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Abstract

A kernel-learning based method is proposed to integrate multimodal imaging and genetic data for 

Alzheimer’s disease (AD) diagnosis. To facilitate structured feature learning in kernel space, we 

represent each feature with a kernel and then group kernels according to modalities. In view of the 

highly redundant features within each modality and also the complementary information across 

modalities, we introduce a novel structured sparsity regularizer for feature selection and fusion, 

which is different from conventional lasso and group lasso based methods. Specifically, we 

enforce a penalty on kernel weights to simultaneously select features sparsely within each 

modality and densely combine different modalities. We have evaluated the proposed method using 

magnetic resonance imaging (MRI) and positron emission tomography (PET), and single-

nucleotide polymorphism (SNP) data of subjects from Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database. The effectiveness of our method is demonstrated by both the clearly 

improved prediction accuracy and the discovered brain regions and SNPs relevant to AD.

1 Introduction

Alzheimer’s disease (AD) is an irreversible and progressive brain disorder. Early prediction 

of the disease using multimodal neuroimaging data has yielded important insights into the 

progression patterns of AD [11,16,18]. Among the many risk factors for AD, genetic 

variation has been identified as an important one [11,17]. Therefore, it is important and 

beneficial to build prediction models by leveraging both imaging and genetic data, e.g., 

magnetic resonance imaging (MRI) and positron emission tomography (PET), and single-

nucleotide polymorphisms (SNPs). However, it is a challenging task due to the multimodal 

nature of the data, limited observations, and highly-redundant high-dimensional data.

Multiple kernel learning (MKL) provides an elegant framework to learn an optimally 

combined kernel representation for heterogeneous data [4,5,10]. When it is applied to the 

classification problem with multimodal data, data of each modality are usually represented 

using a base kernel [3,8,12]. The selection of certain sparse regularization methods such as 

lasso (ℓ1 norm) [13] and group lasso (ℓ2,1 norm) [15], yields different modality selection 

approaches [3, 8, 12]. In particular, ℓ1-MKL [10] is able to sparsely select the most 
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discriminative modalities. With grouped kernels, group lasso performs sparse group 

selection, while densely combining kernels within groups. In [8], the group lasso regularized 

MKL was employed to select the most relevant modalities. In [12], a class of generalized 

group lasso with the focus on inter-group sparsity was introduced into MKL for channel 

selection on EEG data, where groups correspond to channels.

In view of the unique and complementary information contained in different modalities, all 

of them are expected to be utilized for AD prediction. Moreover, compared with modality-

wise analysis and then conducting relevant modality selection, integration of feature-level 

and modality-level analysis is more favorable. However, for some modalities, their features 

as a whole or individual are weaker than those in other modalities. In these scenarios, as 

shown in Fig. 1(b), the lasso and group lasso tend to independently select the most 

discriminative features/groups, making features from weak modalities having less chance to 

be selected. Moreover, they are less effective to utilize complementary information among 

modalities with ℓ1 norm penalty [5, 7]. To address these issues, we propose to jointly learn a 

better integration of multiple modalities and select subsets of discriminative features 

simultaneously from all the modalities.

Accordingly, we propose a novel structured sparsity (i.e., ℓ1,p norm with p > 1) regularized 

MKL for heterogeneous multimodal data integration. It is noteworthy that ℓ1,2 norm was 

considered [6, 7] in settings such as regression, multitask learning etc. Here, we go beyond 

these studies by considering the ℓ1,p constrained MKL for multimodal feature selection and 

fusion and its application for AD diagnosis. Moreover, contrary to representing each 

modality with a single kernel as in conventional MKL based methods [3,4,8], we assign each 

feature with a kernel and then group kernels according to modalities to facilitate both 

feature- and group-level analysis. Specifically, we promote sparsity inside groups with inner 

ℓ1 norm and pursue dense combination of groups with outer nonsparse ℓp norm. Guided by 

the learning of modality-level dense combination, sparse feature selections in different 

modalities interact with each other for a better overall performance. This ℓ1,p regularizer is 

completely different from group lasso [15] and its generalization [9] (i.e., ℓp,1 norm) which 

gives sparse groups but performs no feature selection within each group [12,15]. An 

illustration of different sparsity patterns selected by lasso, group lasso and the proposed 

method is shown in Fig. 1(b). In comparison, the proposed model can not only keep 

information from each modality with outer nonsparse regularization but also support 

variable interpretability and scalability with the inner sparse feature selection.

2 Method

Given a set of N labeled data samples , where , M is the 

number of all features in all modalities, and yi ∈ {1, −1} is a class label. MKL aims to learn 

an optimal combination of base kernels, while each kernel describes a different property of 

the data. To also perform the task of joint feature selection, we assign each feature a base 

kernel through its own feature mapping. An overview of the proposed framework is 

illustrated in Fig. 1(a).
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2.1 Structured Sparse Feature and Kernel Learning

Let  = {1, 2, ···, M } be the feature index set which is partitioned into L non-overlapping 

groups  according to task-specific knowledge. For instance, in our application, we 

partition  into L = 3 groups according to modalities. Let  be the M base 

kernels for the M features respectively, which are induced by M feature mappings . 

Given the feature space defined by the joint feature mapping Φ(x) = (ϕ1(x1), ϕ2(x2), ···, ϕM 

(xM))T, we learn a linear discriminant function of the form 

. Here, we have explicitly written out the group 

structure in the function f (x), in which w̃m is the normal vector corresponding to ϕm, b 
encodes the bias, and θ = (θ1, θ2, ···, θM)T contains the weights for the M feature mappings. 

Therefore, feature mappings with zero weights would not be active in f (x).

In the following, we perform feature selection by enforcing a structured sparsity on weights 

of the feature mappings. To introduce a more general model, we further introduce (1) M 
positive weights β = (β1, β2, ···, βM)T for features and (2) L positive weights γ = (γ1, γ2, ···, 

γL)T for feature groups to encode prior information. If we have no knowledge about group/

feature importance, we can set βm = 1 and γl = 1 for each l and m. Accordingly, our 

generalized MKL model with a structured sparsity inducing constraint can be formulated as 

below:

(1)

where ℒ(t, y) = max(0, 1 − ty) is the hinge loss function, C′ is a trade-off weight, τ controls 

the sparsity level, and 0 is a vector of all zeros. Similar to the typical MKL [10], this model 

is equivalent to learning an optimally combined kernel . The 

inequality constraint employs a weighted ℓ1,p mixed norm (p > 1), i.e., ||·||1,p;β,γ, which 

simultaneously promotes sparsity inside groups with the inner weighted ℓ1 norm and pursues 

dense combination of groups with the outer weighted ℓp norm.

The rationale of using this regularization is that, while each individual modality contains 

redundant high-dimensional features, different modalities can offer unique and 

complementary information. Owing to the heterogeneity of different modalities, we sparsely 

select features from each homogenous feature groups, i.e., modalities, and densely integrate 

different modalities. As has been discussed in [5], with p > 1, the non-sparse ℓp norm has the 

advantage of better combining complementary features than ℓ1 norm. Moreover, in view of 

the unequal reliability of different modalities, we take a compromise of ℓ1 lasso and ℓ2 ridge 

regularization and intuitively set p = 1.5 for inter-group regularization, i.e. ℓ1,1.5. More 

specifically, due to the geometrical property of the ℓ1.5 contour lines, it results in unequal 
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shrinkage of weights with higher probability than ℓ2 norm, thus allowing the assignment of 

larger weights for leading groups/modalities.

Further understanding and computation of our model can be achieved with the following 

lemma and theorem. Let , w = (w1, w2, ···, wM) and also W = (||w1||2, ||w2||2, 

···, ||wM ||2)T, we first have the following lemma.

Lemma 1—Given p ≥ 1, positive weights γ and β. We use the convention that 0/0 = 0. For 
fixed w ≠ 0, the minimal θ in Eq. (1) is attained at

(2)

where , and lm is the index set containing m

For the fixed w, this lemma gives an explicit solution for θ. The proof can be done by 

deriving the first order optimality conditions of Eq. (1). Plugging Eq. (2) into the model in 

Eq. (1) yields the following compact optimization problem.

Theorem 1—Let . For p > 1, the model in Eq. (1) is equivalent to

(3)

The first term is a weighted ℓ1,q norm penalty on W with q ∈ (1, 2). By choosing p = 1.5 and 

thus q = 1.2, it shares similar group-level regularization property with that in Eq. (1) on θ. 

Specifically, in each group, only a small number of wm can contribute to the decision 

function f (x) with nonzero values. Accordingly, few features in each group can be selected. 

Meanwhile, the sparsely filtered groups are densely combined, while allowing the presence 

of leading groups.

2.2 Model Computation

After the variable changing, we can optimize the proposed model via a block coordinate 

descent. For fixed θ, the subproblem of w and b can be computed with any support vector 

machine (SVM) [2] solver. According to Lemma 1, we can analytically carry out θm with w 

fixed. θm can be initialized as  to satisfy the constraint in 

Eq. (1). Moreover, from Eq. (3), it is obvious that we can fold τ and C′ into a single trade-

Peng et al. Page 4

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2017 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



off weight C and set τ = 1. In this way, we have single model parameter C which not only 
acts as the soft margin parameter but also controls the sparsity of θ and W.

3 Experimental Results

3.1 Dataset

We evaluated our method by applying it on a subset of the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) dataset1. In total, we used MRI, PET, and SNP data of 189 

subjects, including 49 patients with AD, 93 patients with Mild Cognitive Impairment (MCI), 

and 47 Normal Controls (NC). After preprocessing, the MRI and PET images were 

segmented into 93 regions-of-interest (ROIs). The gray matter volumes of these ROIs in 

MRI and the average intensity of each ROI in PET were calculated as features. The SNPs 

[11] were genotyped using the Human 610-Quad BeadChip. Among all SNPs, only SNPs, 

belonging to the top AD candidate genes listed on the AlzGene database2 as of June 10, 

2010, were selected after the standard quality control and imputation steps. The Illumina 

annotation information based on the Genome build 36.2 was used to select a subset of SNPs, 

belonging or proximal to the top 135 AD candidate genes. The above procedure yielded 

5677 SNPs from 135 genes. Thus, we totally have 93 + 93 + 5677 = 5863 features from the 

three modalities for each subject.

3.2 Experimental Settings

For method evaluation, we used the strategy of 10 times repeated 10-fold cross-validation. 

All parameters were learned by conducting 5-fold inner cross-validation. Three measures 

including classification accuracy (ACC), sensitivity (SEN), and specificity (SPE) were used. 

We compared the proposed method with (1) feature selection based methods, i.e., Fisher 

Score (FS) [2], and Lasso [13], and (2) MKL based methods, i.e., the method of Zhang et al. 
in [16], and ℓ1-MKL [10]. In the Lasso method, the logistic loss [2] was used. The method in 

[16] represented each modality with a base kernel and further learned a linearly-combined 

kernel with cross validation. For FS, Lasso and the method in [16], the linear SVM 

implemented in LibSVM software3 was used as the classifier. For all methods, we used t-test 

[2] thresholded by p-value as a feature pre-selection step to reduce feature size and improve 

computational efficiency. The commonly used p-value < 0.05 was applied for MRI and PET. 

Considering the large number of SNP features, we selected the p-value from {0.05, 0.02, 

0.01}. Therefore, t-test-SVM that combined t-test and SVM was designed for comparison 

with the same p-value setting as well. For our proposed model, ℓ1-MKL and Zhang’s 

method, to avoid further kernel parameter selection, each kernel matrix was defined as a 

linear kernel on a single feature. Furthermore, we simply assumed no knowledge on both 

feature and group weights and thus we set γ = 1 and β = 1. The soft margin parameter C was 

selected with grid search from {2−5, 2−4, ···, 25}.

1http://adni.loni.usc.edu.
2http://www.alzgene.org.
3https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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3.3 Results and Discussions

The classification results of AD vs. NC and MCI vs. NC using all the three modalities are 

listed in Table 1. By taking advantage of the structured feature learning in kernel space, the 

proposed method outperforms all competing methods in classification rate. For AD vs. NC 

classification, our method achieves an ACC of 96.1 % with an improvement of 2.1 % over 

the best performance of other methods. Meanwhile, the standard variance of the proposed 

method is also lower, demonstrating the stability of the proposed method. For classifying 

MCI from NC, the improvements by the proposed method is 2.4 % in terms of ACC. In 

comparison with t-test-SVM, we obtained 4.2 % and 7.6 % improvements in terms of ACC 

for classifying AD and MCI from NC, respectively. Similar results are obtained for the 

classification of AD and MCI, which has not listed in Table 1 due to space limit. For 

example, the ACC of Lasso-SVM, ℓ1-MKL and our method are 70.3 ± 1.5 %, 73.0 ± 1.6 %, 

and 76.9 ± 1.4 %, respectively. In summary, these results show the improved classification 

performance by our method.

To further investigate the benefit of SNP data and multimodality fusion, in Table 2 we 

illustrate the performance of the proposed method w.r.t different modality combinations. 

First of all, the performance of any single modality is much lower than that of their 

combinations. Among the three modalities, the SNP data shows the lowest performance. 

However, when combined with other modalities, genetic data can obviously help improve 

predictions. For example, in AD and NC classification, the performances using MRI+SNP 

and PET+SNP demonstrate 2.7 % and 5.7 % improvements in terms of ACC over the cases 

of only using MRI and PET, respectively; the improvement with MRI+PET+SNP over that 

with MRI+PET is 3.8 %. Similar results are obtained for MCI vs. NC.

The most selected brain regions and SNPs in our algorithm can also be the potential 

biomarkers used in clinical diagnosis. In MRI, hippocampal formation and uncus in 

parahippocampal gyrus are recognized in both AD vs. NC and MCI vs. NC classifications, 

as well as multiple temporal gyrus regions. This is in line with the findings of the most 

affected regions in AD in previous neuro-studies [3,8,16,18]. Amygdala, one of the 

subcortical regions, is the integrative center for emotions, is also identified as AD. In PET, 

angular gyri, precuneus, and entorhinal cortices are the regions identified, which are also 

among the altered regions in AD reported in prior studies [16,18]. As to the genetic 

information, the most selected SNPs for AD and NC classification are from APOE gene, 

VEGFA gene, and SORCS1 gene. For MCI prediction, the most selected SNPs are from 

KCNMA1 gene, APOE gene, VEGFA gene and CTNNA3 gene. Generally, our results are 

consistent with the existing results [11,17]. For instance, APOE and SORCS1 genes are the 

well-known top candidate genes related to AD and MCI [11]. VEGFA, the expression of 

vascular endothelial growth factor, represents a potential mechanism where vascular and AD 

pathologies are related [1].

4 Conclusion

We developed a kernel-based multimodal feature selection and integration method, and 

further applied it on imaging and genetic data for AD diagnosis. Instead of independently 

selecting features from each modality and then combining them together [16] or performing 
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most relevant modality selection [8,14], we integrated the multimodal feature selection and 

combination in a novel structured sparsity regularized kernel learning framework. A block 

coordinate descent algorithm was derived to solve our general ℓ1,p (p ≥ 1) constrained non-

smooth objective function. Comparisons by various experiments have shown better AD 

diagnosis performance by our proposed method. In future work, we will incorporate prior 

knowledge about feature/group importance into the proposed framework.
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Fig. 1. 
Schematic illustration of our proposed framework (a), and different sparsity patterns (b) 

produced by lasso (ℓ1 norm), group lasso (ℓ2,1 norm) and the proposed structured sparsity (ℓ1,p 

norm, p > 1). Darker color in (b) indicates larger weights.
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