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Abstract

Optimality studies and studies of decision-making in monkeys have been used to support a model 

in which the decision boundaries used to evaluate evidence collapse over time. This article 

investigates whether a diffusion model with collapsing boundaries provides a better account of 

human data than a model with fixed boundaries. We compared the models using data from four 

new numerosity discrimination experiments and two previously published motion discrimination 

experiments. When model selection was based on BIC values, the fixed boundary model was 

preferred over the collapsing boundary model for all of the experiments. When model selection 

was carried out using a parametric bootstrap cross-fitting method (PBCM), which takes into 

account the flexibility of the alternative models and the ability of one model to account for data 

from another model, data from 5 of 6 experiments favored either fixed boundaries or boundaries 

with only negligible collapse. We found that the collapsing boundary model produces response 

times distributions with the same shape as those produced by the fixed boundary model and that its 

parameters were not well-identified and were difficult to recover from data. Furthermore, the 

estimated boundaries of the best-fitting collapsing boundary model were relatively flat and very 

similar to those of the fixed-boundary model. Overall, a diffusion model with decision boundaries 

that converge over time does not provide an improvement over the standard diffusion model for 

our tasks with human data.
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1. Introduction

Over the last 50 years, sequential sampling models such as the diffusion model have been 

applied extensively to a wide variety of tasks and participant populations. The tasks include 

recognition memory (Ratcliff, 1978; Ratcliff, Thapar, & McKoon, 2011; Starns, Ratcliff, & 

McKoon, 2012), lexical decisions (Ratcliff, Gomez, & McKoon, 2004; Ratcliff, Thapar, 

Gomez, & McKoon, 2004; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008), perceptual 

discrimination (Ratcliff, 2014; Ratcliff & Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 
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1999; Smith, Ratcliff, & Sewell, 2014), value-based decision making (Krajbich, Armel, & 

Rangel, 2010; Krajbich & Rangel, 2011; Milosavljevic, Malmaud, Huth, Koch, & Rangel, 

2010) go/no-go tasks (Gomez, Ratcliff, & Perea, 2007); simple reaction time (Ratcliff & 

Strayer, 2014; Ratcliff & Van Dongen, 2011; Smith, 1995), the response signal task 

(Ratcliff, 2006, 2008), and visual signal detection (Smith & Ratcliff, 2009; Smith, Ratcliff, 

& Wolfgang, 2004). The participant populations include older adults (Ratcliff, Thapar, & 

McKoon, 2001, 2003, 2004, 2010; Ratcliff et al., 2011; Spaniol, Madden, & Voss, 2006), 

children and adolescents (Ratcliff, Love, Thompson, & Opfer, 2012), children with ADHD 

(Mulder et al., 2010), children with dyslexia (Zeguers et al., 2011), people undergoing sleep 

deprivation (Ratcliff & Van Dongen, 2009), people with induced hypoglycemia (Geddes et 

al., 2010), and people with anxiety or depression (White, Ratcliff, Vasey, & McKoon, 

2010a,b). In sequential sampling models with fixed boundaries, noisy evidence about a 

stimulus is accumulated over time toward one of two decision boundaries, each of which 

represents a decision alternative. The distance between the boundaries may vary from trial to 

trial but they remain constant within trials, that is, from the time of stimulus presentation 

until the time of the response. Such models aim to account for all aspects of the 

experimental data, namely, the distributions of correct and error response times and the 

proportions of correct and error responses.

These fixed or constant boundary models have been able to successfully fit a wide variety of 

data (see previous paragraph). However, some researchers have instead proposed models 

with decision boundaries that converge over time during a trial, such that progressively less 

evidence is required to trigger a response as the trial progresses (Bowman, Kording, & 

Gottfried, 2012; Churchland, Kiani, & Shadlen, 2008; Cisek, Puskas, & El-Murr, 2009; 

Ditterich, 2006a,b; Hanks, Mazurek, Kiani, Hopp, & Shadlen, 2011; Rao, 2010; Sanders & 

Ter Linden, 1967; Thura, Beauregard-Racine, Fradet, & Cisek, 2012; Thura & Cisek, 2014; 

Viviani, 1979a,b; Viviani & Terzuolo, 1972).

Support for these collapsing or converging boundary models has come from several sources. 

In the neurophysiological literature, firing rates in the lateral interparietal area of macaques 

appear to reflect the accumulation of evidence for a particular choice in a dot-motion task 

(Churchland et al., 2008). Because the increase in firing rate is also found on trials on which 

there is no coherent motion, the authors proposed that the time-dependent increase in firing 

rates represents an urgency-signal, which they argued is equivalent to a collapsing boundary 

(but this is not true for other urgency-signal implementations, e.g. Thura et al., 2012; Thura 

& Cisek, 2014). Models with collapsing boundaries may also be able to represent certain 

physiological properties such as the refractory period after a neuron has fired (Kryukov, 

1976) or certain dynamics of the basal ganglia (Ratcliff & Frank, 2012).

In the behavioral literature, numerous researchers have demonstrated that subjects are 

willing to make decisions based on less evidence as a trial progresses in expanded judgment 

or deferred decision-making tasks (Busemeyer & Rapoport, 1988; Drugowitsch, Moreno-

Bote, Churchland, Shadlen, & Pouget, 2012; Rapoport & Burkheimer, 1971; Sanders & Ter 

Linden, 1967). However, these kinds of tasks are quite different from the standard two-

choice tasks used in most speeded decision-making studies. In most expanded judgment 

tasks, evidence is presented at a slower rate (e.g., a new piece of information every 2 s) and 
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subjects’ response times can be much longer (e.g., 20–40 s). Some of these tasks also 

include an explicit cost associated with acquiring new information. Given the differences 

between these tasks and the standard two-choice tasks, evidence for collapsing boundary 

models in expanded judgment tasks cannot be taken as evidence of their appropriateness for 

standard rapid two-choice tasks.

Some researchers have also argued in favor of models with collapsing boundaries on the 

grounds of optimality (Busemeyer & Rapoport, 1988; Deneve, 2012; Ditterich, 2006a; 

Drugowitsch et al., 2012; Rapoport & Burkheimer, 1971; Thura et al., 2012). If subjects are 

trying to achieve a short mean response time for a given level of accuracy and a single fixed 

stimulus strength, then a model with fixed boundaries is statistically optimal, assuming that 

there is no variability in drift rate across trials (Moran, 2015; Wald & Wolfowitz, 1948). 

However, if there is variability in drift rate across trials, then a model with boundaries that 

change over time is statistically optimal if subjects are trying to maximize their reward rate 

(i.e., make the most correct responses per unit of time; Ditterich, 2006a; Thura et al., 2012) 

or minimize mean response time for a given level of accuracy (Moran, 2015). A model with 

boundaries that collapse over time has also been argued to be optimal if there is a cost 

associated with time spent on a decision (Busemeyer & Rapoport, 1988; Drugowitsch et al., 

2012; Rapoport & Burkheimer, 1971). It has also been argued that collapsing boundary 

models are optimal in response-deadline tasks in which subjects are trying to find a balance 

between being accurate and still making a response before a deadline (Frazier & Yu, 2008), 

although in practice, subjects do not appear to behave optimally in these kinds of tasks 

(Balci et al., 2011; Karsilar, Simen, Papadakis, & Balci, 2014), and this type of data can be 

accounted for with a forced decision at the deadline (Ratcliff, 1988, 2006). Karsilar et al. 

(2014) examined accuracy as a function of response time in a response deadline task and 

found that subjects do show a decrease in accuracy before a response deadline, but the size 

of the decrease is more consistent with the predictions of a fixed boundary diffusion model 

than with the predictions of a collapsing boundary model with boundaries selected to 

optimize reward rate.

Although collapsing boundary models have become increasingly popular in both the 

behavioral and neurophysiological literature, many researchers using sequential-sampling 

models in these domains have successfully used fixed boundary versions of these models 

(Bode et al., 2012; Brown, Hanes, Schall, & Stuphorn, 2008; Ding & Gold, 2010, 2012; 

Forstmann et al., 2010, 2008; O’Connell, Dockree, & Kelly, 2012; Ramakrishnan & Murthy, 

2013; Ramakrishnan, Sureshbabu, & Murthy, 2012; Ratcliff, Philiastides, & Sajda, 2009; 

Salinas & Stanford, 2013; Schall, 2003; Schurger, Sitt, & Dehaene, 2012; Smith & 

McKenzie, 2011; Usher & McClelland, 2001; Wang, 2002; Wong & Wang, 2006). Hawkins, 

Forstmann, Wagen-makers, Ratcliff, and Brown (2015) recently conducted a large-scale 

analysis of data from both humans and non-human primates from several different tasks and 

found that support for fixed or collapsing boundary versions of the model appears to depend 

on the specific tasks and procedures used. Overall, Hawkins et al. found that a fixed-

boundary model was preferred for most of the human subjects, but a collapsing boundary 

model was preferred for most of the non-human primates. This may be a result of practice 

effects, given that the non-human primates in these studies received much more extensive 

training on these tasks (e.g., months) than the human subjects.
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The results we present in this article complement and extend those of Hawkins et al. (2015) 

in several ways. First, unlike Hawkins et al., who used Monte Carlo simulation to obtain 

predictions for the collapsing boundary model, we used exact predictions based on the 

integral equation methods described in Smith (2000). These methods make it possible to 

derive exact response time distribution and accuracy predictions for diffusion models with 

time-varying drift rates or boundaries or both. This ensures that our model predictions are 

reliable and were not dependent on our simulation method or sample size. Second, the 

collapsing boundary model we examined had a different functional form for the boundary 

collapse than the one used by Hawkins et al. We used a hyperbolic ratio function, which 

Shadlen and colleagues (Churchland et al., 2008; Hanks et al., 2011) previously used to 

quantify the hypothetical urgency signal in physiological data, whereas Hawkins et al. used a 

Weibull function (which was chosen for its ability to mimic a wide range of possible 

boundary collapse functions). The hyperbolic ratio function we used can be well-

approximated by a Weibull function, but has fewer parameters than the Weibull function and 

is more constrained in terms of the variety of shapes it can take. Third, we applied our 

methods to a different set of tasks and manipulations than the ones considered by Hawkins 

et al., so our results are important in establishing the generality or otherwise of their 

conclusions. To foreshadow our main conclusion, we find that most of our data were more 

parsimoniously described by a fixed-boundary than by a collapsing boundary model, in 

agreement with the findings of Hawkins et al. for their human data. Together with the results 

of Hawkins et al., our findings show that fixed-boundary models provide a good account of 

performance from a variety of speeded decision tasks and serve as a caution against 

overgeneralization from physiological data and expanded judgment tasks.

2. Model parameterization

In the diffusion model, noisy evidence is accumulated over time from a starting point toward 

one of two decision boundaries, as shown in Fig. 1(A). The starting point is denoted z and 

the boundaries are denoted a/2 and −a/2 such that the distance between the two boundaries is 

determined by the parameter a. This parameterization differs from the one used in the 

standard diffusion model, in which the boundaries are set to a and 0. We parameterize the 

model in this way for ease of comparison between the fixed-boundary and collapsing 

boundary models. The rate of evidence accumulation is called the drift rate (ν) and is 

determined by the quality of the information extracted from the stimulus. There is noise in 

the accumulation of evidence within each trial, represented by the infinitesimal standard 

deviation (s), which is the square-root of the diffusion coefficient. In our fits, s acts as a 

scaling parameter which is fixed across conditions.1 Response time predictions are obtained 

by combining the decision time (the time taken for the accumulating evidence to reach one 

of the boundaries) with a uniformly distributed non-decision component. The non-decision 

component, which encompasses both encoding (i.e., the transformation of the stimulus 

representation to a decision-related representation) and response output processes, is 

assumed to be uniformly distributed with mean Ter and range st.

1Constraining s across all of the conditions is not strictly necessary from a scaling perspective—it technically only needs to be fixed 
for one of the conditions (Donkin, Brown, & Heathcote, 2009). However, in all of our fits the more constrained model (with s fixed 
across all conditions) was able to fit the observed data.

Voskuilen et al. Page 4

J Math Psychol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The values of drift rate and starting point (or, equivalently, the starting points of the decision 

boundaries) vary from trial to trial. The across-trial variability in drift rate is assumed to be 

normally distributed with a standard deviation of η. The variability in the starting point is 

assumed to be uniformly distributed with a range of sz. These distributional assumptions are 

not critical and the use of alternative distributions does not significantly change the estimates 

of the diffusion model’s other parameters (Ratcliff, 2013). The inclusion of these 

parameters, however, is necessary for the model to be able to produce different patterns of 

correct and error response times (Ratcliff & McKoon, 2008).

In the collapsing boundary version of the diffusion model, noisy evidence is accumulated 

toward boundaries that decrease over time (as in Fig. 1(B)). All aspects of this model are 

identical to the fixed boundary model, except for the addition of two parameters that govern 

the boundary collapse. The boundaries are parameterized as functions of the initial boundary 

separation (a), time (t), the amount of collapse (κ), and a semi-saturation constant (t0.5). The 

expressions for the boundaries are:

The semi-saturation constant is the value of time at which the boundaries have collapsed by 

half κ. Small values of t0.5 represent a faster rate of collapse. This is the same 

parameterization as used by Hanks et al. (2011), except that the amount of collapse is 

expressed as a fraction of the total boundary separation rather than as an absolute value. This 

parameterization simplified fitting and led to more interpretable parameter estimates. Fig. 

1(B) shows boundaries for a single value of t0.5 (0.15) and three values of κ (0.3, 0.6, 0.9). 

We chose this functional form for the collapsing boundaries since it has previously been 

found to provide a reasonable fit to data from both humans and monkeys (Churchland et al., 

2008; Hanks et al., 2011).

Our version of the collapsing boundary model differs slightly from others in the literature in 

that it includes between-trial variability in non-decision time, starting point, and drift rates. 

In the fixed boundary version of the diffusion model, these parameters are necessary to 

produce fast and slow errors and RT distributions with the correct shape (Ratcliff, 1981; 

Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Ratcliff et al., 1999; Wagenmakers et 

al., 2008). Proponents of the collapsing boundary model have often used simpler versions of 

the diffusion model which do not include these parameters or include only some of them 

(Ditterich, 2006a,b; Palmer, Huk, & Shadlen, 2005; Shadlen & Kiani, 2013) and have argued 

that the collapsing boundary model is capable of producing slow errors without these 

sources of variability (fast errors are generally not addressed, and variability in non-decision 

time is only sometimes used; Ditterich, 2006a). The model without between-trial variability 

is a limiting case of the model we tested and if there was no between-trial variability in 

model parameters then the fitting method would have produced estimates of these 

parameters that were near zero. However, we did not find this to be the case in fits to our 

data. Both the fixed and collapsing boundary models were unable to capture the behavior of 

the error response time distributions without these between-trial sources of variability. Our 
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goal in carrying out these models comparisons was to determine if one of these versions of 

the diffusion model is better than the other, meaning both that it provides a closer fit to the 

observed data and also that it provides meaningful and interpretable parameter values.

3. Parametric bootstrap cross-fitting method

It is well established that any reasonable model selection process should involve a trade-off 

between the goodness-of-fit (GOF) of the models in question and their parsimony (Myung, 

2000; Pitt & Myung, 2002; Wagenmakers, Ratcliff, Gomez, & Iverson, 2004). The 

complexity of a model is determined by both the number of parameters in the model and the 

functional form of the model, and is equivalent to model flexibility (i.e., the ability of the 

model to fit diverse patterns of data). However, many simple model selection methods, such 

as the likelihood ratio test (LRT; Wilks, 1938), Akaike information criterion (AIC; Akaike, 

1973; Burnham & Anderson, 2002; Parzen, Tanabe, & Kitagawa, 1998), and Bayesian 

information criterion (BIC; Raftery, 1995; Schwarz, 1978), treat model complexity only as a 

function of the number of parameters in a model. This type of approach ignores differences 

in the functional forms of the models being compared and does not adequately address 

model mimicry. To address these problems, we used a general resampling procedure known 

as the parametric bootstrap cross-fitting method (PBCM; Wagenmakers et al., 2004).

The parametric bootstrap cross-fitting method (PBCM) is a procedure designed to quantify 

the model mimicry of a pair of models (i.e., the ability of one model to account for data 

generated from another model). There are several steps in this procedure. First, the two 

models being compared are fit to the data, resulting in a set of parameter values for each 

model.2 Second, simulated data are generated from each of the models using the parameter 

values from the fits. Third, each model is fit to each of the simulated data sets, resulting in 

four GOF values (2 models × 2 sets of simulated data). These latter two steps are then 

repeated multiple times to obtain distributions of GOF values. The difference in the GOF of 

the two models given the data is then examined to compare how well each model is able to 

fit data generated from the other model. Ideally, each model should provide a closer fit to its 

own data than to data generated from the other model. If we plot histograms of the 

differences in GOF values from two models A and B, we should see something like the 

distributions in the top panel of Fig. 2, with the crossover point of the two distributions at or 

around zero. When the data are generated from model A, then model A produces smaller 

GOF values and so the distribution of GOFA–GOFB values is mostly negative. When the 

data are generated from model B, then model B produces smaller GOF values and the 

distribution of differences is mostly positive. Researchers commonly fit two or more models 

to their data, possibly with some kind of parameter-counting correction (as in BIC), and then 

choose the model with the smallest GOF as the best-fitting model.

However, this simple model comparison approach does not sufficiently take into account 

differences in model flexibility and the fact that adjusting parameters of the model may have 

differential effects on the functional form of the model predictions (e.g., changes in mean 

2A non-parametric version of this method starts with fitting multiple bootstrapped samples of the data with each of the models and 
then generating predictions from each of those fits. The parametric approach, as described above, was more appropriate given our 
focus on average parameter values across subjects, but both approaches have merit.
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non-decision time will change the position of all of the RT distributions whereas changes in 

the variability in non-decision time will affect the leading edges of the RT distributions and 

also spread the distributions out slightly). Models can differ significantly in their ability to fit 

various data patterns such that an overly flexible model may be able to produce smaller GOF 

values than a more restricted model, even when being fit to data generated from the more 

restricted model. This flexibility may result in differences in GOF values that exceed the 

theoretical corrections based on the number of model parameters in measures such as BIC or 

AIC. In this case, the resulting histograms of the differences in GOF from the two models 

could look like the distributions in the bottom panel of Fig. 2. If model B produced 

consistently smaller GOF values than model A, both of the GOF distributions would be 

shifted to the right. Using a criterion of zero would then result in a bias toward choosing the 

more flexible model. PBCM is a useful procedure for such situations because it provides an 

appropriate criterion for choosing between the two models. Rather than assuming that the 

appropriate criterion is at zero (i.e., choosing the model with the smaller GOF), the PBCM 

determines the appropriate criterion based on the observed distribution of GOF differences 

between the two models. The distributions in Fig. 2 are intended to be illustrative of a 

general model-fitting approach and to show the advantage of using PBCM. In the case of the 

models we consider here, the fixed boundary model is nested in the collapsing boundary 

model and so the more complex collapsing boundary model should always produce smaller 

GOF values and the crossover point for the differences in GOF values from the two models 

will never be at zero (at least for GOF methods such as G2 or χ2 that do not include penalty 

terms based on the number of parameters). In other words, the distributions for the GOF of 

the fixed boundary model minus the GOF for the collapsing boundary model should look 

like the distributions in the bottom panel of Fig. 2 and the PBCM will allow us to calculate 

the optimal criterion for model selection.

PBCM is a useful method for model comparison for several reasons. First, it is flexible in its 

ability to examine either the entire parameter space of a model or just part of the space. 

Depending on the question of interest, the PBCM can be set up to sample the entire 

parameter spaces of the competing models and so provide insight into the full range of 

predictions a model could make, or it can be set up to investigate only the part of the 

parameter space that is relevant to a particular data set. PBCM is also a fairly intuitive 

approach to model selection. Even for very complex models, the concept of investigating 

how well each model can account for data from a competing model is easily understood. 

Finally, and perhaps most important from a practical standpoint, the method is 

straightforward to implement as it requires no more code than would already be needed to fit 

models to data and generate predictions and simulated data.

4. Experiments

The experiments were designed to provide data from simple speeded decision tasks in order 

to allow the performance of the two versions of the diffusion model to be compared. Our 

goal was to determine if one of the models provided a better account overall of the accuracy 

and response time distributions of human subjects performing standard decision-making 

tasks and, more generally, to compare the overall performance of the two models. The first 

four experiments used a numerosity discrimination task with a bias manipulation. The fixed-
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boundary diffusion model has previously been shown to provide a good fit to data from this 

type of task (Geddes et al., 2010; Leite & Ratcliff, 2011; Ratcliff, 2008, 2014; Ratcliff et al., 

2012, 2001, 2010; Ratcliff & Van Dongen, 2009; Ratcliff et al., 1999). The fifth and sixth 

experiments used a dot motion discrimination task with various difficulty levels and a speed/

accuracy manipulation. This task has been used extensively in both the neurophysiological 

and behavioral literature (e.g. Cain, Barreiro, Shadlen, & Shea-Brown, 2013; Churchland et 

al., 2008; Ditterich, 2006a; Forstmann et al., 2010, 2008; Gold & Shadlen, 2007; Hanks, 

Kiani, & Shadlen, 2014; Mazurek, Roitman, Ditterich, & Shadlen, 2003; Morgan & Ward, 

1980; Mulder, Boekel, Ratcliff, & Forstmann, 2014; Niwa & Ditterich, 2008; Palmer et al., 

2005; Ratcliff & McKoon, 2008; Ratcliff & Starns, 2013; Roitman & Shadlen, 2002; 

Shadlen & Newsome, 1996; van Ravenzwaaij, Mulder, Tuerlinckx, & Wagenmakers, 2012). 

We present the fits of the two models to all of the experiments followed by the PBCM 

results and interpretation.

4.1. Numerosity discrimination: Experiments 1–4

Experiments 1–4 used a two-choice numerosity discrimination task in which subjects had to 

judge whether the number of asterisks in a 10 × 10 array was greater or less than 50. All four 

experiments included a bias manipulation in which the relative frequencies of large and 

small stimuli were varied in different blocks. In some blocks there were an equal number of 

large and small trials; in others, there were three times more of one type than the other. 

These experiments differed only in the way in which the number of asterisks in the display 

was distributed across trials. We originally hypothesized that the range of asterisk values and 

the relative frequency of extreme asterisk values might induce different response patterns or 

strategies. However, this did not prove to be the case.

4.1.1. Method

4.1.1.1. Subjects: A total of sixty-three Ohio State University undergraduates participated in 

these experiments for credit in an introductory psychology course. Twenty-one subjects 

participated in Experiment 1, 11 in Experiment 2, 22 in Experiment 3, and 9 in Experiment 

4.

4.1.1.2. Materials: The stimuli for the numerosity experiments consisted of asterisks 

presented in a 10×10 array with the number of possible asterisks ranging from 3 to 98 (a 

smaller range was used in some of the experiments). The positions to be filled with asterisks 

were selected randomly from 100 positions in the 10×10 array. Experiments 1–4 differed 

only in the way in which the number of asterisks in the display was distributed across trials. 

In Experiments 1 and 2, the numbers of asterisks were distributed such that more extreme 

numbers of asterisks were less common than intermediate numbers. The distribution for 

Experiment 1 consisted of three uniform distributions and the distribution for Experiment 2 

was approximately normal. The means and standard deviations of the distributions in 

Experiment 1 and Experiment 2 were 50.5 and 13.4, and 50.5 and 20.2, with associated 

ranges of 21 to 80 and 3 to 98, respectively. In Experiment 3 and 4, the numbers of asterisks 

were uniformly distributed. Experiment 3 used asterisk values drawn from a uniform 

distribution ranging from 31 to 70. Experiment 4 used asterisk values drawn from a uniform 

distribution ranging from 3 to 98. Fig. 3 shows the distributions of asterisk values for each 
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experiment with a criterion marking the cutoff for “large” and “small” values (e.g., for each 

experiment “large” values were randomly sampled from the region of the distribution to the 

right of the criterion and “small” values were randomly sampled from the region of the 

distribution to the left of the criterion).

4.1.1.3. Procedure: Subjects were instructed to decide whether each array contained a large 

or small number of asterisks (with “large” defined as more than 50 and “small” defined as 

less than or equal to 50) and were encouraged to make this decision as quickly and 

accurately as possible. Subjects were also informed that different blocks of trials would 

contain different numbers of “large” and “small” stimuli and that they would be informed 

about the nature of each upcoming block (i.e., whether it would have an equal number of 

“large” and “small” stimuli or more of one type than the other).

The entire experiment took approximately 50 min and consisted of a short block of practice 

trials followed by 45 blocks of 40 trials each. On each trial, an array of asterisks was 

displayed on the PC screen and remained on screen until subjects had made a decision. 

Responses were made using the keyboard with the ‘/’ key used to indicate a “large” number 

of asterisks and the ‘z’ key used to indicate a “small” number of asterisks. If a response was 

incorrect, the word ‘error’ was displayed on the screen for 500 ms. If a response was made 

too quickly (faster than 280 ms), then the message ‘TOO FAST’ was displayed on the screen 

for 500 ms. If a response was made too slowly (slower than 2000 ms), then the message 

‘TOO SLOW’ was displayed on the screen for 500 ms.

There were 15 blocks with an equal number of “large” and “small” trials (20 of each), 15 

blocks with three times more large trials (30 large and 10 small), and 15 blocks with three 

times more small trials (30 small and 10 large). Block type was varied randomly after every 

third block and subjects were informed before each change as to the nature of the upcoming 

sets of trials (e.g., “For the next set of lists, there will be three times more large trials than 

small trials”). Each time the block type changed, subjects were required to press a specific 

key to indicate that they understood which type of stimuli would be more common in the 

upcoming block (e.g., they had to press the “L” key to begin a set of blocks that contained 

more large trials). Inspection of the data found no evidence of differences in accuracy or 

response times to large and small stimuli, so the corresponding large and small asterisk 

values were combined to reduce the number of conditions (e.g., very large and very small 

asterisk values were combined into a single low-difficulty category with responses recoded 

as either ‘correct’ or ‘incorrect’ rather than ‘large’ or ‘small’). This resulted in three bias 

conditions: no bias (all responses from blocks with equal numbers of large and small 

stimuli), bias toward the given response (“large” responses from blocks with more large 

trials and “small” responses from blocks with more small trials), and bias against the given 

response (“large” responses from blocks with more small trials and “small” responses from 

blocks with more large trials). To further reduce the number of conditions, asterisk values in 

each experiment were grouped resulting in 3 difficulty levels for Experiment 1 and four 

difficulty levels for Experiments 2–4.

4.1.2. Model fitting—When fitting the models to these data, drift rates were allowed to 

change with stimulus strength (different numbers of asterisks) and the starting point of the 
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accumulation process was allowed to change with the bias manipulation. In the ‘no bias’ 

condition, the starting point was fixed to zero (i.e., equidistant between the ‘correct’ and 

‘error’ response boundaries). In the bias conditions, the starting point was free to vary with 

the constraint that the absolute amount of bias in the ‘bias against’ and ‘bias toward’ 

conditions was identical with just the sign changing across conditions. No assumptions were 

made about the precise relationship between drift rates and difficulty (e.g., no assumed 

linear relationship between drift rate and number of asterisks, Ratcliff, 2014). This 

parameterization of the bias manipulation has previously been shown to provide a good 

account of data from experiments using this type of bias task (Leite & Ratcliff, 2011; 

Ratcliff, 1985), although some researchers have allowed the drift criterion to change as a 

function of bias (cf. Hanks et al., 2011) as well as the starting point (Ratcliff, 1985; Ratcliff 

et al., 1999; van Ravenzwaaij et al., 2012). The drift criterion allows the rates of evidence 

accumulation for the two stimulus alternatives to be unequal. We also fit versions of the 

fixed and collapsing boundary models with changes in drift criteria as a function of bias, but 

found no improvement in GOF from these additional parameters. For the collapsing 

boundary model, κ was constrained to be between 0 and 1 and t0.5 was constrained to be 

between 0 and 2 (s).

Predictions for both models were obtained using the numerical integral equation methods 

described by Smith (2000) and used by Smith and Ratcliff (2009). The details of this method 

are given in Appendix B. We used the G2 statistic for binned data as our GOF measure. This 

statistic can be written

where pij is the proportion of observations in the jth bin of condition i, πij is the proportion 

in the bin predicted by the model, and Ni is the number of observations in condition i. When 

multinomial sampling assumptions are satisfied, this statistic is equal to twice the difference 

between the maximum possible log likelihood and the log likelihood predicted by the model. 

The G2 and χ2 statistics approach one another for large sample sizes (Jeffreys, 1961), and, 

for any given set of data, the G2 and BIC statistics differ by a constant such that both are 

minimized by the same set of parameters.

4.1.3. Results—The data were the response proportions and 0.1, 0.3, 0.5, 0.7, and 0.9 

response time distribution quantiles for correct and error responses for each difficulty level 

and bias condition. Both collapsing and fixed boundary versions of the model were fit to the 

data. All model fits were performed on both individual subject data and averaged data, but 

we present only the fits to averages data for simplicity. For conditions in which subjects 

made fewer than 10 error responses the models were fit to just the RT data from the correct 

responses. For these conditions, pij and πij were conditional on a correct response.

Overall, both models were able to provide a qualitatively good fit to the data. The best-fitting 

parameters for the average data for each model and each experiment are shown in Table 1. 
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The average data and model predictions for each experiment are shown in Fig. 4. The figure 

shows that the differences in the predictions of the two models are very small. The 

collapsing boundary model produced RT distributions with smaller 0.9 quantiles, but this 

difference was very slight (about a 20 ms difference on average across subjects and 

conditions). G2 and BIC values for the average data from each experiment and model are 

shown in Table 4 (note that these are the G2 and BIC values from a fit of the average data, 

not the averages of the G2 and BIC values from the individual fits). For calculating both G2 

and BIC values for the average data, the average number of observations per condition was 

used (see PBCM section for explanation of BICA). The collapsing boundary model produced 

smaller G2 values but larger BIC values relative to the fixed boundary model for all of the 

experiments, as will be discussed in the PBCM section.

The typical bias effects were observed in the data. The column on the left side of Fig. 4 

shows the data from blocks with equal numbers of “large” and “small” trials, the middle 

column shows the data from trials where subjects were biased against a particular response 

(i.e., “large” responses when there were more “small” stimuli, and “small” responses when 

there were more “large” stimuli), and the column on the right shows the data from trials 

where subjects were biased in favor of a particular response (i.e., “large” responses when 

there were more “large” stimuli and “small” responses when there were more “small” 

stimuli). For all of these plots, data have been collapsed across ‘large’ and ‘small’ numbers 

of asterisks (i.e., “large” responses to “large” stimuli were grouped with “small” responses 

to “small” stimuli, and “small” responses to “large” stimuli were grouped with “large” 

responses to “small” stimuli). Relative to the no-bias condition, when subjects were biased 

against making a particular response they made that response less often and more slowly 

(i.e., when there were more “large” stimuli, subjects made fewer “small” responses and 

made those responses more slowly). Similarly, relative to the no-bias condition, when 

subjects were biased in favor of making a particular response they made that response more 

often and more quickly (i.e., when there were more “large” stimuli, subjects made more 

“large” responses and made those responses more quickly). These results were well captured 

by both models with just a change in starting point. Relative to the no-bias condition, there 

were shifts in the leading edges of the RT distributions in the two bias conditions. This result 

is consistent with modeling bias as a change in starting point as opposed to a change in drift 

criterion.

There were consistent differences between the best-fitting parameters produced by each 

model. Unsurprisingly, the collapsing boundary models had larger initial boundary 

separation parameters along with some amount of boundary collapse (governed by the κ and 

t0.5 parameters). However, if we plot the boundary functions associated with these 

parameters we can see that the boundaries produced by the collapsing bound model closely 

match the best-fitting fixed boundary values for the time period in which subjects are 

making most of their responses. The collapsing boundaries based on the fit of the average 

data for each experiment are shown in Fig. 5(a) along with the fixed boundary values. The 

vertical dotted lines represent the 0.1, 0.5, and 0.9 quantile decision times (the response 

times minus the non-decision component) for each experiment averaged across subjects and 

conditions: The majority (80%) of the subjects’ responses were made in those time periods. 

Predicted response time distributions (both correct and error responses) from the average 
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model parameters from Experiments 2 and 3 are shown in Fig. 5(d) (note that these are joint 

distributions; the probability masses in the correct and error distributions sum to one). The 

predictions of the collapsing boundary model are plotted in gray, the predictions of the fixed 

boundary model are plotted in black, and the 0.1, 0.5, and 0.9 quantile response times, 

averaged across subjects and conditions, are plotted as vertical dashed lines. The predicted 

distributions from the two models are highly similar, even in the tails. The collapsing and 

fixed boundary functions are also very similar for individual subjects. Boundary values from 

each of the two models for four extreme subjects from across the four experiments are 

shown in Fig. 5(b). These subjects were chosen based on their boundary collapse 

parameters. The best fitting κ values for the first two subjects were quite large (indicating a 

large decrease in boundary over time) and the values for the second two subjects were quite 

small (indicating a very small decrease in the boundary over time). The vertical dotted lines 

depict the 0.1, 0.5, and 0.9 average quantile decision times for each subject. While there is a 

larger difference between the fixed and collapsing boundaries for subjects with larger values 

of κ, the difference in the boundaries is still relatively small in the time region in which 

subjects are making most of their responses. In general, both versions of the diffusion model 

are able to provide good fits to the behavioral data and the predicted distributions from the 

collapsing boundary model do not qualitatively differ from the predicted distributions from 

the standard fixed boundary model.

4.2. Motion discrimination: Experiments 5 and 6

Experiments 5 and 6 used a motion discrimination task in which a cloud of randomly 

moving dots was displayed on the screen, some proportion of which moved in the same 

direction. The average proportion of dots that move in the same direction is called the 

coherence. Subjects had to judge whether the coherently moving dots were moving to the 

right or to the left. Data from Experiments 5 and 6 were previously reported in Ratcliff and 

McKoon (2008), as Experiments 1 and 2, respectively); the data from Experiment 5 were 

also previously reported in Ratcliff and Smith (2010) and used in model fitting by Hawkins 

et al. (2015).

4.2.1. Method—On each trial, a sequence of frames was displayed on a PC screen at a rate 

of 16.7 ms per frame. On each frame, five single-pixel dots were displayed in a circular 

aperture 5.4° in diameter centered on the screen. On the first three frames, the dots were 

located in random positions. On the fourth and each subsequent frame, a proportion of the 

dots moved coherently either left or right from their position three frames ago. On each of 

the frames, the dots that were not chosen to move coherently appeared in random locations.

Coherence was defined as the proportion of dots that moved in the same direction across 

frames. For example, if the direction of coherent motion was left and the probability was 

0.05, then the probability that a dot in each frame would move left would be 0.05. Subjects 

were asked to respond as quickly and accurately as possible, pressing the forward slash key 

if the coherent motion was toward the right and the Z key if the motion was toward the left. 

Subjects were given error feedback throughout the task. For both experiments, response 

times and accuracy to leftward and rightward motion stimuli were fairly similar, so the data 

were collapsed across direction of motion.
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Experiment 5 had six levels of coherence (0.05, 0.10, 0.15, 0.25, 0.35, or 0.50). When fitting 

the models to these data, only drift rates were allowed to change across conditions. 

Experiment 6 had four levels of coherence (0.05, 0.10, 0.15, or 0.35) and a speed/accuracy 

manipulation, in which subjects were encouraged to respond more quickly on half of the 

blocks of trials and more accurately on the other half. When fitting the models to these data, 

the drift rates were allowed to change across the different coherence levels and the boundary 

separation (a) was allowed to change across the speed/accuracy levels. Some researchers 

have also found changes in non-decision time and drift rate across speed/accuracy levels 

(Rae, Heathcote, Donkin, Averell, & Brown, 2014; Ratcliff, 2006; Starns et al., 2012), but 

these changes tend to be found only with extreme speed stress and large changes in accuracy 

across conditions. Rae et al. found that both the diffusion model and the LBA 

underestimated the difference in error rates between speed and accuracy conditions when 

boundary separation was the only parameter that varied between them. In contrast, we found 

only small differences in error rates between these two conditions. These were reasonably 

well fit with only a change in boundary separation by both the fixed and collapsing boundary 

models.

4.2.2. Results—The data were the response proportions and the 0.1, 0.3, 0.5, 0.7, and 0.9 

response time distribution quantiles for correct and error responses for each experimental 

condition. Model fits were again performed using Smith’s (2000) method for generating 

exact predictions and both collapsing and fixed boundary versions of the model were fit to 

the data. All model fits were performed on both individual and averaged data, but just the 

fits of the average data are presented for simplicity. Since these data have all been modeled 

previously, our analysis will focus primarily on the results as they pertain to the question of 

fixed or collapsing boundaries.

Overall, both models were able to provide a qualitatively good fit to the data sets. The best-

fitting parameters for the average data for each model and each experiment are shown in 

Tables 2 and 3, the average data and model predictions for each experiment are shown in 

Fig. 6, and G2 and BIC values for the average data from each experiment and model are 

shown in Table 4. Again, the differences between the predictions of the two models were 

quite small. The collapsing boundary model produced RT distributions with smaller 0.9 

quantiles, but this difference was again slight (about a 10 ms difference in Experiment 5 and 

about a 20 ms difference in Experiment 6 on average). The fixed and collapsing boundaries 

for these two experiments are shown in Fig. 5(c). As before, the best-fitting collapsing and 

fixed boundaries were quite similar to each other over the range of times in which subjects 

made most of their responses.

5. PBCM results for the experiments

While both versions of the diffusion model were able to account for the data in all of these 

experiments, our goal is determine whether the addition of collapsing decision boundaries 

represents a substantial improvement over the standard fixed boundary diffusion model. The 

parametric bootstrap cross-fitting method (PBCM) was used to determine which model 

provided a better account for each set of data. For each experiment, the best-fitting 

parameter values from each model from fits of the average data were used to generate 40 
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sets of simulated data each containing the same number of observations as in the behavioral 

data. This is a relatively small number of simulated data sets, but our initial bootstraps with 

only 20 sets of data produced quite similar results. Both the fixed and collapsing boundary 

models were fit to each of these simulated data sets, resulting in four sets of GOF values for 

each experiment (fits of the collapsing and fixed boundary models to collapsing and fixed 

boundary simulated data). We then took the difference in GOF for the fixed and collapsing 

boundary model fits for each simulated data set; the resulting distributions for each 

experiment are plotted in Fig. 7. The criterion for each pair of GOF distributions is 

determined based on classification accuracy. That is, the criterion for each pair of 

distributions is the point where a maximum number of the simulated data sets were correctly 

classified in terms of which model they had been generated from. The observed GOF for the 

fixed boundary model minus the observed GOF for the collapsing boundary model for each 

experiment is plotted as a triangle. If this observed GOF is less than the criterion, then the 

fixed boundary model is preferred for that data set and vice versa.

The GOF values for the average data, the PBCM criteria, and the results are presented in 

Table 4. Based on the results of the PBCM analyses, the fixed boundary model was preferred 

for four of the six experiments and the collapsing boundary model was preferred for the 

average data from Experiments 2 and 4 (although for Experiment 4 the estimated amount of 

collapse was negligible). Note that for some of the experiments, namely 1 and 4, the two 

PBCM distributions are almost completely overlapping. This occurs when the two models 

are nearly indistinguishable from each other in terms of their predictions. For these two 

experiments, the best-fitting parameters for the collapsing boundary model produce a 

boundary with a negligible amount of collapse (e.g., less than 1%). Thus the data-informed 

PBCM approach is attempting to distinguish between a model with a fixed boundary and a 

model with a boundary that collapses only a miniscule amount. Unsurprisingly then, these 

two models are nearly indistinguishable and the PBCM criterion has low classification 

accuracy in these instances. This is a general shortcoming of the data-informed PBCM when 

comparing nested models. However, in such instances the inference problem is 

straightforward because the two models lead to the same conclusion, namely, that the 

amount of boundary collapse is negligible.

It is important to note that the collapsing boundary model always produced smaller G2 

values than the fixed bound model, even when the models were fit to data generated from a 

fixed boundary model. This was expected, as the collapsing boundary model contained the 

fixed boundary model as a special case. However, the fixed boundary model always 

produced smaller BIC values than the collapsing boundary model. BIC values can be 

calculated from G2 values by adding a penalty term based on the number of free parameters 

in the model (M) and the number of observations in the data (N):

The PBCM analyses can be performed with either G2 or BIC values and identical results 

will be obtained. When converting the G2 values to BIC values, the values for each model 

will change by a constant (given by the equation above) such that the difference between the 
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GOF values from the two models will also change by a constant.3 The PBCM is thus 

agnostic about differences between the models in terms of number of parameters or 

observations (at least in methods such as AIC or BIC where these aspects of the model are 

represented as simple penalty terms) and is only sensitive to model complexity in terms of 

the ability of each model to fit various patterns of data. If we had used the standard 

procedure of simply choosing the model with a smaller BIC value (i.e., assuming a criterion 

of zero for distributions of GOF differences), then the fixed boundary model would have 

been preferred for all of these empirical data sets. Moreover, the standard procedure of 

choosing the model with the smaller BIC value would also have misclassified the great 

majority of the simulated data sets. For the number of observations in these experiments, the 

PBCM distributions for BIC values would be shifted to the left by about 14 units compared 

to the distributions for G2 values such that the majority of all of the BIC difference 

distributions would be below zero. Rather than simply choosing the model with the best 

GOF (whether penalized or not), the PBCM approach reinterprets an observed difference in 

GOF between two models in light of the ability of each model to account for data generated 

from the other model.

Our use of the PBCM method circumvents a problem that would otherwise arise when 

performing inference using penalized model statistics like the BIC on quantile averaged 

data. The sample size, N, that we used to calculate G2 and the associated BIC was the 

number of trials per subject. This choice is consistent with our interpretation of the quantile 

averaged data as characterizing the performance of an “average subject”, but it can lead an 

inappropriate choice of a penalty term in statistics like the AIC and BIC, because the use of 

these statistics for binned data presupposes multinomial likelihood functions. The expected 

value of G2 for a well-fitting model then equals its residual degrees of freedom (data degrees 

of freedom minus the number of estimated parameters). Quantile averaged data are typically 

underdispersed relative to the multinomial distribution, leading to differences in G2 between 

competing models that are smaller than would be obtained with multinomial sampling and, 

consequently, penalty terms that are too large and that overly penalize more complex 

models.

There appears to be no entirely satisfactory solution to this problem. One approach, 

described by Burnham and Anderson (2002), is to use the fit of a chi-square type statistic to 

estimate a dispersion factor and then to correct the GOF statistic by this amount prior to 

applying a penalty. This approach is open to the objection that it presupposes that the set of 

candidate models contains a “true” model (in which the difference between the model and 

data is due to sampling variability alone and thus can provide an unbiased estimate of the 

dispersion factor), and also that the same data are used to estimate the dispersion factor and 

to compare the fit of the competing models.

3
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Instead of using the same data to estimate dispersion and model fit, another approach is to 

use simulated data to estimate the underdispersion associated with quantile averaging and 

then to use the estimated dispersion factor to correct the GOF statistic before applying the 

penalty. We performed this analysis for each of the experiments and found no change in the 

results. For each experiment we used the mean parameter values from the collapsing 

boundary model to simulate N data sets with n trials each (where N is equal to the number of 

subjects and n is equal to the mean number of trials in that experiment). The response 

proportions and RT quantiles from these simulated data sets were then averaged and a G2 

value was calculated for this averaged data set using the generating parameters. This process 

was repeated 100 times for each experiment to give a distribution of G2 values and the mean 

of this distribution was used to calculate a dispersion factor that was used to adjust the 

number of observations used to calculate both the G2 value and the BIC penalty term. That 

is, the number of observations was multiplied by a dispersion factor equal to the degrees of 

freedom in the model fit (i.e., the degrees of freedom in the data minus the number of 

parameters in the model) divided by the mean of the simulated G2 distribution. These 

adjusted G2 and BIC values are shown in Table 4 and show the same pattern of results as the 

un-adjusted GOF values.

One of the advantages of the PBCM method is that it avoids the problem of having to 

determine the correct penalty term for underdispersed or overdispersed data. The PBCM 

method identifies a decision criterion that maximizes the separation between competing 

models for whatever statistic is used to characterize model fit. Changing (or omitting) the 

penalty term shifts the distributions of differences in fit statistics along the GOF axis and 

shifts the decision criterion by the same amount. As a result, whether a particular data set is 

judged as more likely to have been produced by one or other model will be unaffected by 

whether the penalty term was too large, too small, or was omitted entirely.

It is also important to note that these analyses are data-driven; the numerical GOF criterion 

for each experiment should only be applied to the specific data set being analyzed and not be 

taken as a criterion for choosing between the two models for other data sets. To choose 

between these two models for a new data set, the PBCM analysis would need to be repeated 

using parameter values and samples sizes appropriate for those data. The goal of our data-

driven approach is to determine which of two specific forms of the model provides a better 

fit to a specific set of observed data. However, a closer examination of the results of the 

cross-fitting of the models can yield valuable insights about the general performance of the 

two models and the amount of mimicry between them, as we discuss in the following 

section.

6. Model selection considerations: mimicry and recovery

The collapsing and fixed boundary versions of the model produced very similar results for 

all of the experiments (see Figs. 4 and 6). This was not particularly surprising given that we 

are comparing instances of the models that were chosen based on their fit to the observed 

data. Nevertheless, we were still surprised to not see greater differences between the models 

in the shapes of the predicted response time distributions. When we plot the predicted 

quantiles of the fixed boundary model against the predicted quantiles of the collapsing 
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boundary model, the plots are approximately linear. Fig. 8 plots all of the predicted quantile 

values from each model’s fit to the subjects from Experiment 5 along with a regression line. 

The fact that the relationship between the models’ quantiles is approximately linear indicates 

that the models are producing similarly shaped RT distributions, at least in this region of the 

parameter space. In other words, the collapsing boundary model is not producing RT 

distributions that are more symmetric than the distributions produced by the fixed boundary 

model. This is because, as shown in Fig. 5, there is little difference between the two 

boundaries across the main part of the RT distribution.

Since the PBCM involves fitting models to data generated from known parameter values, we 

can investigate how well these original parameters are recovered. Ideally, our model fitting 

routine should recover parameter values that are similar to the original parameter values. 

Fig. 9 shows histograms of the recovered values of κ and t0.5 (the boundary collapse 

parameters) for Experiment 5. The black lines indicate the true values of these parameters 

(the values used to generate simulated data). On average, the recovered parameter estimates 

overestimate the value of κ and underestimate the value of t0.5. In other words, the recovered 

model parameters correspond to a boundary that collapses to a smaller percentage of the 

starting point and does so more quickly than the boundary that was used to generate the data. 

To further illustrate this effect, we generated data from a model with collapsing boundaries 

with a moderate amount of collapse (κ = 0.55) and then fit this data with varying levels of 

parameter constraint. We constrained κ to be either 0.25 greater or less than the actual value 

(fixed to 0.3 or 0.8) and then allowed only the other boundary parameters (a and t0.5) to vary 

when fitting the model. All other parameters were fixed to their ‘true’ values (i.e., the values 

used to generate the data, which were the mean parameter values from Experiment 5). The 

resulting best-fitting boundaries are shown in Fig. 10, along with the original boundary and 

the RT quantiles. Within the time period in which decision processes reach the boundaries, 

there is very little difference between the three sets of boundaries.

The degree to which these boundary parameters are able to trade-off with each other to 

produce nearly identical boundaries despite having very different parameter values indicates 

that there is an identifiability issue with the collapsing boundary model as well as a 

parameter recovery issue. If very different values for these parameters are able to produce 

nearly identical boundaries, then inevitably model-fitting routines will have difficulty 

recovering the ‘true’ values of these parameters. If model fits are unable to accurately 

recover parameter values that characterize the boundary collapse then it is difficult to draw 

conclusions based on these parameter values. If these boundary parameters are not recovered 

reliably from data, then they cannot be meaningfully compared across subjects or linked to 

experimental manipulations or individual differences. Furthermore, we found that the 

estimated boundary values correlated significantly with the estimates of other model 

parameters, such as drift rate, non-decision time, and the initial boundary separation (see 

Appendix for more details).

Previous research has demonstrated that the parameters of the fixed-boundary diffusion 

model have psychological validity and meaningful interpretations: Manipulations of task 

difficulty primarily affect drift rates (Ratcliff, 2014; Ratcliff & McKoon, 2008), 

manipulations of response speed primarily affect boundary separation (Ratcliff & McKoon, 
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2008), and manipulations of response modality primarily affect non-decision time (Gomez, 

Ratcliff, & Childers, 2015). The presence of correlations between these psychologically 

meaningful parameters and boundary collapse parameters (which are not thought to be 

related to individual differences), means it is more difficult to provide unambiguous 

interpretations of the estimated parameters and how they relate to individual differences and 

task manipulations. Consequently, the addition of collapsing boundaries to the standard 

diffusion model makes the parameter estimates less reliable and makes it more difficult to 

relate the parameters to underlying psychological processes.

7. Between-trial variability parameters

Unlike other collapsing boundary models (Ditterich, 2006b; Hanks et al., 2011), the models 

we fit included between-trial variability in non-decision time, drift rate, and starting point. In 

the fixed boundary version of the diffusion model, these parameters are necessary to produce 

fast and slow errors (Ratcliff, 1981; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; 

Ratcliff et al., 1999; Wagenmakers et al., 2008). However, proponents of the collapsing 

boundary diffusion model have claimed that the model is capable of producing slow errors 

without these between-trial sources of variability (Ditterich, 2006b; Palmer et al., 2005; 

Shadlen & Kiani, 2013). We demonstrate that the collapsing boundary model without 

between-trial variability is unable to produce either the pattern of slow error RTs observed in 

some of our data sets or the slow errors produced by a fixed boundary model with between-

trial variability parameters.

We generated simulated data from a fixed boundary model with non-zero between-trial 

variability parameters using a random-walk approximation of the diffusion model, parameter 

values based on the average parameter values from Experiment 5 plus small amounts of 

variability, and 300 observations per condition. These simulated data sets were then fit with 

both fixed and collapsing boundary versions of the diffusion model with between-trial 

variability parameters fixed to zero. When fitting these data sets, neither a fixed-boundary 

model nor a collapsing-boundary model was able to account for the error RT distributions. 

Representative fits of the simulated data with slow error response times are presented in Fig. 

11(A). While the model with collapsing boundaries was able to produce slightly slower error 

RTs than the model with fixed boundaries, neither model was able to capture the full error 

RT distribution. Specifically, both models produced error RT distributions that were more 

symmetric than the simulated data, leading them to under-predict the 0.7 and 0.9 quantiles of 

these distributions. To demonstrate this more quantitatively with empirical data, we 

performed two additional model comparisons using PBCM and data from a subject from 

Experiment 5. This data set was chosen because this particular subject made error responses 

more slowly than correct responses. Since the goal of these comparisons is to assess the 

models’ ability to account for a particular pattern of responses, using a single set of data 

with that pattern is sufficient for demonstration purposes. First, we compared the fixed 

boundary model (including all between-trial variability parameters) with a version of the 

collapsing boundary model which included variability in starting-point and non-decision 

time, but not in drift rate. Slow errors in the fixed-boundary model are primarily explained 

by between-trial variability in drift rate so this comparison is intended to contrast the two 

potential mechanisms for producing slow errors.
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The fits of these models and the results of the PBCM analyses are shown in Fig. 11(B). The 

fixed boundary model is better able to capture the slow errors observed in the data, and the 

observed difference in GOF between the two models (plotted as a triangle) is below the 

PBCM criterion indicating that the fixed boundary model is preferred. It may be the case 

that the collapsing boundary model would be preferred for other data sets with less 

pronounced error slowing, but our results show that it is unable to account for the full range 

of error RTs that are found experimentally. Second, we compared a version of the collapsing 

boundary model with between-trial variability with a version of the collapsing boundary 

model without between-trial variability. The fits of these models and the results of the 

PBCM analyses are shown in Fig. 11(C). The collapsing boundary model with variability is 

better able to capture the slow errors in the data, and the observed difference in GOF 

between the two models is above the PBCM criterion indicating that the model with 

variability is preferred over the model without variability. These comparisons demonstrate 

that these between-trial variability parameters are needed to fit slow errors and that the 

addition of collapsing boundaries to the diffusion model does not eliminate the need for this 

source of variability. While the collapsing boundary model is able to produce slower error 

responses without including between-trial variability (as shown in Fig. 11(A)), the 

slowdown it is able to produce is quite small compared to that produced by a fixed boundary 

model with variability (as shown in Fig. 11(B)). For this data set, the slowdown that the 

collapsing boundary model is able to produce without variability parameters is also 

considerably smaller than the slowdown observed in the data. For these analyses, our main 

focus has been on comparing diffusion models with fixed or collapsing boundaries, rather 

than on the role of variability in these models. Although it is possible that the inclusion of 

variability parameters may also affect conclusions about boundaries, this should be 

investigated with data more suited to discriminating between model parameterizations (in 

this case, data with faster or slower errors).

We also examined how the presence or absence of between-trial variability affected model 

mimicry. We simulated data from a collapsing boundary model with either a large and fast or 

small and slow amount of collapse (κ values of 0.3 and 0.9 and t0.5 values of 0.75 and 0.15), 

4000 observations per condition, and either typical values of between-trial variability (as 

found in fits to data) or between-trial variability parameters set close to zero (see Table A.1 

for exact values). We then fit a fixed boundary model with between-trial variability to all 

four simulated data sets. The resulting fits are plotted in Fig. 12. The triangles represent the 

simulated results from the collapsing boundary models, and the lines represent the fits of the 

fixed boundary models. The fixed boundary model is able to provide a good fit to the 

collapsing boundary data for all of the simulations except the one with a large amount of 

boundary collapse and no between-trial variability. Even in this case, the fixed boundary 

model only misses the 0.9 quantiles of the RT distributions.

In value-based decision making, Milosavljevic et al. (2010) found that the addition of 

collapsing boundaries to a simple diffusion model (i.e., one without between-trial variability 

parameters) provided an improvement in model fit while the addition of collapsing 

boundaries to a full diffusion model (i.e., one with between-trial variability in drift) did not. 

This result is consistent with our cross-fitting results in that the greatest difference between 

the two versions of the model is observed when the between-trial variability parameters were 
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fixed to zero. However, Milosavljevic et al.’s result was based on a simple comparison of 

BIC values for each model, so it is possible that the addition of collapsing boundaries to a 

simple diffusion model would not be considered an improvement when using a more 

appropriate model selection method. Moreover, the simple diffusion model considered by 

Milosavljevic et al. is not generally used in applications because it is unable to fit error 

response times that are faster or slower than correct response times (Laming, 1968; Ratcliff, 

1981; Ratcliff & Tuerlinckx, 2002). It is therefore unsurprising that a simple collapsing 

boundary model performs better than a restricted version of the fixed boundary model that is 

known to not perform well.

8. Discussion

Our results highlight the importance of using appropriate model selection methods that 

address model complexity and flexibility. Rather than simply considering how well a given 

model fits a set of data, the PBCM approach also takes into account the relative flexibility of 

alternative models by examining how well each model is able to account for data generated 

by another model. Contrary to claims made elsewhere in the literature, application of the 

PBCM model selection method showed that allowing the decision boundaries of a diffusion 

model to decrease over time does not result in a substantial improvement over a model with 

fixed decision boundaries. As mentioned previously, the model comparison method utilized 

in this work is data-specific and only provides information about which model provides a 

better fit to data with these particular parameters and sample sizes. Subject to this constraint, 

this approach has revealed issues of substantial mimicry between the two models and poorer 

parameter recovery for the collapsing boundary model. It seems reasonable to expect that 

these same issues would exist for these two models for other data sets.

While the collapsing boundary model did not provide a better fit to the data in most of our 

experiments, the model may be useful in characterizing other tasks or populations. 

Researchers using expanded judgment or deferred decision-making tasks have found that 

subjects are willing to make a decision based on smaller amounts of evidence as time 

progresses within a trial (Busemeyer & Rapoport, 1988; Rapoport & Burkheimer, 1971; 

Sanders & Ter Linden, 1967). However, these tasks are very different from the fast 

perceptual judgments in our experiments. In these types of tasks, new information is 

presented to the subjects at a relatively slow rate (e.g., a new piece of information every 2 s) 

and the tasks may also impose an explicit cost on information sampling. In contrast, the 

response times in all of our experiments were made in well under two seconds and the 

information necessary to make a decision was presented all at once and maintained until 

subjects had made a response. Given the differences between these tasks, there is no reason 

to assume that decision thresholds and processing would behave in a similar manner in for 

both tasks.

Other support for the collapsing boundary version of the diffusion model has come from the 

neurophysiological literature on awake behaving monkeys (Churchland et al., 2008; Hanks 

et al., 2011). The results of single-cell recording studies of monkeys performing saccade-to-

target decision tasks have been interpreted as evidence for an ‘urgency signal.’ Consistent 

with this interpretation, the RT distributions of monkeys may be more symmetric than 
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typical RT distributions produced by human subjects. However, numerous other researchers 

have continued to use models which do not include collapsing boundaries or an urgency 

signal (Boucher, Palmeri, Logan, & Schall, 2007; Costello, Zhu, Salinas, & Stanford, 2013; 

Ding & Gold, 2010, 2012; Purcell et al., 2010; Purcell, Schall, Logan, & Palmeri, 2012; 

Ramakrishnan & Murthy, 2013; Ramakrishnan et al., 2012; Salinas, Shankar, Costello, Zhu, 

& Stanford, 2010; Salinas & Stanford, 2013; Shankar et al., 2011; Stanford, Shankar, 

Massoglia, Costello, & Salinas, 2010) and other monkey studies have yielded more typical, 

positively-skewed RT distributions (Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves, 

2007), as well as those that were fit with ex-Gaussian distributions, (Camalier et al., 2007; 

Heitz & Schall, 2012, 2013; Middlebrooks & Schall, 2014). Additionally, while a standard 

diffusion process does not map directly onto neural firing rates, patterns of neural firing rates 

have been modeled using racing diffusion processes without any kind of urgency signal 

(Ratcliff et al., 2007). While monkeys may be more likely than human subjects to produce 

data that are well-described by a model with collapsing boundaries (Hawkins et al., 2015), 

there seems to be considerable variability in monkey behavior, possibly as a result of 

differences in training.

Our results complement and partially replicate those of Hawkins et al. (2015) who found 

that a collapsing boundary version of the diffusion model did not provide an improvement in 

fit over the standard fixed boundary model for most human subjects based on BIC. However, 

our methods differed from those of Hawkins et al. in that we used exact rather than 

simulated predictions, a different functional form for the boundary (one that has been used 

in the literature), and PBCM model selection rather than BIC (Hawkins et al. also did some 

model recovery analyses, although they did not use the resulting GOF difference 

distributions for model selection).

Hawkins et al. fit several versions of a Weibull boundary model allowing various boundary 

parameters to vary freely or fixing them to particular values. The results presented in their 

figures correspond to a version of the model with boundaries that are forced to collapse 

relatively late within each trial (as opposed to an earlier or more gradual collapse). When 

this model was fit to the Ratcliff and McKoon (2008) data (our Experiment 5), their Weibull 

model produced best-fitting collapsing boundaries with little to no collapse (see Fig. 5 in 

Hawkins et al.). Model recovery analyses for their Weibull model then revealed that the 

Weibull model and fixed-boundary model could not be discriminated using these data (i.e., 

the GOF difference distributions were almost completely overlapping). This illustrates one 

potential issue with the PBCM approach which we also observed for two of our data sets 

(Experiments 1 and 4): when comparing models that produce very similar patterns of data, 

the GOF difference distributions produced will be highly overlapping, indicating a high 

degree of mimicry between the models and low discriminability between the two. In other 

words, the data-informed PBCM can only distinguish between models that are functionally 

different (i.e., generate different patterns of data). Given a pair of models with high mimicry 

and low discriminability, it is entirely appropriate to rely on other model selection tools. In 

contrast, when we fit the data from Experiment 5 with a hyperbolic ratio boundary model, 

the best-fitting collapsing boundaries had a moderate amount of collapse, although the 

boundaries still varied only slightly from fixed boundaries in the regions where subjects 

made most of their responses (see Fig. 5). For this experiment, the model predictions were 
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sufficiently different that the PBCM approach was able to discriminate between the two 

models and slightly favored the fixed boundary model.

The PBCM approach addresses both model mimicry and model selection. The amount of 

overlap between the two distributions of differences in GOF demonstrates the amount of 

mimicry between the two models (i.e., their ability to produce the same patterns of data). 

When there is not complete overlap between these two distributions, they can also be used to 

determine an optimal criterion for recovering the generating model. Methods like BIC and 

AIC will not always correctly recover the generating model (e.g. Donkin, Tran, & Nosofsky, 

2014; Pitt & Myung, 2002) and can over- or under-penalize models depending on their 

complexity, because the penalty term is dependent on the number of parameters in the model 

and the functional form of these additional parameters can vary.

9. Conclusions

Overall, the collapsing boundary version of the diffusion model did not provide an 

improvement on the standard fixed boundary model in our experiments or those considered 

by Hawkins et al. (2015). When an appropriate model selection method was used, the fixed 

boundary model was chosen as the preferred model for the majority of the data. Moreover, 

the additional parameters in the model with collapsing boundaries were not well recovered 

and were correlated with other model parameters. While there may be tasks or populations 

for which the collapsing boundary model is well-suited, this extension of the diffusion 

model is unnecessary to characterize the performance of human subjects in standard 

decision-making situations.
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Appendix A. Parameter recovery and simulations

When fitting a model to noisy data it is typical for there to be some correlation between 

model parameters. In the fixed boundary version of the diffusion model, Ratcliff and 

Tuerlinckx (2002) demonstrated that there were positive correlations between recovered 

parameter values because response times tend to affect several parameters in similar ways 

(i.e., to accommodate longer response times, the model will likely produce a larger boundary 

separation, a larger non-decision time, and a larger drift rate). However, it is not known if the 

collapsing boundary version of the model will exhibit similar correlations between recovered 

parameter values. Since the PBCM approach involved fitting multiple simulated data sets 

generated from a single set of model parameters, we can check for correlations between the 

parameter values recovered from these fits. Here we investigate whether recovered boundary 

parameters from the PBCM fits from Experiment 5 correlate with other key model 

parameters. Fig. A.1 plots the recovered values for κ and t0.5 against some of the other 

recovered parameters for these simulated data sets (one of the drift rates, boundary 

separation, and non-decision time). There were significant correlations between the 

recovered value of κ and each of the other three parameters, and there were significant 

correlations between t0.5 and both drift rate and boundary separation. These correlations 

between parameters related to boundary collapse and parameters that should not be related 

to boundary collapse (such as drift rate) undermine the usefulness of the model in the sense 

that parameter interpretation as a whole becomes less straightforward. See Table A.1.
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Fig. A.1. 
Correlations between recovered boundary collapse parameters (κ and t0.5) and other 

recovered model parameters (drift rate, boundary separation, and non-decision time) from 

fits of simulated data generated from the parameters from Experiment 5. Correlation 

coefficients are presented above each figure (* = p < 0.05).

Table A.1

Parameter values for simulated data from Fig. 12 in the main text.

ν1 ν2 ν3 ν4 η

0.025 0.10 0.15 0.40 0.0001

0.025 0.10 0.15 0.40 0.0001

0.025 0.10 0.15 0.40 0.1

0.025 0.10 0.15 0.40 0.1

a z sz Ter st κ t0.5

0.12 0.06 0.0001 0.2 0.01 0.3 0.75

0.12 0.06 0.0001 0.2 0.01 0.9 0.15

0.12 0.06 0.01 0.2 0.12 0.3 0.75

0.12 0.06 0.01 0.2 0.12 0.9 0.15
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Appendix B. Response time distributions and response probabilities for a 

diffusion process with time-varying boundaries

Predicted response time distributions and response probabilities for the model with time-

varying boundaries were obtained using the integral equation methods described in Smith 

(2000). These methods were originally developed in the theoretical neurobiology literature 

to study the firing time distributions of integrate-and-fire neurons. The method described by 

Smith was based on a method proposed by Buonocore, Giorno, Nobile, and Ricciardi (1990) 

and incorporates refinements suggested by Gutiérrez Jáimez, Román Román, and Torres 

Ruiz (1995). A summary of the method can be found in the Appendix of Ratcliff and Smith 

(2004), who used it to obtain first-passage-time distributions for the Ornstein–Uhlenbeck 

process, although they did not consider the time-varying boundary case. The method is 

based on a general renewal equation representation of the first-passage-time density of a 

diffusion process, derived by Fortet (1943).

Fortet’s representation is based on the fact that a sample path of a diffusion process at a 

point on or an infinitesimal distance outside the boundary, ai(t), i = 1, 2, at time t must have 

made a first such boundary crossing, either at time t or at some time τ prior to t. The 

transition density of the process at time t can therefore be decomposed into a product of two 

terms: One is the first passage time density of the process through the boundary ai(τ) at time 

τ; the other is the free transition density of the process from the point ai(τ) to the point ai(t) 
in the subsequent interval [τ, t]. For a two- boundary process, the first boundary crossing can 

occur either at the same boundary as the one where the process is found at time t or at the 

other boundary. Following the first boundary crossing, the process can make an arbitrary 

number of additional boundary crossings of either the upper or lower boundary. The 

transition density at the point ai(t) at time t is obtained integrating the product of the first 

passage time density and the free transition density over all values of time τ, τ < t, and 

summing over the two boundaries. Two such equations are obtained: one for processes at the 

upper boundary and one for processes at the lower boundary. Details of this decomposition 

may be found in Smith (2000) and in the Appendix of Ratcliff and Smith (2004).

The integral equation method of Buonocore et al. (1990) is based on a transformation of the 

Fortet equations, which renders them suitable for numerical computation. We define 

gA[a1(t), t|z, 0] and gB[a2(t), t|z, 0] to be, respectively, the first-passage-time probability 

densities for a process starting at z at time 0 through either the upper boundary, a1(t), or the 

lower boundary, a2(t), at time t, where a2(0) < z < a1(0). Our notation assumes that if the first 

boundary crossed is the upper boundary, then response RA is made; if the first boundary 

crossed is the lower boundary, then response RB is made. Buonocore et al. obtained the 

following integral equation representations of the first passage time densities:

and
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In these equations, Ψ[ai(t), t|aj(τ), τ] is a kernel function that depends jointly on the 

boundaries, their derivatives, and the free transition density of the process, denoted f (x, t|y, 

τ). The free transition density gives the probability that a process starting at position y at 

time τ will be found at position x at time t, ignoring the effects of any boundaries. For a 

Wiener, or Brownian motion, diffusion process with time-varying boundaries and constant 

drift, the kernel function is

where

is the transition density of a Wiener process with drift rate υ and diffusion coefficient s2, and 

 is the derivative with respective to time of boundary i.

The preceding integral equations can be discretized and evaluated simultaneously and 

recursively to yield approximations to the first-passage-time densities by trapezoidal 

integration

and
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for k = 2, 3,…, where Δ is the time step of the discrete approximation. For k = 1, the 

equations reduce to

and

Buonocore et al. (1990) proved that the discrete approximations converge to the true first 

passage time densities as Δ becomes small.

The equations gA[a1(t), t|z, 0] and gB[a2(t), t|z, 0] are the joint densities of responses RA and 

RB made at time t. The associated response probabilities, P(RA) and P(RB), are obtained by 

numerically integrating the joint densities from 0 to tmax, the maximum time index. In 

applications, the value of tmax must be chosen to be large enough that the response 

probabilities sum to 1.0.

To obtain the model predictions used in this article, the boundaries ai(t) were set to the 

hyperbolic ratio functions given in the text. The predictions were obtained using an 

implementation of the equations written in C and called from Matlab, using 300 time steps 

on the range [0, 2] s. The predictions for models with across-trial distributions of drift and 

starting point were computed as probability mixtures of first passage time distributions, as 

they are in the standard model. These mixtures were obtained by numerically integrating a 

19-point approximation to a normal distribution of drift and an 11-point approximation to a 

uniform distribution of starting points. The mixture distributions were then convolved with a 

discrete approximation to a uniform distribution of nondecision times, using the same time 

step as was used to compute the component first passage time densities. (Mixing and 

convolution are commutative, so the convolution operation only had to be performed once, 

after computing the mixture, rather than individually, for each of its components.) The 

resulting density functions were numerically integrated to obtain predicted cumulative 

distributions for correct responses and errors. The cumulative distributions were then 

numerically inverted to obtain the predicted probability masses between the quantiles of the 

empirical distribution functions used in the fit statistic. As background to the work reported 

in Ratcliff and Smith (2004), they compared the performance of the integral equation 

method, discretized in a similar way as here, to that of the infinite-series solution used in the 

standard diffusion model, and found the predictions and the parameters recovered from 

fitting were essentially indistinguishable.

In other, related applications of the integral equations method, Smith and Ratcliff (2009) 

used it to obtain predictions for their integrated system model, which assumes that the 

decision process is driven by a time varying visual short-term memory trace that is formed 

under the control of spatial attention. This leads to a model with time-varying drift rates and 

diffusion coefficients. Smith et al. (2014) used the method to model decisions about stimuli 
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embedded in dynamic noise. This allowed them to derive predictions for models with time-

varying drift rates and time-varying response inhibition.
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HIGHLIGHTS

• We compare fixed bound and collapsing bound versions of the diffusion 

model.

• An appropriate model selection method prefers the fixed bound model for our 

data.

• The two models produce response time distributions with similar shape.

• The estimated collapsing bounds were similar to estimated fixed bounds 

because the amount of collapse was small.

• Bounds that collapse over time do not provide an improvement over fixed 

bounds.
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Fig. 1. 
Diffusion model with fixed or collapsing boundaries. A: Diffusion model with fixed 

boundaries. Evidence accumulation begins at starting point z and continues until one of the 

boundaries (a/2 and −a/2) is reached. B: Collapsing boundaries for several values of κ (0.3, 

0.6, and 0.9) and one value of t0.5 (0.15).
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Fig. 2. 
PBCM differences in GOF densities and decision criteria. The top panel depicts distributions 

of GOF differences for the situation where each model generally provides smaller GOF 

values when fit to data generated from that model such that the crossover point between the 

two distributions is around zero. The bottom panel depicts distributions of GOF differences 

for the situation where one of the models is able to produce consistently smaller GOF values 

than the other (e.g., because it is more flexible).
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Fig. 3. 
Stimulus strength distributions for Experiments 1–4.
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Fig. 4. 
Average data and model predictions for Experiments 1–4. Response proportions are plotted 

along the x-axis and RT quantiles (0.1, 0.3, 0.5, 0.7, and 0.9) are plotted vertically. 

Conditions where subjects made an average of fewer than 9 responses are omitted from the 

figure. The column on the left plots responses from blocks with an equal number of “large” 

and “small” stimuli. The middle column plots responses when subjects were biased against a 

particular response (i.e., “large” responses from blocks with more “small” trials and “small” 

responses from blocks with more “large” trials). The column on the right plots responses 

when subjects were biased in favor of a particular response (i.e., “large” responses from 

blocks with more “large” trials and “small” responses from blocks with more “small” trials). 

The x’s are the averaged data from the subjects, and the solid and dashed lines are the 

predictions from the fixed and collapsing bound models, respectively.
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Fig. 5. 
Boundary values and RT quantiles for all of the experiments and select individuals. Vertical 

lines depict the average 0.1, 0.5, and 0.9 RT quantiles for each experiment minus the average 

non-decision time. A: Average boundary values for each model for Experiments 1–4. B: 

Boundary values for select subjects from Experiments 1–4. C: Average boundary values for 

each model for Experiment 5 and both conditions of Experiment 6. D: Model-predicted 

response time distributions from average parameter values for Experiments 2 and 3. 

Predictions from the fixed bound model are shown in black and predictions from the 

collapsing bound model are shown in gray. The smaller distributions are the error responses. 

Vertical lines depict the 0.1, 0.5, and 0.9 RT quantiles from the data.
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Fig. 6. 
Average data and model predictions for Experiments 5 (A) and 6 (B). Response proportions 

are plotted along the x-axis and RT quantiles (0.1, 0.3, 0.5, 0.7, and 0.9) are plotted 

vertically. Conditions where subjects made an average of fewer than 9 responses are omitted 

from the figure. The x’s are the averaged data from the subjects, and the solid and dashed 

lines are the predictions from the fixed and collapsing bound models, respectively.
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Fig. 7. 
Distributions of the differences in GOF for each experiment based on the parametric 

bootstrap cross-fitting method. The black distribution in each plot is based on data generated 

from the fixed bound model and the gray distribution in each plot is based on data generated 

from the collapsing bound model. The criteria for the distributions are marked with vertical 

lines and the observed GOF difference for each experiment is marked with a triangle.
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Fig. 8. 
Predicted RT quantiles from each model plotted against each other along with the best-

fitting linear regression line.
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Fig. 9. 
Collapsing bound parameter recovery. Original generating values are plotted in black and 

recovered values are plotted in gray.
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Fig. 10. 
Best-fitting boundaries with kappa parameter fixed to extreme values. The solid lines depict 

the boundaries used to generate the data (κ = 0.55, t0.5 = 0.48, a = 0.15), the green dashed 

lines depict the best fitting boundaries when κ was fixed to a smaller value (κ = 0.30, t0.5 = 

0.13, a = 0.15), and the red dashed lines depict the best fitting boundaries when kappa was 

fixed to a larger value (κ = 0.80, t0.5 = 0.72, a = 0.15). The gray vertical lines depict the 0.1, 

0.3, 0.5, 0.7, and 0.9 RT quantiles minus the non-decision time.
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Fig. 11. 
A: Fits of the fixed and collapsing bound models without between-trial variability 

parameters to simulated data sets with slow errors. Response proportions are plotted along 

the x-axis and RT quantiles (0.1, 0.3, 0.5, 0.7, and 0.9) are plotted vertically. B: PBCM 

comparison of a fixed bound model with between-trial variability in drift rate, starting point, 

and non-decision time and a collapsing bound model with no between-trial variability in 

drift rate. The figure on the left shows the fits of each model to data, and the figure on the 

right shows the difference in GOF distributions for the two models when fit to data 

generated from the fixed bound model (black line) or data generated from the collapsing 

bound model (gray line) along with the observed GOF difference from fits to the data 

(triangle). C: PBCM comparison of a collapsing bound model with no between-trial 

variability parameters and a collapsing bound model with between-trial variability in drift 

rate, starting point, and non-decision time. The figure on the left shows the fits of each 

model to data, and the figure on the right shows the difference in GOF distributions for the 

two models when fit to data generated from the model without variability (black line) or data 
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generated from the model with variability (gray line) along with the observed GOF 

difference from fits to the data (triangle).
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Fig. 12. 
Fits of the fixed bound model (lines) to data generated from the collapsing bound model 

(triangles). Data were generated from a collapsing bound model with either a large or small 

amount of collapse (κ = 0.3 or 0.9) and with between-trial variability parameters either fixed 

to zero or fixed to typical values (based on fits to data).
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