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Abstract

A novel method for reconstructing MRI temperature maps from undersampled data is presented. 

The method, model predictive filtering, combines temperature predictions from a preidentified 

thermal model with undersampled k-space data to create temperature maps in near real time. The 

model predictive filtering algorithm was implemented in three ways: using retrospectively 

undersampled k-space data from a fully sampled two-dimensional gradient echo (GRE) sequence 

(reduction factors R = 2.7 to R = 7.1), using actually undersampled data from a two-dimensional 

GRE sequence (R = 4.8), and using actually undersampled data from a three-dimensional GRE 

sequence (R = 12.1). Thirty-nine high-intensity focused ultrasound heating experiments were 

performed under MRI monitoring to test the model predictive filtering technique against the 

current gold standard for MR temperature mapping, the proton resonance frequency shift method. 

For both of the two-dimensional implementations, the average error over the five hottest voxels 

from the hottest time frame remained between ±0.8°C and the temperature root mean square error 

over a 24 × 7 × 3 × 25-voxel region of interest remained below 0.35°C. The largest errors for the 

three-dimensional implementation were slightly worse: −1.4°C for the mean error of the five 

hottest voxels and 0.61°C for the temperature root mean square error. Magn Reson Med 63:1269–

1279, 2010.
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Thermal therapies are increasingly being seen as a viable method for noninvasive treatment 

of tumor cells (1–6). During a typical MR-guided high-intensity focused ultrasound (HIFU) 

procedure, ultrasound is used to noninvasively heat a small volume within the tumor to the 

point of cell death while sparing surrounding normal tissues (7,8). The tumor is fully ablated 

by treating multiple small subvolumes successively through the tumor in a continuous 

scanning pattern or with a cooling period in between sonications (2,3). MRI can detect 
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irreversible damage in soft tissue due to heating and measure temperature changes in a 

variety of tissue types (9–11). Real time monitoring by MRI to control heating ensures 

tumor treatment efficacy while sparing surrounding normal tissues. Of the several MRI 

methods that are documented to measure temperature, the proton resonance frequency (PRF) 

shift method is by far the most popular (12,13). While many investigators have performed 

successful MR-guided HIFU procedures with standard PRF thermometry, improved spatial 

and temporal resolution would provide the clinician with more detailed temperature data, 

potentially reducing treatment times while ensuring the achievement of safety and efficacy.

MR thermometry requires high spatial resolution to accommodate the small, nonuniform 

shape of the ultrasound focal zone and nonuniform tissue boundaries. A typical HIFU focal 

zone is elongated in the direction of beam propagation, with full width at half maximum 

dimensions of 13 mm × 2 mm. The power deposition over this volume is approximately 

gaussian shaped, and therefore imaging with voxels larger than 1–2 mm3 isotropic leads to 

temperature averaging effects that induce errors in the temperature measurements. High 

spatial resolution is also important when treating organs that have an inhomogeneous tissue 

distribution, such as breast, as partial-volume effects will also lead to temperature 

measurement errors.

High temporal resolution is necessary to properly control the heating and minimize the total 

treatment time. Most investigators consider tumor tissue to be necrosed when either an end-

point temperature elevation has been reached (usually 15–20°C above body temperature) or 

an accepted thermal dose has been delivered (usually 240 cumulative equivalent minutes 

(CEM)) (14). Whichever metric is used, it is important to hit but not exceed the target. 

Exceeding the desired temperature rise in the tumor will cause excessive heating in the 

ultrasound near field, requiring a longer cooling period between sonications and thus a 

longer overall treatment time to avoid potential damage of healthy tissue (15). Fast scan 

times are needed because tissue temperatures in the ultrasound focal zone can rise as quickly 

as 3°C/sec and the thermal dose rate doubles with every 1°C rise in temperature. To make 

MR-guided HIFU ablation procedures more clinically viable, given these spatial and 

temporal constraints, a reasonable goal for MR thermometry scans would be to provide 

images with a field of view (FOV) that is appropriate for the anatomy being treated, 1 mm3 

spatial resolution, and 1-sec temporal resolution.

MRI with high temporal and spatial resolution over a large FOV is difficult to achieve 

because the parameters of volume coverage, spatial resolution, and scan time are self-

conflicting. One set of strategies to improve temporal resolution without sacrificing spatial 

resolution involves modifying the basic gradient echo sequence and includes segmented 

echo-planar imaging (EPI) (with EPI factors ranging from 3 to 15 (10)) and echo-shifted 

imaging (16,17). While both methods provide improved scan time, image distortion can 

occur in EPI sequences with large EPI factors and the short pulse repetition time used in the 

echo-shifted images gives low signal in tissues with long T1 values. Even if these problems 

are mitigated, the spatial and temporal resolutions achieved using segmented EPI or echo-

shifted imaging alone do not meet the goal of 1 mm3/1 sec imaging.
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A second set of strategies involves undersampling the k-space data and then using various 

schemes to reconstruct the images without aliasing artifacts. Parallel imaging takes 

advantage of the different sensitivities of multiple receiver coils. Using n coils and 

sensitivity encoding (SENSE) or simultaneous acquisition of spatial harmonics (SMASH) 

reconstructions (18,19), one can achieve a reduction factor of R (R ≤ n), but at the cost of 

having the SNR reduced by at least a factor of . The reduction factors achieved by these 

parallel imaging techniques are also limited by the number of coils in use. Other methods to 

reconstruct images from undersampled measurements include sliding window, unaliasing by 

Fourier-encoding the overlaps using the temporal dimension (UNFOLD), k-t BLAST, 

keyhole, reduced-encoding MR imaging with generalized-series reconstruction (RIGR), and 

temporally constrained reconstruction (20–24). The reduction factors realized by these 

techniques range from 2 to 8. Again, even in the best case, these techniques alone are not 

sufficient to achieve imaging at 1 mm3/1 sec resolutions.

As a step toward achieving this goal, this paper presents model predictive filtering (MPF) as 

a new method for reconstructing PRF-based temperature maps from undersampled k-space 

data. The MPF approach uses information from a thermal model of the heating that must be 

identified before the treatment process begins. Predictions about how the temperature 

distribution will evolve are made based on this model and are used to create an estimate of 

the current k-space. This estimated k-space is then combined with the most recently 

acquired undersampled k-space data and the data-updated k-space is used to create the 

current temperature map. The algorithm is recursive and of low computational intensity, 

making the method suitable for real-time applications. The technique can be used with any 

number of receive coils, with two-dimensional (2-D) or three-dimensional (3-D) sequences, 

and in conjunction with segmented EPI readouts and reduced FOV imaging. In this paper, 

we compare the MPF technique for measuring temperatures changes to the traditional PRF 

method in two ways. First, MPF temperatures are obtained from retrospectively 

undersampled k-space data and are compared to the true PRF temperature maps obtained 

from the fully sampled data sets. Second, MPF temperatures are obtained from prospectively 

undersampled data that are acquired in real time and are compared to fully sampled PRF 

temperatures obtained under identical ultrasound heating conditions.

MATERIALS AND METHODS

The Thermal Model

The thermal model used in the MPF algorithm is based on the Pennes bioheat equation (25–

28):

[1]

where T is the temperature of the tissue (°C), ρ is the tissue density (kg/m3), C is the specific 

heat of the tissue (J/kg/°C), k is the thermal conductivity of the tissue (W/m/°C), W is the 

Pennes perfusion parameter (kilograms/meter cubed/second), and Q is the deposited power 

density (watts/meter cubed). In this implementation, it has been assumed that the specific 
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heat of blood and tissue are the same and that the temperature of the arterial blood is 

equivalent to the ambient tissue temperature. Values from the literature are used for ρ and C 
(1000 kg/m3 and 4186 J/kg/°C, respectively) (29). The remaining parameters, k, W, and Q, 

are determined in a pretreatment model identification step where a single low-power 

continuous pulse is applied and fully sampled PRF temperature data are acquired during 

both the heating and cooling phases. For these pretreatment parameter determination scans, a 

128 × 128 × 5-voxel volume was acquired at a spatial resolution of 2.0 × 2.0 × 4.0 mm (4.0 

mm being perpendicular to the beam direction) and a temporal resolution of 8.3 sec/scan.

Parameter Determination

For all experiments, the model parameters are determined using 2-D MR temperature 

measurements such that the Q and W matrices have the same dimensions and spatial 

resolution as the 2D MR data. Note that fully sampled 3D PRF temperature measurements 

take too long to acquire to be useful in 3-D model parameter determination. Thus, to obtain 

model parameters for the 3-D implementation of the MPF algorithm, the parameters for a 2-

D model must be determined first and then expanded and interpolated to create parameters 

for the 3-D model. For the experiments in this paper, the volume treated is homogeneous and 

it is assumed that the tissue thermal properties are isotropic.

The deposited power density is found using a method previously described by Roemer et al. 

(30). In this technique, a step of input power is applied with the assumption that perfusion 

and diffusion are negligible for small time durations at the onset of ultrasound power. When 

using this assumption, the first two terms on the right side of Eq. 1 are neglected and a map 

of Q values can be calculated using pixel-by-pixel linear fits to the first two or three heating 

points of the temperature-time curve.

The thermal conductivity tensor, k, is treated as a scalar and found using the method of 

Cheng and Plewes (31), which is based on measuring the rate at which the gaussian-shaped 

temperature profile of the sample spreads in the directions perpendicular to the ultrasound 

beam during cooling. In the general situation, the perfusion parameter, W, is spatially 

dependent and is calculated using the first two frames of cooling, along with the already 

determined values for ρ, C, and k. At the beginning of the cooling period, Q is zero, giving 

the following relationship:

[2]

W can be calculated by estimating the temporal and spatial derivatives numerically. As a 

final step, the value of k can be adjusted slightly to obtain the best fit between the model 

temperatures and the measured temperatures.

Model Implementation

With all parameters determined, the model predicts temperatures from time (n) to time (n 
+ 1) as follows:
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[3]

where Qrel is a normalized power distribution, un is the ultrasound power being applied 

during the nth time frame (watts), and Δt is the time step (seconds). The spatial second 

derivative is calculated numerically for each voxel, using its six nearest neighbors (32). For 

experiments involving phantoms or ex vivo tissue samples where no perfusion is expected, 

the W matrix is set to zero.

The MPF Algorithm

In the MPF algorithm, the first time, 3.) The frame of k-space must be fully sampled. After 

that, all time frames can be undersampled at any reduction factor, R. The algorithm uses a 

multistep recursive process to create the PRF-based temperature maps. 1.) Starting with a 

temperature distribution at time frame (n), the undersampled k-space data are acquired for 

time frame (n + 1) – optional step if motion is suspected. 2.) Motion detection is performed 

using the method of Mendes et al. (33), and the image is shifted to the newly identified 

location if motion has occurred thermal model is used to predict a new temperature 

distribution for time (n + 1). 4.) A complex image for time (n + 1) is created by using the 

magnitude of the image at time (n) and computing the phase, ϕn + 1, according to De Poorter 

et al. (13):

[4]

where α = −0.01 ppm/°C is the chemical shift coefficient (34). This complex image is then 

projected into k-space using a fast Fourier transform. 5.) The undersampled data acquired at 

time (n + 1) are then used to replace the corresponding predicted lines. 6.) This data-updated 

k-space is then transformed back into image space and a new temperature distribution for 

time (n + 1) is calculated using the phase of the updated image. If motion has occurred, then 

a corrective technique such as referenceless thermometry (35) must be used; otherwise, the 

updated temperature map can be calculated using Eq. 4. The process is repeated for all time 

frames. On a desktop personal computer in a MatLab (The MathWorks, Natick, MA) 

implementation, the creation of temperature maps for all five slices of one 2-D time frame 

using the six steps of the MPF algorithm takes less than 0.25 sec. The computation time is 

dependent on the k-space matrix size and would be slightly longer for 3-D as 3-D data 

require a 3rd Fourier transform. This algorithm can be used with any thermal model and any 

pulse sequence designed to acquire PRF data.

MRI Acquisition and HIFU Heating Setup

All imaging was performed on a Siemens TIM Trio 3-T MRI scanner (Siemens Medical 

Solution, Erlangen, Germany). A radiofrequency-spoiled, gradient echo sequence was used 

to acquire the data for calculating the temperature changes. Three different implementations 

of the sequence were used: a 2-D version where the entire k-space was fully sampled, a 2-D 
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version where the k-space was undersampled in the ky phase encode direction, and a 3-D 

version where the k-space was undersampled in both the ky and kz phase-encode directions. 

For each of the 2-D versions, the following MR parameters were used: FOV = 256 × 256 × 

20 mm; acquisition matrix = 128 × 128 and five slices for 2.0 × 2.0 × 4.0 mm image 

resolution (3 mm-thick slices with 1 mm slice spacing); pulse repetition time/echo time = 

65/8 msec; 8.3 sec per scan without k-space undersampling and 1.8 sec per scan with R = 

4.8 undersampling. For the 3-D version, the following MR parameters were used: FOV = 

256 × 256 × 32 mm, acquisition matrix = 128 × 128 × 16 for 2.0 × 2.0× 2.0 mm image 

resolution, 50% phase oversampling in the slice direction to prevent aliasing (wraparound in 

z) artifacts, pulse repetition time/echo time =25/8 msec, 76.8 sec per scan without k-space 

undersampling and 6.4 sec per scan with R = 12.1 undersampling. For experiments involving 

motion, the undersampled 2-D sequence was used with the pulse repetition time shortened to 

50 ms and only three slices acquired in order to decrease the scan time to 1.1 sec.

Undersampled data sets were made from the fully sampled data sets by retrospectively 

zeroing out k-space phase-encode lines. For both the retrospective undersampling and the 

actual real-time undersampling, a variable-density sampling scheme was used. k-Space was 

divided into five regions: a region covering the center of k-space where every phase encode 

line was sampled, two areas (one on either side of the central area) where every mth line was 

sampled, and the outermost two areas on either side of k-space where every jth line was 

sampled (j > m). The sampled phase-encode lines were shifted in each time frame such that 

every phase-encode line would eventually be sampled in at least one time frame. For 

example, if m =3 and j = 6, then time frame 1 would be fully sampled, time frame 2 would 

acquire phase encode lines 1, 7, 13, 19, …; 50, 53, 56, …, 62, 63, 64, 65, …; time frame 3 

would acquire phase encode lines 2, 8, 14, 20, … 51, 54, 57, … 62, 63, 64, 65, …; and so 

on.

Heating was performed using an MRI-compatible 256-element phased-array ultrasound 

transducer (Image Guided Therapy, Bordeaux, France) operating at a frequency of 1.0 MHz 

and with a radius of curvature of 13 cm. Each sonication was delivered at the geometric 

focus of the transducer in a single, continuous pulse. The generator that supplies the 

amplitudes and phases of each transducer element was controlled externally with a computer 

that received temperature images in near real time from the MRI scanner. MR scans could be 

performed during sonication with little or no artifact present in the images. The transducer 

was housed in a bath of deionized and degassed water and was coupled with water to the ex 

vivo porcine tissue samples and agar gel phantoms that were used for the experiments. The k 
values used for the three sets of experiments were 0.40 and 0.41 for the ex vivo tissue 

samples and 0.59 for the agar phantom (watts/meter/degree Celsius). The experimental setup 

is shown in Fig. 1.

Experiments

Thirty-nine separate HIFU heating runs were performed to test the MPF algorithm. For 

clarity, these experiments are named and summarized in Table 1.
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MPF With Retrospectively Undersampled Data Sets

In the first group of experiments (1.m and 1.1 through 1.9), parameter determination (run 

1.m) was performed and then nine HIFU heating runs (1.1 through 1.9) were performed on 

an ex vivo tissue sample under identical circumstances, each imaged with the fully sampled 

2-D GRE sequence. The nine fully sampled data sets were used for two purposes. The first 

was to determine the repeatability of the heating pattern produced by the ultrasound 

transducer under identical circumstances. The second purpose was to use the fully sampled 

temperature maps as truth in a comparison against MPF temperature maps created with 

retrospectively undersampled k-space data of increasing R factors.

To analyze the effect on the MPF temperature maps of using increasing reduction factors, 

undersampled data sets were created at various reduction factors by retrospectively zeroing 

out phase-encode lines from the fully sampled k-space sets. The seven reduction factors used 

were R = 2.6, 3.8, 4.8, 5.4, 6.3, 7.1, and infinite (model only using no measurements). For 

each reduction factor, the identified thermal model and the nine undersampled data sets were 

used in the MPF algorithm to create temperature maps.

MPF With Actually Undersampled Data Sets

The second group of experiments tested the performance of the MPF algorithm using 

actually undersampled data. After model identification, runs 2.A, 2.B, and 2.C were 

performed sequentially on a new ex vivo tissue sample, giving data sets of 2-D fully sampled 

images, 2-D undersampled images, and 3-D undersampled images, all done under identical 

conditions. This series of three heating runs was repeated three more times at the same 

location in the tissue sample, and then the transducer was moved, a new model was 

identified, and the same series of three heating runs was repeated four more times at the new 

location in the tissue sample. This provided eight temperature data sets for each of the three 

sequences, all performed under nearly identical conditions. The fully sampled 2-D sequence 

had a scan time of 8.3 sec compared to 1.8 sec for the undersampled 2-D sequence and 6.4 

sec for the undersampled 3-D sequence. Because of these differences in time step, not every 

time frame matched up between the fully sampled and undersampled techniques. In order to 

properly compare the two temperature data sets, the model was used to forward predict the 

MPF temperatures by whatever time step was necessary at each frame to match up with the 

timing of the fully sampled temperatures.

MPF With Motion

The final group of experiments was performed to test the MPF algorithm in the presence of 

two types of rigid-body, translation-only motion. For these experiments, the 2-D 

undersampled sequence (R = 4.8) was used and heating was done on an agar gel phantom. In 

the first case (3.A), the sample was moved once during heating by approximately 6 mm in 

less than 2 sec and then moved again back to its original position during cooling. The 

referenceless phase subtraction method was used in the MPF algorithm for this data set. For 

the second case (3.B), the sample was under continuous periodic motion, with an amplitude 

of approximately 8 mm and a period of 8 sec. In this case, the phase subtraction was done 

using the look-up library method (36), for which 30 images were acquired during motion but 

before heating began.
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Analysis

Two metrics were used to assess the MPF algorithm’s performance: (1) the average error of 

the MPF temperatures over the five hottest voxels in the focal zone at the hottest time frame 

and (2) a temperature root mean square error (RMSE). For both metrics, the fully sampled 

PRF temperatures were used as truth. To calculate the temperature RMSE, a 24 × 7 × 3-

voxel region of interest (ROI) was considered over approximately 25 time frames. The 

spatial region covered all voxels that experienced significant heating (above ~4°C), and the 

number of time frames was chosen to cover all time frames of heating plus the steepest 

portion of the cooling phase. For the retrospective and prospective undersampling 

experiments, the average error of the five hottest voxels and the temperature RMSE were 

determined for all runs separately. The mean and standard deviation (SD) of these values 

over all of the runs were then calculated and are displayed in Table 2. In the case of the 

motion experiments, fully sampled PRF temperatures were not available to use as truth for 

comparison, thus allowing only a qualitative assessment.

RESULTS

Model Performance

Figure 2a shows a comparison of temperatures of the single hottest voxel determined from 

the identified model only (R = infinite) and the corresponding mean and SD of the fully 

sampled PRF temperatures from experiments 1.1–1.9. The mean and SD of the temperature 

differences (fully sampled PRF model only) over a 24 × 7 × 3 ROI about the focal zone are 

shown in Fig. 2b. Without measurement data, the model alone overpredicts the temperatures 

during the heating phase by approximately 0.5°C on average. After more than 5 min of 

cooling, the model-only temperatures are hotter by an average of 1.7°C. Throughout all time 

frames, the SD of the temperature differences is never more than 0.7°C. The temperature 

differences over the five hottest voxels and the total RMSE are presented in Table 2 at the 

end of the Results section.

Heating Repeatability With Fully Sampled Data Sets

The temperature measurements from the fully sampled data of heating runs 1.1 through 1.9 

all had very similar temperature evolutions. From these nine heating runs, the average 

maximum temperature rise was 17.2 ± 0.7°C, ranging from 16.4°C to 18.3°C. The SD of the 

temperatures over all nine runs and all time frames in a 5 × 5 region that did not experience 

any heating was found to be 0.41 ± 0.02°C. Considering only the focal zone, the largest 

temperature SD was 1.2°C. To calculate the spread in the temperatures over the five hottest 

voxels and the total RMSE, the average of the nine temperatures was used as truth and 

compared against each individual run. These results are presented in Table 2.

MPF With Retrospectively Undersampled Data Sets

MPF temperature maps were created from retrospectively undersampled data for runs 1.1 to 

1.9 and compared against the corresponding fully sampled PRF temperatures. As an 

example of the variations observed, Fig. 3 shows the mean and SD of the temperature 

differences over a 24 × 7 × 3 ROI covering the focal zone for run 1.3 at three reduction 
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factors. The results for the MPF algorithm from the other eight heating runs were similar 

and indicate that the error is greater during times of rapid temperature change and appears to 

increase with reduction factor.

The mean and SDs of the temperature differences for the five hottest voxels were calculated 

for all nine heating runs at each of the six reduction factors, and the results are shown in Fig. 

4a. Similarly, the MPF temperature RMSE was calculated for each heating run, and the 

mean and SD of the RMSEs are plotted as a function of reduction factor in Fig. 4b. These 

results are also summarized in Table 2.

MPF With Actually Undersampled Data Sets

Fully sampled PRF temperature maps from runs 2.A were compared to 2-D MPF 

temperature maps from runs 2.B. The maximum temperature rise measured over all of the 

2.A runs had a mean and SD of 16.8 ± 1.7°C. For the corresponding 2-D MPF heating runs, 

the mean and SD of the maximum temperature rise were 17.0 ± 0.9°C. In Fig. 5a, the hottest 

voxel from the focal zone was chosen and the mean and SD over the four runs of the first 

location were plotted for each technique. For Fig. 5b, the temperature differences for these 

same runs were calculated over a 24 × 7 × 3 ROI, pooled together, and are displayed 

showing the mean and SD. The mean offsets are never larger than 0.4°C in either direction. 

The results for the four heating runs in the second location were similar. The temperature 

differences over the five hottest voxels and the total RMSE were calculated for all eight runs, 

and the results are summarized in Table 2.

The same analysis was performed to compare the fully sampled PRF temperatures from runs 

2.A to the 3-D MPF temperatures from runs 2.C. The maximum rise for the 3-D MPF 

temperatures ranged from 16.5°C to 18.0°C (mean, 17.2°C) for all of the 2.C runs. Results 

from the first four runs are shown in Fig. 6. The mean and SD of the temperature rise of a 

single voxel are shown in Fig. 6a (same voxel as displayed in Fig. 5a). The mean and SD of 

the temperature differences over the same 24 × 7 × 3 ROI are shown for all time frames in 

Fig. 6b. The mean difference fluctuates about zero but never rises above 0.2°C or falls below 

−0.4°C. The SD of the difference is larger than what was seen for the 2-D MPF 

temperatures, reaching 1.0°C for some time frames. Results for the second four heating runs 

were similar. The statistics for the temperature difference over the five hottest voxels and the 

total RMSE are shown in Table 2.

MPF With Motion

Because no “true” temperature could be acquired for comparison against the MPF 

temperatures obtained in the presence of motion, only qualitative results can be given. 

Figure 7 displays results from run 3.A. In Fig. 7a, the three temperature-time curves are 

from one voxel in the center of the original focal zone and two voxels 6 mm to the right and 

left of this central voxel. The plot in Fig. 7b shows the displacement of the phantom that was 

calculated within the MPF algorithm for all time frames. The four temperature maps in Fig. 

7c are from right before the first move, just after the first move, at the peak of heating, and 

just after the second move. Major artifacts occurred in one time frame during the first 
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movement, causing large errors in the temperature maps. Other than this time frame, the 

temperatures calculated by the MPF algorithm behave as expected.

Figure 8 shows the MPF temperature results from the case of constant periodic motion. 

Temperature curves from voxels 6 mm to the right and left of the central focal zone are 

shown, along with the calculated displacement curve in Fig. 8a and b. Figure 8c shows four 

temperature maps covering one-half of a full oscillation period. In this case, the temperature 

maps had small artifacts in a number of the time frames due to the motion. For instance, 

negative temperatures can be seen in the far right side of the temperature map for time 96 

sec, and some minor banding can be seen at the bottoms of the other three temperature 

maps. These artifacts were never severe but still most likely caused small errors in the 

calculated temperatures.

MPF Robustness

Tests of the MPF algorithm’s stability with respect to model errors and noise were 

performed with the data from run 1.2. For the model error tests, varying degrees of error 

were introduced into the model prediction step by separately multiplying Qrel, k, and ρ from 

Eq. 3 by a factor ranging from 0.5 to 1.5. The data were undersampled at R = 4.8 and these 

erroneous values were used in the algorithm to create MPF temperatures. The average error 

over the five hottest voxels, plotted as a function of the multiplication factor, is shown in Fig. 

9a and a similar plot for temperature RMSE is shown in Fig. 9b.

To test the algorithm’s performance as a function of SNR, increasing amounts of randomly 

generated complex white noise were added to the originally acquired k-space data of run 1.2. 

For each of the different noise levels, temperatures were calculated from the fully sampled 

noisy data using the PRF method and from the noisy data undersampled at R = 4.8 using the 

MPF algorithm. For each noise level, this process was repeated 20 times and the average 

values for the reconstructed image SNR, the error over the five hottest voxels, and the 

temperature RMSE were calculated, using the original fully sampled data without noise as 

truth. The results are summarized in Table 3.

DISCUSSION

The work herein presents MPF, a novel method for accelerating scan time by reconstructing 

MR temperature maps from undersampled k-space data utilizing temperature predictions 

from a preidentified thermal model. The algorithm has been implemented for 2-D and 3-D 

versions of a radiofrequency spoiled gradient echo sequence. In each case, the pulse 

sequence has been modified to acquire undersampled data in real time at a user-determined 

data reduction factor. The MPF algorithm is recursive, with a computational burden small 

enough to allow for real-time applications. Although not demonstrated here, the MPF 

algorithm is sufficiently flexible to be used with any temperature-predicting model and any 

pulse sequence that acquires PRF data, including ones that incorporate segmented EPI 

readouts and reduced FOV imaging.

Over the course of 39 HIFU heating experiments, the performance of the MPF algorithm 

was compared against the current gold standard in MR temperature imaging, fully sampled 
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2-D PRF temperature images. The results summarized in Table 2 show that the MPF 

technique performed well, providing acceleration factors of 4.6 for the 2-D case and 12.1 for 

the 3-D case, with relatively small deviations from fully sampled 2-D PRF temperatures that 

were acquired under identical circumstances. Further results show that the MPF algorithm 

can monitor heating when motion is present, although the temperature errors are slightly 

worse, as would be expected.

In order to make temperature predictions using the Pennes bioheat equation, five different 

parameters must be set: ρ, C, k, Q, and W. Ideally, each of these parameters would be a 

spatially varying matrix with dimensions that match the MR images. However, identifying 

the spatial dependence of all of these variables is not an easy task to accomplish in practice 

and may not be necessary in all situations. In the studies presented here, the MPF algorithm 

was only tested with heat applied at a single point in relatively homogeneous, nonperfused 

ex vivo tissue and in a homogeneous phantom. Under these simple circumstances, the 

assumptions made were valid: ρ, C, and k were assumed to be scalars and constant over the 

ROI, the Q matrix was determined with heating at only one location, and W was set to zero. 

Our purpose here was to demonstrate the concept of how information from a thermal model 

could be combined with MR data to accelerate image acquisition. Further work is ongoing to 

demonstrate that the MPF algorithm can be applied in more clinically relevant 

circumstances. Note that this is an issue of improving the thermal model, not the MPF 

algorithm. Any refinement to the thermal model can be implemented directly into the MPF 

pipe line.

In its current state, the Q term needs to be identified at each new heating location. This is 

clearly not acceptable for an actual ablation procedure that would require sonications at 

numerous different locations. This problem is easily overcome for regions of homogeneous 

tissue (37) with mechanical transducer movement. The power deposition could be identified 

for one location and then extrapolated to the other locations based on knowledge of tissue 

ultrasound properties, thermal properties, and geometry. Another shortcoming is that the 

process used to determine ρ, C, and k is not currently able to identify multiple tissue types 

with varying properties. This may cause problems since all in vivo ablation procedures will 

involve at least two different tissue types. One likely solution will be to segment the MRI 

images and identify all relevant tissue types. Each tissue type will have density and specific 

heat assigned from table look-up values. The value for k could be identified as before in 

regions of aqueous tissue, but a look-up value would have to be used for adipose regions as 

MR temperature measurements in fat are not currently reliable. These additional steps will 

allow the thermal model to be applied to each region of different tissue types separately. A 

final area for improvement in the MPF algorithm is that it does not currently take into 

account temperature-dependent changes in the signal magnitude. Temperature changes will 

affect the tissue T1, diffusion, and bulk magnetization. However, these changes will be 

sequence and tissue dependent and are not well established. Instead of trying to model the 

magnitude changes, which would likely be very complicated, we chose to use the magnitude 

from time frame N when predicting the k-space for time frame N + 1.

Because of tissue inhomogeneities and errors in thermal property measurements, the thermal 

model will never be perfect and some prediction errors will always remain. The effect of 
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these errors should be relatively minor because the way that the MPF technique incorporates 

measured data makes it more robust to model error. The algorithm is similar to a sliding 

window reconstruction of undersampled data, with the important additional step of 

incorporating information from a thermal model. The central lines of k-space are sampled at 

every time frame, and they capture most of the phase information. When the tissue 

temperature is not changing rapidly, a sliding window reconstruction of undersampled data 

will give temperatures that closely match fully sampled temperatures. In areas where the 

tissue temperature is changing rapidly, sliding window temperatures will lag behind the 

actual temperature changes in time. It is in these locations that the thermal model is most 

needed. The strength of the model-only temperatures is that they do not lag behind the actual 

temperature changes. The controlling computer will always know when the ultrasound 

power is being turned on and off, and the model can use this knowledge to predict the 

temperature changes accordingly. When the model and data are combined into MPF 

temperatures, the errors are still largest during periods of rapid temperature change, although 

these errors are relatively small. Even at the largest reduction factors, the MPF algorithm 

predicts temperatures quite accurately during the first and last time frames shown, when the 

temperatures are not changing rapidly.

The results in Fig. 9 show that the algorithm’s performance is not significantly affected until 

the errors in the model parameters are large. It is likely that the MPF algorithm performance 

will be less affected by model inaccuracies and that errors will propagate less far in time 

when actually undersampled data are used. To have “true” temperatures for this analysis, 

fully sampled data were used that had a time step of 8.3 sec. When actually undersampled 

data are used, the model will be making predictions less far into the future, thus reducing its 

error. Additionally, large errors or erroneous predictions in the MPF temperatures should be 

detectable by comparing the measured k-space lines with the corresponding lines predicted 

by the model. Large differences between the measured and predicted k-space lines may be 

an indication of errors in the calculated temperatures. An appropriate correction could then 

be applied in real time, such as discounting the model for that time frame and only using the 

data in sliding window fashion.

The results obtained from subsampling the fully sampled measurements indicated an 

increase in error with increasing reduction factor. This increase is likely due to the fact that 

the time step between subsampled measurements did not decrease. In a real implementation, 

the time step will decrease as the reduction factor increases. With smaller time steps, the 

heat diffusion will be over a smaller volume, resulting in smaller footprint for the MPF 

kernel and a more stable propagation with increasing reduction factor. Thus, although the 

results of this paper provide strong evidence that the MPF algorithm can be used to greatly 

increase the temporal resolution in temperature measurements, more work is needed to 

establish the ultimate limits on accuracy as a function of reduction factor.

Although the undersampled MRI techniques used in these experiments do not achieve 

temperature measurements with 1 mm3 isotropic spatial resolution and 1-sec temporal 

resolution, this goal should be attained by combining the MPF algorithm with a segmented 

EPI readout and reduced FOV imaging. For example if an EPI readout factor of 6 were 

applied to the 3-D undersampled gradient echo sequence, the time resolution would become 
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1.1 sec. Adding 2-D radiofrequency excitation to decrease the FOV to 128 × 128 × 16 mm3 

while keeping the acquisition matrix the same size would give 1 mm3 isotropic spatial 

resolution. As these strategies are independent, they can be combined to achieve the goal of 

1 mm3/1 sec temporal and spatial resolution.
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FIG. 1. Schematic showing the experimental setup
An MRI-compatible 256-element phased-array ultrasound transducer is housed in a 

waterbath, coupled to ex vivo porcine tissue samples. In-house-built surface coils are used 

for imaging.
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FIG. 2. Model performance
a: Temperature plot of one voxel in the focal zone comparing fully sampled PRF 

temperatures with model only temperatures for 48-W heating. b: Mean and SD of the model 

only temperature errors over a 24 × 7 × 3 ROI for all time frames.
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FIG. 3. 
Comparing the MPF temperatures of run 1.3 versus the fully sampled PRF temperatures of 

run 1.3 (fully sampled PRF temperatures minus MPF temperatures; mean and SD over a 24 

× 7 × 3 ROI). The temperature errors for the MPF algorithm at three different reduction 

factors are shown.
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FIG. 4. The error metrics as a function of reduction factor
a: The error over the five hottest voxels in the hottest time frame (mean and SD over all 10 

heating runs) at the six different reduction factors. b: Temperature RSME over a 24 × 7 × 3 

× 25 ROI and all 10 heating runs at six different reduction factors.

Todd et al. Page 19

Magn Reson Med. Author manuscript; available in PMC 2017 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 5. 2-D MPF temperatures compared to 2-D fully sampled temperatures
a: Mean and SD of the hottest voxel in the focal zone over the first four runs of fully 

sampled PRF temperatures (experiment 2.A, black line) and 2-D MPF temperatures 

(experiment 2.B, white line). b: Mean and SD of the temperature differences between runs 

2.A and 2.B over a 24 × 7 × 3 ROI.
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FIG. 6. 3-D MPF temperatures compared to 2-D fully sampled temperatures
a: Mean and SD of the hottest voxel in the focal zone over the first four runs of fully 

sampled PRF temperatures (experiment 2.A black line) and 3-D MPF temperatures 

(experiment 2.C, white line). b: Mean and SD of temperature differences over a 24 × 7 × 3 

ROI for all four runs.
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FIG. 7. 2-D undersampled MPF temperatures with discrete motion
a: Temperature plots of three voxels in and near the focal zone, spaced 6 mm apart. b: 

Phantom displacement relative to the starting point, as measured by the method of Mendes 

et al. (33). c: Temperature maps showing the hot spot before moving, just after the first 

move, at peak heating, and just after the second move.
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FIG. 8. 2-D undersampled MPF temperatures with continuous motion
a: Temperature plots of two voxels in the focal zone, spaced 12 mm apart. b: Phantom 

displacement relative to the starting point, as measured by the method of Mendes et al. (33). 

c: Temperature maps showing the hot spot during heating at four consecutive times over 

one-half of a period.
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FIG. 9. Evaluating the effect of model accuracy on the MPF algorithm
MPF temperatures were created using erroneous values for Qrel, k, and ρ and were compared 

to fully sampled temperatures. a: Average difference over the five hottest voxels as a 

function of model error. b: Temperature RMSE over a 24 × 7 × 3 × 25 ROI as a function of 

model error.
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Table 2

Summary of Results for HIFU Heating Experiments*

Comparison Five hottest vox diff RMSE

Mean (1.1–1.9), fully sampled vs model only −0.1°C ± 0.9°C 0.83°C

Mean (1.1–1.9), fully sampled vs 1.1–1.9, fully sampled   0.2°C ± 1.0°C 0.38°C

1.1–1.9, fully sampled vs 1.1–1.9, MPF R = 2.6   0.4°C ± 0.1°C 0.22°C

1.1–1.9, fully sampled vs 1.1–1.9, MPF R = 4.8   0.8°C ± 0.4°C 0.29°C

1.1–1.9, fully sampled vs 1.1–1.9, MPF R = 7.1   0.8°C ± 0.5°C 0.33°C

2.A vs 2.B −0.3°C ± 0.9°C 0.42°C

2.A vs 2.C   0.0°C ± 1.7°C 0.59°C

*
Temperature differences over the five hottest voxels in the hottest time frame and a temperature RMSE over a 24 × 7 × 3 × 25 ROI are displayed.
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