and using variable amounts of imaging and clinical data 

available to the reader (V1-V4) with V4 representing full imaging and clinical information 

available. This research was originally published in JNM. Arsanjani R, Xu Y, Hayes SW, et 

al. Comparison of Fully Automated Computer Analysis and Visual Scoring for Detection of 

Coronary Artery Disease from Myocardial Perfusion SPECT in a Large Population. J Nucl 

Med. 2013;54:221–228. © by the Society of Nuclear Medicine and Molecular Imaging, Inc 

[11].
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Figure 3. 
Standardized quantification of high-risk plaque lesion in the left anterior descending artery. 

Full color available online. The quantification allows standardized measurement of several 

parameters such as maximal stenosis, volumes of non-calcified (red) and calcified (yellow) 

plaques, total plaque volume, plaque composition, length of the lesion and drop of CT 

contrast.
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Figure 4. 
Traditional machine learning vs. deep learning. In typical machine learning (a) the pre-

processing step extracts relevant features of the data (images) and then perform machine 

learning taking as an input extracted features. In deep learning (b) the deep network defines 

features as a part of learning process. The input to DL are raw data (images).
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Figure 5. 
Automatic identification of coronary lesions from coronary CT Angiography by an 

algorithm based on machine learning. An example of lumen segmentation with lesion 

detection. This research was originally published in Journal of Medical Imaging. Kang D, 

Dey D, Slomka PJ, et al. Structured Learning Algorithm for Detection of Nonobstructive 

and Obstructive Coronary Plaque Lesions from Coronary CT Angiography. 2(1), 014003 

(Mar 06 2015) [98].
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Figure 6. 
Application of machine learning to automated quantitation. When clinical and imaging 

information was provided to the LogitBoost machine learning technique in a large study (n = 

1181), it achieved a significantly higher diagnostic accuracy for detection of significant 

CAD (87%) than one of the expert readers (82%) or TPD (83%; P < 0.01); and a higher 

AUC (0.94 ± 0.01) than TPD (0.88 ± 0.01) or 2 visual readers (0.89,0.85; P < 0.001). With 

kind permission from Springer Science+Business Media: Journal of Nuclear Cardiology, 

Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease 

by machine learning in a large population, Volume 20, 2013, Page 558, Arsanjani R, Xu Y, 

Dey D, et al., Figure 3, © by the American Society of Nuclear Cardiology [111].
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Figure 7. 
Nuclear cardiology prediction of revascularization after the scan. Automated measures have 

similar area under the ROC curve as one experienced reader and much higher than second 

reader in N = 713 patients. With kind permission from Springer Science+Business Media: 

Journal of Nuclear Cardiology, Prediction of revascularization after myocardial perfusion 

SPECT by machine learning in a large population, Volume 22, 2015, Page 882, Arsanjani R, 

Dey D, Khachatryan T, et al., Figure 2, © by the American Society of Nuclear Cardiology 

[112].
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Figure 8. 
5-year all-cause prediction of mortality. Machine learning boosting model (ML-B) was able 

to predict mortality much better than the existing imaging scores derived by visual expert 

analysis (Summed segmental scores-SSS, Segment Involvement scores-SIS) or clinical 

scores such Duke index (DI) or Framingham Risk Score (FRS). Reproduced, with 

permission, from Manish Motwani et al. Machine Learning For Prediction Of All-Cause 

Mortality In Patients With Suspected Coronary Artery Disease: A 5-Year Multicentre 

Prospective Registry Analysis. European Heart Journal (2016) DOI: http://dx.doi.org/

10.1093/eurheartj/ehw188. Published by Oxford University Press on behalf of the European 

Society of Cardiology [113].
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Table 2

Risk Reclassification table for prediction of mortality by machine learning (ML) combining coronary CT 

angiography versus existing clinical score – Framingham risk score (FRS).

FRS risk category

Machine learning risk category

TotalLow Intermediate High

Death, n

Low 38 89 108 235

Intermediate, 22 124 60 206

High 11 108 185 304

Total 71 321 353 745

No Death, n

Low 2193 1578 256 4027

Intermediate 1209 1700 209 3118

High 487 1169 484 2140

Total 3889 4447 949 9285

Overall NRI index (95% CI) 0.24 (0.19–0.30) p < 0.0001
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