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Animal development is orchestrated by spatio-temporal gene expression

programmes that drive precise lineage commitment, proliferation and

migration events at the single-cell level, collectively leading to large-scale

morphological change and functional specification in the whole organism.

Efforts over decades have uncovered two ‘seemingly contradictory’ mechan-

isms in gene regulation governing these intricate processes: (i) stochasticity

at individual gene regulatory steps in single cells and (ii) highly coordinated

gene expression dynamics in the embryo. Here we discuss how these two

layers of regulation arise from the molecular and the systems level, and how

they might interplay to determine cell fate and to control the complex body

plan. We also review recent technological advancements that enable quantitat-

ive analysis of gene regulation dynamics at single-cell, single-molecule

resolution. These approaches outline next-generation experiments to decipher

general principles bridging gaps between molecular dynamics in single cells

and robust gene regulations in the embryo.
1. Introduction
The development of a multicellular organism from a zygote takes place following

a well-defined genetic blueprint. In the past decades, extensive studies based on a

combination of biochemical, cell biological, genetic and genomic approaches

have systemically characterized genetic players controlling development [1–3].

Collectively, these studies have depicted a static gene regulatory network

(GRN) that governs diverse cellular behaviours such as cell proliferation, cell

fate determination and morphological movements during animal development

[4–7]. However, these conventional cell population-based endpoint assays were

unable to reveal the spatio-temporal dynamics or the three-dimensional (3D)

architecture of molecular systems operating in single live cells that eventually

give rise to precise gene regulation during embryogenesis. Recent development

of a set of advanced imaging tools for single-cell, single-molecule analysis have

opened up exciting new opportunities to address these questions [8–11]. Here,

we will first discuss the molecular origin of gene expression stochasticity and

dynamics, and how these properties are harnessed at the systems level to control

distinct cellular functions and developmental events. We will also review recent

technological advances and pinpoint emerging directions for applying these

new methods to decode gene regulation at different levels.
2. Stochasticity in gene regulation
Fundamental gene regulation steps such as transcription and translation are inher-

ently stochastic processes. The stochasticity originates from intrinsic randomness of

molecular dynamics and interactions in a living cell. The inherent stochasticity is

largely averaged out by an increased number of mRNA or protein molecules

within the reactant pool; nonetheless, under many circumstances it could propagate

through the GRN and influence the functioning of genetic circuits, sometimes

leading to the variability of cellular phenotypes during developmental processes.
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Figure 1. Single-molecule imaging reveals profound stochasticity in fundamental gene regulatory steps. (a) MS2 system used for imaging transcriptional bursting.
A cassette of MS2 repeats was inserted into 30 UTR of the gene of interest. When transcribed, the MS2 sequence forms stem loops that are bound by the fluorescent
coat protein MCP-GFP. Yellow asterisk indicates the genomic locus of the labelled gene under transcription. (b) SunTag system used for imaging translational
bursting. A reporter gene fused with a DNA fragment encoding 24 SunTag peptides is introduced into the cell, along with a second construct expressing a
GFP-tagged single-chain intracellular antibody (scFv-GFP) that binds to the SunTag peptide with high affinity. In parallel, the transcribed mRNA molecules are
labelled with the PP7 system (PP7-mCh-CAAX), which is fused to the mCherry fluorescent protein and also incorporates a plasma membrane-tethering domain
(CAAX). Asterisks mark single mRNA molecules that are undergoing translation (yellow) or not (blue). (c) Fast three-dimensional tracking of TF movement by
simultaneous multifocus microscopy (MFM). The displacement of moving single molecules is plotted as a histogram. (d ) Live-cell two-dimensional single-molecule
tracking reveals Pol II clusters (Dendra 2-Pol II, left) and Sox2 enhancer clusters (Sox2-Halo, right). The colour map marks local density. All scale bars, 2 mm.
With permission, (b) is modified from reference [17], (c) is modified from [8] and (d ) is modified from [18].
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2.1. Transcriptional and translational bursting
As the first step of gene regulation, transcription is shown to

be a highly dynamic and stochastic event. The first evidence

came from single-molecule fluorescent in situ hybridiza-

tion (smFISH) experiments. smFISH allows quantification

of mRNA molecules within a single cell, revealing extensive

variation of mRNA copy numbers in individual cells both

in culture and in tissues [12–14]. By using an MS2 or PP7

live-cell RNA labelling system, it is feasible to image tran-

scription at single-molecule resolution and in real time

[15,16]. These experiments uncover drastic characteristics of

eukaryotic transcription whereby the production of new

mRNA molecules from a gene occurs in a bursting manner

(figure 1a) [19,20]. The bursting kinetics can be roughly

described by two parameters—bursting size and frequency.

The statistics of these two parameters are speculated to be regu-

lated by different components of the transcription machinery

such as transcription factor concentration, enhancer–promoter

architecture, epigenetic environment, gene positioning and

chromatin remodelling [21]. Most developmental regulators

are thought to be transcribed in bursting kinetics [22]. Using

the MS2 system, both Garcia et al. [23] and Lucas et al. [24]

investigated the activation of the gap gene Hunchback by the

gradient of the Bicoid protein in Drosophila embryo. They

have both identified strongly induced bursting in the cells at

the anterior pole but quite stochastic switching in those cells

at the posterior pole [23,24]. In addition, Nanog, which safe-

guards embryonic stem (ES) cell ground state, shows drastic
transcription bursting kinetics in mouse ES cells [25]. More

interestingly, the frequency and duration of Nanog transcrip-

tion bursts can be altered by switching cells from serum to 2i

culture condition.

Protein translation from mRNAs also occurs in a bursting

fashion. Several independent studies have recently demon-

strated imaging of this fundamental biological process at

the single-mRNA level in mammalian cells (figure 1b)

[17,26–29]. Specifically, they labelled the mRNA transcript

by using an MS2 or PP7 system and in parallel engineered

the transcript to express a set of ‘SunTag’ [30] or ‘spaghetti-

monster’ epitopes [31] that recruit multiple copies of

fluorescent protein to monitor the production of the nascent

protein. An interesting consensus from these studies is that

different mRNA molecules within the same cell are translated

at heterogeneous rates, suggesting that, at the single mRNA

level, translation is a stochastic process.
2.2. Molecular dynamics underlying stochasticity
The stochasticity of gene expression originates from intrinsic

randomness of molecular dynamics in living cells. Boiled

down to the bottom, biochemical reactions involved in gene

regulation, such as transcription, translation, epigene-

tic regulation and protein degradation, are all driven by a

complex cascade of dynamic molecular interactions at

the single-molecule level that usually involve multistep

complex assembly and extensive interactions between protein
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and nucleic acids. Traditional experimental approaches for

studying gene regulation mostly rely on measuring average

mRNA or protein concentrations from a mixed cell population

at a given time point, thereby lacking the ability to probe these

dynamic events in living cells with high spatio-temporal

resolution [32,33]. Rapid development of live-cell labelling

chemistry and fast high-resolution imaging platforms provide

unique opportunities to elucidate the physical reality of bio-

chemical reactions in living cells [34–36]. Gebhardt et al.
developed reflected light-sheet microscopy and firstly achieved

single-molecule imaging of transcription factor (TF) binding to

DNA in live mammalian cells [37]. This work was followed by

Morisaki et al., who performed single-molecule imaging of

HaloTag-tetramethylrhodamine (TMR)-labelled p53 and the

glucocorticoid receptor [38]. Recently, Chen et al. developed a

single-cell, single-molecule approach to image the binding of

pluripotency factors (Oct4 and Sox2) onto target DNA and

found that TF target search occurs following a trial-and-error

sampling mechanism (figure 1c) [8]. Specifically, the binding

between TF and enhancer was randomly interspersed by

many rounds of non-specific TF–chromatin collision events.

Statistically, the distribution of Sox2 residence times can be

fitted by a two-component exponential decay model, in

which the long-lived group corresponds to specific DNA-bind-

ing events, while the other group reflects non-specific binding,

consistent with the results from imaging of early mouse

embryos by photoactivatable fluorescence correlation spec-

troscopy (FCS) [39,40]. An important revelation from these

results is that although individual TF–DNA-binding events

are stochastic and nondeterministic, the overall statistics of

TF–DNA binding dynamics (such as target site sampling

frequency and average residence time) are highly sensitive to

TF concentrations in the nucleus and the biophysical properties

of the TF–DNA interaction.

Another emerging notion derived from recent single-cell

studies is that the mammalian cell nucleus is highly compart-

mentalized, comprising heterogeneous function domains. For

example, single-molecule imaging studies show that Sox2

target-binding sites form three-dimensional clusters that are

spatially segregated from heterochromatic regions in single

live ES cells [18]. More interestingly, the local diffusion and

binding kinetics of Sox2 are differentially regulated within

these clusters. Specifically, the Sox2 bound fraction is sub-

stantially increased inside clusters, consistent with higher

local open chromatin concentrations and shorter three-

dimensional diffusion times (t3D) between stable binding

events. The shortened t3D might provide a greater opportu-

nity for recycling pre-assembled TF complexes and taking

advantage of cooperative interactions between TFs on chro-

matin. Interestingly, these studies also suggest that even

subtle changes in the position of target genes within individ-

ual clusters can lead to alterations in local target search

features. For example, gene targets at the centre of the cluster

can capitalize on different target search features relative to

genes in the periphery of clusters. Thus, the local TF target

search mode may be exquisitely modulated within distinct

subnuclear environments and serve as an important mechan-

ism for fine-tuning the rates of TF complex assembly at

specific cis-regulatory elements. Complementary to these

findings, Cisse et al. demonstrated that RNA polymerase II

form diffract-limited, short-lived clusters in the live-cell

nucleus [41]. It was further shown that the appearance of

Pol II clusters predicts transcription bursting sites in living
cells [42]. Extensive biochemical experiments established

that binding of sequence-specific activators such as Sox2 to

cis-regulatory elements precedes the Pol II transcription [6].

An emerging concept from many recent studies suggests

that weak protein–protein interactions mediated by low

complex (LC) domains are critical for dynamic molecular

clustering [43]. Based on the fact that Sox2 stable binding-

site clusters are extensively co-localized with Pol II clusters

in the cell (figure 1d ), it is tempting to speculate that these

Sox2-enhancer clusters could serve as multivalent docking

sites for dynamic recruitment of general transcription factors

via weak protein–protein interactions. Such ‘clouds’ of weak

multivalent protein–protein interactions would act as seeds

triggering dynamic Pol II clustering and eventually lead to

transcriptional bursting.

Collectively, these results suggest that molecular dynamics

and architecture inside living cells serve as foundational mech-

anisms to generate and shape gene expression dynamics and

stochasticity. With the rapid development of next-generation

multicolour imaging modalities and new labelling strategies,

it is important to further investigate how the three-dimensional

genome organization specifically influences gene activity, and

what gene products and mechanisms underlie the formation of

these functional compartments in the nucleus.
3. Coupling stochasticity and dynamics
in gene expression

The stochastic effects from fundamental steps of gene regulation

will impinge and add onto the dynamic pattern of gene

expression, resulting in temporal variation with stochastic

fluctuations. The stochastic fluctuation, termed ‘gene noise’,

occurs universally in microbial, single-cell eukaryotes and

multicellular organisms that have developmental processes.

3.1. Gene expression noise originates from bursting
How does bursting contribute to gene expression noise?

Pedraza & Paulsson presented a theoretical framework of the

general quantitative relationship between bursting and gene

expression noise [44]. Their analysis suggests that the random

signals generated in one gene regulatory step have a deter-

ministic effect on the following steps. Mathematically, the

stochasticity originated from each regulatory step propaga-

tes within the GRN and is dampened by a coarse-grained

time-averaging factor. This analysis together with a number

of following studies pinpoint three important properties of

dynamic and stochastic gene expression [14,21,33]: (i) gene

expression noise originates from intrinsic stochasticity of regu-

latory steps such as transcriptional and translational bursts;

(ii) noise can propagate through the GRN and spread to con-

nected regulatory steps; and (iii) noise is averaged out after

each signal amplification step by increasingly higher copy

numbers of reactants, such as mRNA and protein molecules.

3.2. Gene regulatory network structure modulates gene
expression noise

Gene expression noise is regulated by GRN structure (figure 2).

For example, the negative feedback loop can potently dampen

gene expression noise, which might be necessary for precise
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control of gene expression levels [54–56]. This was first demon-

strated by a synthetic auto-inhibitory reporter [45], but was

later shown to exist in a variety of naturally evolved systems.

One example is a developmental patterning gene snail in

Drosophila embryo, which negatively autoregulates its own

promoter and thereby maintains stable gene expression upon

induction [56]. On the contrary, positive autoregulation ampli-

fies noise [57,58]. Besides feedback loops by transcription

control, microRNA-mediated incoherent feedforward loop

has the capability of effectively reducing noise in parallel

with fine-tuning protein levels [59]. Interestingly, theoretical

analysis predicted that the noise buffering function depends
on the inhibitory strength of microRNA and a moderate

strength has optimal noise-reducing ability, yet these

predictions remain to be validated experimentally.

Gene expression noise could also be beneficial under certain

circumstances and thus does not always have to be suppressed.

A recent study on NF-kB dynamics uncovered that the intrinsic

noise within the GRN enhances the robustness of NF-kB oscil-

lation in response to periodic tumour necrosis factor (TNF)

signals. Specifically, the frequency variations of the NF-kB oscil-

lation poise the cell population to respond to a broad range

of dynamic stimuli, leading to efficient gene expression in

dynamically changing environments [60].
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3.3. Other factors that regulate gene expression noise
In parallel to GRN-mediated regulations, cells have

evolved other mechanisms to control gene expression noise.

For example, epigenetic modifications regulate noise through

direct modulation of transcriptional bursting. Specifically,

DNA methylation and histone deacetylation have been demon-

strated to act as noise repressor, whereas histone acetylation

does the opposite [61,62]. Interestingly, cellular compartmenta-

lization was recentlyshown to function as a transcriptional noise

filter through spatial partitioning of molecules in and out of the

nucleus [63,64]. The nuclear retention of most transcripts is

about twenty minutes, which is a similar time to scale transcrip-

tion bursting or mRNA degradation and thus can efficiently

average out the stochasticity of mRNA concentration by a

factor of three to four [64]. The cost of this passive filtering is

the loss of specificity in the spatial and temporal domains, yet

it provides a general means of noise reduction for all the tran-

scripts produced. Moreover, this interesting mechanism might

have general implications in the evolutionary advantage of

sophisticated cellular organizations in higher eukaryotes.
4. Gene expression dynamics at the
systems level

Countless gene regulatory events take place within a single

mammalian cell, driving dynamic expression of thousands of

genes. The products of these genes functionally interact with

each other in real time via feedback loops (figure 2), forming

a number of interconnected circuits within the whole GRN net-

work [3,65].

4.1. Gene regulatory network structure determines
gene expression dynamics

From a physicist’s point of view, if we know the kinetic par-

ameters describing each regulatory event and the topological

structure of the GRN, we should be able to formulate a set of

differential equations to quantitatively describe the expression

dynamics of any gene within the network. The variable for

each equation corresponds to the expression of a particular

gene as the function of time. The solution for each equation

represents the thermodynamic evolution for a single gene pro-

duct, and the solutions for the whole set of equations should

describe the dynamic motion of the entire system. Depending

on the parameter space, dynamic systems formulated by differ-

ential equations are able to generate diverse and interesting

behaviours such as adaptive response, pulse, bistability,

oscillation and chaos (figure 2) [49,50,66]. Meanwhile, the

‘one-to-one’ relationship between equations and solutions

suggests that understanding GRN functionality requires

precise measurement of gene expression over time.

4.2. Gene regulatory network shapes temporal
dynamics

The relationship between gene expression dynamics and the

GRN topological structure has been studied for over a decade

by both ‘top-down’ network analysis and ‘bottom-up’ network

engineering [3,65,67]. One emerging property in the GRN is the

prevalence of bistability in the system (figure 2). Generally
speaking, bistability means that the output of a system has

two stable equilibrium states. Bistability is critical for biological

systems, because it is required for generating digital and switch-

like behaviours such as cell fate determination. Gardner et al.
first built up a simple gene circuit comprising mutual transcrip-

tional repression and showed that this genetic toggle switch can

robustly generate bistability in gene expression [46]. Bistability

also exists in natural systems. For example, the autoregulation

of E2F transcriptional factor coupled with its ultrafast sequestra-

tion by the Rb protein generates bistability, dictating the switch

of cell cycle between quiescence and proliferation [32].

Another dynamic feature in the GRN is oscillation, which is

important for regulating periodic cellular processes such as cell

cycle and circadian rhythm [49,68–70]. Although a two-node

module, such as mutual repression with time delay, is able to

generate damped oscillation, a three-node module is the mini-

mum set-up for robust oscillation cycles (figure 2) [49]. Rust

et al. probed the origin of circadian oscillation in cyanobacteria,

and found that a small network comprising coupled positive

and negative feedback loops maintains synchronized oscil-

lation per day for several weeks [70]. Interestingly, several

oscillation circuits can be coupled with each other to execute

more complex regulations [71]. The GRNs governing mamma-

lian circadian oscillation and the cell cycle could be even more

intricate in terms of the number of genes and the degree of

feedback/feedforward loops involved.

In higher eukaryotes, the integration of epigenetic regula-

tions into the GRN provides more controls to gene expression

dynamics. For example, Bintu et al. found that distinct types of

epigenetic modifications, such as DNA methylation, histone

deacetylation and histone methylation, have different effects in

shaping gene expression dynamics [72]. Specifically, although

all these modifications lead to transcriptional repression, they

work at different time scales and thereby generate distinct

temporal kinetics of epigenetic memory.
4.3. Gene regulatory network orchestrates spatio-
temporal dynamics

The cell positional information has to be taken into account as a

parameter for modelling gene expression during animal devel-

opment, particularly for the case dealing with spatio-temporal

distribution of morphogens. In this scenario, the dynamic

evolution of a system can be formulated by a set of partial

differential equations, which describe the variation of variables

as a function of both time and space. The GRNs represented

by partial differential equations are capable of generating mol-

ecular gradients within three-dimensional space (figure 2).

For example, Cao et al. explored a synthetic circuit that forms

self-organized core-ring patterns and showed that the ring

width scales with the colony size, suggesting a self-

controlled scaling mechanism dictated by the GRN structure

[73]. In cultured mammalian cells, Sorre et al. monitored

the expression dynamics of Smad4 protein as well as the

transcriptional activity of Smad3 at the single-cell level to

investigate the response of the GRN to different types of

ligand stimuli [74]. Their results suggested that a TGF-b-

mediated GRN responds to ligand stimuli in an adaptive

mode. Specifically, high-frequency pulsed stimulations result

in higher output than that from a mono-phase, sustained

input, which serves as a mechanism for accelerating cell fate

decision by morphogen gradients.



rsob.royalsocietypublishing.org
Open

Biol.7:170030

6
5. Shaping developmental processes by
stochastic and dynamic gene expression

Animal development is a highly regulated spatio-temporal

process in which cells undergo lineage commitment, pro-

liferation and migration, giving rise to patterned tissues and

organs. The amplification of cell number is accompanied by

increasingly more complex organization and patterning of

different cell lineages. Although the whole developmental

process is regulated by numerous genes, a specific event may

only heavily rely on a couple of regulators, consistent with a

hierarchical topology of the developmental GRN [1,75].

5.1. Cell fate plasticity
The intrinsic stochasticity of gene regulatory events results in

heterogeneous gene expression in single cells. This is not

always deleterious and could be very useful for generating a

repertoire of cells with plastic identities. The cell fate plasticity

has been extensively studied by emerging single-cell transcrip-

tome profiling technology (reviewed in [76–78]). By using

a single-cell droplet-barcoding RNA sequencing approach,

Klein et al. revealed that when the leukaemia inhibitory factor

(LIF) was withdrawn from the culture medium, ES cells follow

highly heterogeneous differentiation processes, indicated by

clustered gene expression profiles in high-dimensional space

[79]. Interestingly, in a small fraction of cells, pluripotent factors

maintain high expression levels and epiblast markers do not

appear until 7 days after LIF withdrawal. Single-cell heterogen-

eity was also investigated during haematopoiesis. By labelling

and sequencing of individual haematopoietic progenitor cells,

Perie et al. and Paul et al. showed that haematopoietic stem

cells are not an equipotent, self-renewing pool but are a mixed

population with differentiation bias towards various lineages

[80,81]. The heterogeneity in gene expression among cells

provides a ‘bet-hedging’ strategy that can prime pluripotent or

multipotent stem cells to rapidly respond to a range of develop-

mental cues. In addition to its role in cell fate plasticity, this

strategy has also be shown to be important for facilitating

bacteria to adapt to different growth environments for the

purpose of survival [82].

5.2. Cell fate decision
Although noise generates cell fate plasticity within a cell

population, a committed cell has one unique trajectory for

gene expression and differentiation. Therefore, measuring

expression dynamics of master cell fate regulators (such as

TFs) would provide valuable information regarding how the

GRN regulates cell fate decision. For example, combining

network analysis and the measurement of E2F transcription

dynamics at the single-cell level, Dong et al. uncovered that

the network structure modulates E2F dynamics to generate

bistability for coordinating two distinct functions—the control

of the probability of cell-cycle entry by Myc and the control of

cell-cycle pace by G1 cyclin/cyclin-dependent kinases (CDKs)

(figure 2) [32]. This research highlights the fact that a naturally

evolved system might have complex GRN structure to achieve

multitask control of cellular processes. On the other hand, this

study also addressed the question about how cell-cycle length

is controlled, opening new opportunities for studying the

relationship between cell cycle and lineage commitment.
One hallmark of cell differentiation is the increase of

cell-cycle length, in particular the G1 phase [83,84]. For

example, in the mouse nervous system, cell-cycle length in

the ventricular zone increases from 8 h at the onset of neuro-

genesis to up to 18 h at the end [85]. Conversely,

overexpression of G1 cyclin/CDKs or loss of CDK inhibitors,

such as p27, shortens cell-cycle pace and impairs neurogen-

esis [86–88]. These findings suggest that the complex cell

fate decision during differentiation is likely to be a synergistic

effect from a GRN controlled by master cell-fate and cell-cycle

regulators. As a result, measurement of the dynamics of

lineage-specific TFs at different cell-cycle stages might

provide key insight into understanding the cell fate decision

process. Indeed, Kueh et al. measured the expression

dynamics of PU.1 during myeloid differentiation and found

that, in individual cells, the accumulation rate of this central

regulator remains constant, while its final concentration

varies according to the cell-cycle length [89]. Mathematical

modelling revealed that the overall GRN comprising PU.1

and the cell-cycle network allows the system to switch

between one undifferentiated state and two alternative differ-

entiated states. This study exemplifies an avenue for studying

similar types of questions.

5.3. Developmental patterning
GRNs that regulate morphogenesis have much more complex

structures, which include not only regulators of cell division

and fate but also components governing intercellular com-

munication, such as Wnt, TGF-b superfamily, Notch, FGF

and Hedgehog pathways [2,3,90]. The interconnected net-

work topology are able to coordinate dynamic expression

of a cohort of intracellular proteins, as well as some small

secretory ligands that diffuse within three-dimensional

space to control the patterning of different tissues. For

example, during Drosophila embryo development, the Bicoid

protein molecules are synthesized at the anterior pole and

diffuse along the embryo axis, forming an exponentially

decreased gradient [91]. This gradient then triggers compart-

mentalization for four target gap genes that establish the

initial body segmentation. Although the Bicoid gradient

was demonstrated to be essential, one important unsettled

issue in this field is whether the Bicoid gradient alone is

able to generate the pattern with such stunning precision,

or whether it requires additional regulations, regarding the

inevitable stochasticity in gene expression. Through math-

ematical modelling of the GRN, Manu et al. suggested that

the cross-talk among gap genes is sufficient to reduce the pat-

terning variance, though this prediction needs to be validated

by more experiments [92,93].

Apart from morphogen gradient-dependent control, a few

patterns such as rings or stripes can also be shaped within

three-dimensional space by specific GRN structures. One

well-studied example is the Turing model [94,95]. This model

considers a reaction–diffusion mechanism in a simple GRN

of two nodes—A and B. A diffuses slowly and produces B,

whereas B diffuses rapidly but inhibits A (figure 2). Thereby,

as the process initializes, the fast-diffusing B suppresses A at

its surrounding regions, resulting in the spontaneous

formation of rings and strips along the diffusion axis. The

Turing model-defined structure has been identified in many

developmental GRNs. For example, during murine hair follicle

formation, the Wnt ligand was shown to serve as a short-range
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activator and the Dkk protein as a long-range inhibitor. The

dynamic interplay between this pair of genes thus fits the

Turing model and was indicated to determine the hair follicle

spacing [51]. Another example is in mesendoderm formation,

where a module comprising Nodal and its antagonist Lefty

was speculated to function in a similar way to define the

mesendoderm territory and to prevent its expansion into the

ectoderm [2,52].

Differing from the reaction–diffusion Turing mechanism,

the Notch-Delta GRN regulates multicellular patterning

via direct cell to cell contacts [53,96]. Specifically, the Delta

ligand trans-activates Notch in neighbouring cells, while

cis-inhibiting Notch in its own cells through different confi-

gurations of molecular interactions. Mathematical modelling

of the GRN suggested that the network is able to generate

mutual-inactivation dynamics between Notch and Delta in

the same cell, leading to an ultrasensitive switch between

mutually exclusive signal sending (high Delta/low Notch)

and receiving (low Delta/high Notch) states [53]. This

mutual inactivation can amplify small differences in ligand

concentration among neighbouring cells and facilitate cell

fate decision and pattern formation.
6. Advances in imaging technology for
probing dynamic and stochastic gene
expression

6.1. Imaging molecular dynamics in gene regulation
Modelling and analysing different GRNs underlying develop-

mental control are limited by the precision of constructed

transfer functions which describe the input–output relation-

ship of fundamental gene regulatory steps, such as

transcription and translation. However, great challenges exist

for increasing precision, because every step dictates a complex

cascade of dynamic molecular interactions. For example, a

single transcription step includes the binding of TFs onto

enhancers or promoters, the assembly of pre-initiation com-

plex, elongation and termination in parallel with chromatin

remodelling events such as nucleosome remodelling and

epigenetic modifications [97]. Moreover, components in this

machinery work with high-order cooperativities, bringing in

more complexity for determining the physical nature of these

biochemical reactions [98]. Conventional approaches such as

biochemistry and structural biology provide little information

about in vivo kinetics and stochasticity, and thus cannot resolve

this layer of regulation, whereas imaging provides a unique

opportunity by directly observing these dynamic processes

in real time. Recent improvements in chemical dyes and

fast high-resolution imaging platforms have allowed the

direct labelling of single molecules and the tracking of their

binding, dissociation and diffusion dynamics in live cells

[11,34,99,100]. For example, we can directly image the binding

of a TF or other DNA-binding protein at its genomic

cis-regulatory elements and calculate its resident time [8,101].

Moreover, improved aberration-corrected multi-focus micro-

scopy (MFM) can generate an instant stack of images from

nine focal planes, opening an avenue for high-resolution

three-dimensional imaging of single-molecule dynamics

in real time [36]. Importantly, the newly developed state-

of-the-art lattice light sheet scope enables the painting of a
three-dimensional molecular interaction density map of TF

within a single cell (figure 3a) [18,35]. These emerging

techniques for non-invasive high-resolution imaging thereby

provide us with effective tools for accurately measuring

spatio-temporal dynamics of molecular systems in live cells

at the single-molecule level.

6.2. Imaging gene expression heterogeneity within cell
population

Several imaging techniques have been developed recently for

measuring gene expression heterogeneity within a hetero-

geneous cell population or a tissue. One promising approach

is smFISH, which can quantitatively determine the number of

RNA molecules in individual cells. This approach has been con-

tinuously optimized with probe barcoding and sequential

hybridization to enable multiplexed quantitative profiling of

hundreds of genes at the single-cell level (figure 3b) [13,102].

It has been applied for analysing embryonic stem cell pool

as well as three-dimensional mouse hippocampus, revealing

novel cell identities within different regions of the tissue

[62,104]. Recently, this technique was improved for cell lineage

tracing. The principle is to create barcoded recording sequences

that can be integrated into the genome and altered by CRISPR/

Cas9-targeting mutagenesis during cell division. Finally, the

lineage information will be read out from altered recording

sequences through multiplexed RNA smFISH [105]. However,

the smFISH experiment can only be performed on fixed

samples, limiting its ability for resolving the information of

gene expression at the temporal scale.

6.3. Imaging gene expression dynamics at the single-
cell level

At the systems level, monitoring gene expression dynamics

over time at single-cell resolution is critical to understanding

cell fate decision and the functionality of the GRN. One

common strategy to achieve this goal is via long-term imaging

of cultured live cells with integrated fluorescence biosensors

[106]. Recent technological advances from several aspects

have greatly expanded the application of this approach, in par-

ticular for mammalian cells. The first advance comes from the

design and generation of biosensors. Depending on the layer of

dynamics chosen for monitoring, a cassette of fluorescence

protein coding sequence can be placed downstream from pro-

moters for detecting transcriptional dynamics, or directly fused

to the protein of interest for capturing protein concentration

dynamics [107]. In other cases, fluorescence resonance energy

transfer (FRET) biosensors with phosphorylation-responsive

elements have been used for probing the activity of protein

kinases [108]. A remarkable improvement was made by

Regot et al., who engineered the responsive domain of kinase

substrate to convert phosphorylation into localization changes,

providing a general approach for rapidly generating reporters

for protein kinase activities [109]. Moreover, the development

of revolutionary CRISPR/Cas9 genome editing tools have

enabled efficient construction of reporter cell lines with

knock-in alleles that can faithfully reflect gene regulation

within the native chromatin [110,111]. The second advance

comes from the improvement of imaging platforms. Although

the wide-field epi-illumination scope is still sufficient for

recording intensity-based dynamic signals, more advanced
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Figure 3. Imaging technology for probing dynamic and stochastic gene expression. (a) Imaging of the 3D Sox2 cluster by using a lattice light sheet scope. Left
panel, photograph of an assembled lattice light sheet scope; right panel, three-dimensional density map of a Sox2 cluster in a single ES cell nucleus. (b) Composite
four-colour FISH data from three rounds of hybridizations on multiple yeast cells. Genes are encoded by multiple rounds of hybridization using different probe sets.
The boxed regions are magnified in the bottom right corner of each image. Spots co-localizing between hybridizations are detected and have their barcodes
extracted. Spots without co-localization are attributed to non-specific binding. Scale bar, 5 mm. (c) Three-dimensional raw image projection (up) of zebrafish
embryos (6 h post fertilization) expressing fluorescent markers labelling all membranes and segmentation results of sliced embryo (bottom). Scale bar,
50 mm. Panel (a) is modified from reference [18,35], (b) is adapted from [102] and (c) is modified from [103], with permission.
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platforms such as the wide-pinhole confocal microscope, light-

sheet microscope, two-photon microscope and adaptive optics

are available for imaging more challenging samples and can

generate images with increased resolution and volumes

[106,112]. One of the breakthroughs in live imaging during

the past decade is the development of state-of-the-art light-

sheet microscopy platforms for imaging the developmental

process of whole embryo at high spatio-temporal resolution

for long periods of time (figure 3c) [10,100,113].

One emerging challenge accompanying the advancements

in microscopy is that the ‘big data’ acquired by these high-

resolution, fast-imaging platforms require convenient and effi-

cient computational tools for data storage, management and

imaging analysis. Many open-source or commercial software

programs are currently available to address specific imaging

analysis steps such as cell segmentation, tracking, signal

quantification and clustering [103,114,115]; however, none of

these programs can provide a complete set of solutions. The

automation of certain steps, in particular cell tracking, remains

an intimidating challenge because of the difficulties in tracking

fast-moving cells or identifying cells with dramatic morpho-

logical change during cell division. A bright future in the

field will be to integrate automated imaging platforms,

programmable microfluidic-guided cell sorting and endpoint

single-cell genomic sequencing techniques to probe gene
regulation at the single-cell level with both temporal dynamics

and whole-genome coverage.
7. Concluding remarks
Over the past decades, extensive genetic and biochemical studies

have mapped out complex pathways and interactions that con-

nect individual regulatory elements to a hierarchical GRN.

However, a central remaining question is how the GRN operates

in living systems, eventually giving rise to the precisely ordered

execution of developmental programmes. To address this pro-

blem, we need to understand dynamic gene regulation at both

molecular and systems levels. On the one hand, dissecting mol-

ecular dynamics at the single-molecule level will uncover the

biophysical principles governing fundamental gene regulatory

processes. Specifically, this may lead to the delineation of exact

roles of each gene regulatory layers, including site-specific

TFs, epigenetic regulators, housekeeping transcription machin-

ery and the three-dimensional chromatin architecture. On

the other hand, measuring gene expression dynamics at the

single-cell level will reveal the information processing frame-

work underlying the GRN. This may not only delineate the

control logic underlying different core GRN structures govern-

ing cell fate determination and tissue morphogenesis, but also
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might uncover the overall organizing principles that coordinate

the transition through different developmental stages. Finally,

mathematical modelling will integrate the knowledge gathered

from different perspectives to reconstruct a quantitative and

comprehensive view of how gene regulation orchestrates the

spatio-temporal choreography of development.
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