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In areas approaching malaria elimination, human mobility
patterns are important in determining the proportion of malaria
cases that are imported or the result of low-level, endemic
transmission. A convenience sample of participants enrolled
in a longitudinal cohort study in the catchment area of Macha
Hospital in Choma District, Southern Province, Zambia, was
selected to carry a GPS data logger for one month from October
2013 to August 2014. Density maps and activity space plots
were created to evaluate seasonal movement patterns. Time
spent outside the household compound during anopheline
biting times, and time spent in malaria high- and low-
risk areas, were calculated. There was evidence of seasonal
movement patterns, with increased long-distance movement
during the dry season. A median of 10.6% (interquartile range
(IQR): 5.8–23.8) of time was spent away from the household,
which decreased during anopheline biting times to 5.6% (IQR:
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1.7–14.9). The per cent of time spent in malaria high-risk areas for participants residing in high-risk
areas ranged from 83.2% to 100%, but ranged from only 0.0% to 36.7% for participants residing in
low-risk areas. Interventions targeted at the household may be more effective because of restricted
movement during the rainy season, with limited movement between high- and low-risk areas.

1. Background
Host population movement is known to contribute to the transmission of infectious diseases [1–3].
The spatial dependency and heterogeneity of infectious diseases make pathogens susceptible to spread
via population movement. Transmission of vector-borne diseases is particularly heterogeneous [3–5].
For mosquito-borne diseases, specifically malaria, this heterogeneous transmission typically is owing
to differential contact between humans and mosquitoes as a result of migration, overlapping activity
space and unequal biting rates [4,6,7]. During the first global malaria eradication campaign in the 1950s
and 1960s, failure to account for human population movement was identified as one of the factors that
contributed to the programme’s failure [1,3].

In areas approaching malaria elimination, human mobility patterns are important in determining
the relative proportions of malaria parasites that are imported or the result of low-level, endemic
transmission [8–13]. Population movement patterns can threaten malaria elimination in three primary
ways [1,8]. The first is through uninfected residents travelling to higher malaria risk areas and
transmitting parasites to local vectors upon returning home. The second is through infected visitors
transmitting to local vectors [1,8]. The third is through infected migrants re-locating and transmitting
to local vectors [8]. As human movement patterns and malaria transmission are dynamic processes,
individuals can acquire malaria and then transmit while travelling or upon return to their residence
[2,3]. These movement patterns occur over both long distances (i.e. between districts, provinces, states or
countries) and short distances (i.e. within neighbourhoods or villages), impacting malaria transmission
and potentially threatening elimination [1,12–14].

Many methods to measure human mobility have been explored to describe the impact of human
movement on malaria transmission [15]. Long-distance migratory patterns have been characterized
using census data on birth-place and prior residence [15,16]. Many countries include questions on recent
travel in malaria indicator surveys [15]. Recent travel history also is used to classify passively detected
cases as imported. In research settings, movement diaries and travel histories have been used to measure
human movement [15–17]. However, these methods are subject to recall and social desirability bias, and
small-scale movement is difficult to determine from survey data [15,17].

Mobile phone data are a convenient and accurate method for measuring human movement [8,15].
However, there are limitations with mobile phone data to measure human movement patterns,
particularly in rural settings. The use of mobile phone data to measure movement assumes that
individuals who own a mobile phone are representative of the population and that a single person uses
the phone [18,19]. In many areas, multiple mobile service providers are available and individuals have
different subscriber identify module cards under different provider accounts. Mobile phone coverage
is limited in some rural areas [20], preventing its use in detecting movement in these settings, and
cannot readily measure movement across international borders. Finally, mobile phone data are reported
at a population level without individual demographic information. Mobile phone data are primarily
useful for capturing long-distance movement in areas of high mobile phone coverage but do not capture
short-distance human mobility patterns that impact the micro-epidemiology of malaria transmission,
specifically in rural areas [8,15,18,21].

On both long- and short-distance spatial scales, human movement can be measured at a fine spatio-
temporal resolution using commercially available GPS data loggers to describe individual movement
patterns [22–25]. Their low cost and ease of use makes GPS data loggers ideal for tracking human
movement to infer risk over specific time periods, including peak transmission seasons and vector biting
times [26]. Commercially available GPS data loggers have been used to investigate individual human
mobility and its impact on the transmission of several infectious diseases, including schistosomiasis,
hookworm and dengue virus [22–24,26], and have been validated under different geographical and
environmental conditions [27]. Commercially available GPS data loggers were used to examine
movement patterns in a study of influenza at a university in New Jersey, USA [28], and of dengue in
Iquitos, Peru [24,26]. However, most studies reporting data using commercially available GPS loggers
were conducted in North and South America, and in urban or peri-urban settings [22,24,26,28–30]. One
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exception was a study conducted in northern Tanzania among the Hadza hunter–gatherer population to
explore foraging patterns consistent with Lévy random walks, which involve primarily short-distance
movements combined with rare long-distance movements that describe foraging searches of multiple
organisms [31]. Otherwise, little is known of small-scale movement patterns in rural sub-Saharan Africa
and how these patterns may impact malaria transmission, control and elimination.

Commercially available GPS data loggers were used to determine movement patterns among
a population of rural, agrarian participants selected from a longitudinal cohort study of malaria
epidemiology in Southern Province, Zambia. These analyses aid in explaining the micro-epidemiology
of malaria transmission and the risk of imported malaria as elimination is achieved and sustained [15].
Knowledge of mobility patterns and their potential impact on malaria transmission can inform the
planning of malaria elimination strategies, particularly the targeting of interventions that account for
spatial and seasonal variations in mobility.

2. Methods
2.1. Study site and population
The study was conducted in the rural catchment area of Macha Hospital in Choma District, Southern
Province, Zambia, 70 km from the nearest town of Choma and approximately 1200 km2 in area. The
single rainy season lasts from November through to April, followed by a cool dry season from April until
August and a hot dry season from August through to November. Malaria transmission peaks during the
rainy season with the highest incidence of clinical malaria typically occurring in April [32]. The primary
vector in the area is Anopheles arabiensis [32,33]. The hospital catchment area is populated by villagers
living in small, scattered homesteads. The parasite prevalence, measured by active surveillance, declined
in this area over the past decade, from 9.2% in 2008 to less than 1% in 2013 [34]. Artemisinin combination
therapy with artemether–lumefantrine was introduced as first-line anti-malarial therapy in Zambia in
2002 [35,36] and into the study area in 2004. In Zambia, long-lasting insecticide-treated nets (LLINs) are
distributed through antenatal care clinics and additional mass distribution campaigns [37]. LLINs were
widely distributed in the study area in 2007 [38] and more than 11 000 LLINs were distributed from nine
health posts in the catchment area of Macha Hospital in 2012, with additional LLINs distributed in 2014
according to the Office of the Macha Hospital Environmental Health Technician.

Satellite images were used to develop a sampling frame for the random sampling of households
to recruit and enrol individuals into longitudinal and cross-sectional surveys of malaria parasitaemia
starting in 2008 [38]. The identification and enumeration of households was done manually to delineate
household and non-household structures (kraals, schools and larger structures) [38]. Households
randomly selected from the sampling frame were recruited and enrolled in one of two cohorts: cross-
sectional or longitudinal. Households enrolled in the longitudinal cohort were repeatedly surveyed
every two months, whereas households enrolled in the cross-sectional cohort were visited once. For
each study visit, a questionnaire was administered and a blood sample was collected by finger prick for
a malaria rapid diagnostic test (RDT) [38].

2.2. GPS data loggers
Criteria for selection of the GPS devices were developed to accommodate the study population, ensure
participants would not be responsible for charging the devices and to protect privacy. These criteria
included size, weight, water resistance, battery life, memory size, programming capabilities, motion
detection and validity. IgotU® GT-600 (Mobile Action Technology) GPS loggers were selected as they
were shown to be accurate (point accuracy of 4.4 m and line accuracy of 10.3 m) and acceptable in a
study conducted in Iquitos, Peru [22]. These devices were light weight (37 g), had large battery capacity
(750 mAh), were programmable, could collect up to 262 000 waypoints with 64 Mb of memory and
were water resistant [22–24]. The loggers could be password-protected and accessed only with the
accompanying software when connected to a computer with a custom USB cable. The data loggers could
be worn using a Velcro strap or lanyard, or carried in a pocket or a bag, with the only requirement that
they be carried with the participant continuously during their normal daily movement. As the devices
were motion activated, they could be removed when participants were sleeping or sedentary to preserve
battery life.

All participants enrolled in the existing longitudinal cohort who were 13 years and older were invited
to participate during bi-monthly study visits. A non-random convenience sample was selected during
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study visits from October 2013 through to August 2014. The study staff aimed to enrol 12 participants
per month and have at least 10 complete the full month. Up to three participants per household were
permitted to participate with no more than two individuals participating concurrently in a single month.
Enrolled participants were requested to carry the GPS data logger at all times they were active for a
one-month period. This allowed for a full year of data collection to assess seasonal movement patterns.

Serial numbers of the GPS data loggers were matched to participant unique identification numbers.
The power button was locked and the GPS data loggers were password-protected, so that only study staff
could access the data. Geographical position was logged every 2.5 min. The loggers were programmed
to be motion activated and hibernate when not in motion to conserve battery life. To prevent data loss
owing to limited battery life, participants carried one logger for two weeks at which time the device was
exchanged for a fully charged logger during a household visit by the study team.

Data collected from the loggers contained date, time, longitude and latitude. Study staff maintained
a monthly record of the date and time the devices were distributed and collected.

The observed rainfall collected at the study site using a HOBO weather station (Onset Computer
Corporation, Bourne, MA, USA) was graphed to document seasonal rainfall patterns.

2.3. Data management
After each two-week collection period, data were downloaded from each device using the @trip software
(Mobile Action Technology, Inc., New Taipei City, Taiwan). The unique participant and household
identification numbers were added manually. The data were checked for inconsistent logging and device
errors, such as battery failure or unrealistic locations. Raw data for each two-week period were uploaded
to a secure REDCap (Research Electronic Data Capture) server [39]. The monthly record was used to
remove data points where the logger was in transit with study staff to and from study households.

2.4. Mapping movement patterns
Movement data coordinates were projected into UTM Zone 35S, WGS 1984 and imported into ARCGIS
(ESRI 2012. ArcGIS Desktop: Release 10.2. Environmental Systems Research Institute, Redlands, CA,
USA) for pre-processing and analysis. Pre-processing was done by removing erroneous data points
based on unrealistic changes in shape, speed or direction in the movement tract using a software
extension developed for GPS-based trajectory analysis in ARCSCENE by Qi & Du [28]. The cleaned
and pre-processed movement tracts were used to determine the cumulative amount of time spent at
each location. High-resolution movement density maps were created by estimating the spatial density of
travel paths. The spatial densities were estimated non-parametrically using the kernel density approach
in the ARCSCENE software extension [28] with a bandwidth fixed at 100 m. This bandwidth was chosen
based on the reported error and spatial resolution of the GPS loggers and to optimize visualization of the
maps created. The resulting movement density maps characterize high and low areas of movement and
are used as an estimate of the population space used per month.

The movement density maps created to display the movement trajectory density for each participant
were overlaid on a satellite image of the study area with the enumerated households to represent the
cumulative amount of time each participant spent in different areas. Density maps for participants were
aggregated up to the month of collection to visually evaluate seasonal trends in movement patterns. For
each month, movement densities were normalized based on the overall range to have all months on the
same scale for comparisons. Short- and long-distance movement patterns were evaluated by overlaying
the respective density maps on the satellite imagery. Long-distance movements were defined as those
that left the study area and short-distance movements those that did not leave the study area. A three-
dimensional density map, with the third dimension representing the amount of time spent at a location,
was created and overlaid on a previously published malaria risk map of the study area [38] to visualize
movement patterns in and out of areas of higher and lower malaria risk.

2.5. Calculating activity space
To create movement trajectories for each participant, time was converted from date, hour, minute and
second format to a numeric format. The total time participants carried a GPS data logger for each two-
week time period was calculated independently to permit inclusion of individuals who only carried
the logger for the first two-week period or experienced battery failure during a two-week period.
The time elapsed between two consecutively logged geographical locations was then calculated. To



5

rsos.royalsocietypublishing.org
R.Soc.opensci.4:170046

................................................
account for differences in the total amount of time recorded by the GPS data logger for each participant,
the proportion of time spent in each logged geographical location was calculated. These movement
trajectories, containing logged geographical locations with calculated proportions of time spent in each
location, were spatially joined to the locations of participants’ households. The proportion of time and
density of time spent in logged geographical locations were plotted against distance from the household
to determine the distribution of movement patterns and activity space in relation to the household
compound.

The proportion of time participants spent within their household compound was also calculated.
A typical household compound in the study area has one or more domestic structures with several
smaller structures, such as cooking houses or animal kraals. A household compound was defined as
a grouping of these structures that function as a family unit. During each study visit, geographical
coordinates of the household were collected from the front entrance of the main domestic structure
using a tablet computer. To account for the household compound layout, and error owing to the limits of
spatial resolution of the GPS logger and the tablet used to collect the GPS coordinates, the household was
defined as a 100 m circular buffer around the measured household coordinates. Participant movement
trajectories were spatially joined to the household buffer. This allowed for the movement to be defined as
being at or away from the household compound. The proportion of time (median and interquartile range
(IQR)) spent away from the household was plotted by month to determine if there was a seasonal trend.
A Kruskal–Wallis test was used to determine if there were statistically significant differences between
the median proportions of time spent away from the household by month.

As the primary vector, A. arabiensis, is known to have exophilic feeding behaviour, the amount of time
spent away from the household compound during peak biting times was estimated [32,33]. We were not
able to estimate the time outdoors owing to the complex household structure and spatial resolution
of the GPS loggers. Peak biting times for A. arabiensis were estimated to be between 19.00 and 6.00
hours in the study area [33]. First, the proportion of time each participant was at and away from the
household compound was plotted by month to determine seasonal patterns in time spent away from
the household compound. The movement trajectories for each participant were then stratified by within
and outside peak vector biting times. The subset of trajectories during peak biting times was used to
calculate the proportion of time spent away from the household compound during peak biting times
and graphed by month to determine seasonal patterns. The Kruskal–Wallis test was used to determine if
there were statistically significant differences between the median proportions of time spent away from
the household during biting times by month.

The proportion of time spent in areas of high malaria risk was calculated using a previously
constructed malaria risk map [38]. The risk map was created using community-based surveys and
environmental features obtained from satellite imagery and remotely sensed data to predict the
probability of malaria infection in the study area over 21 months in 2007 and 2008 [38]. The resultant
risk map estimated the ecological risk of malaria infection (including subclinical infection) confirmed
by RDT as the predicted probability of infection [38]. Areas were categorized as being high (probability
of infection 0.50 and greater) and low (probability of infection less than 0.50) malaria risk based on this
map. Polygons of areas of high and low malaria risk were created from the raster formatted malaria risk
map. The participants’ movement trajectories were spatially joined to the high malaria risk polygons.
Participants were stratified by household compound location as being within an area of high or low
malaria risk. The proportion of time spent in areas of high malaria risk was calculated stratified by
participants residing in high and low malaria risk areas, and aggregated by month to assess seasonal
patterns. The proportion of time spent in high-risk areas at and away from the household compound
was calculated for participants residing in areas of high malaria risk. Only the proportion of time spent
away from the household compound was calculated for participants residing in areas of low malaria risk,
as they did not have the opportunity to spend time in an area of high malaria risk within their household
compound. Statistically significant differences in proportions of time spent in high malaria risk areas
comparing participants residing in high- and low-risk areas were tested using the Kruskal–Wallis test.

3. Results
Two hundred and twenty individuals from 49 households were included in the full longitudinal cohort.
During the study period, 173 eligible participants from 30 households in this longitudinal cohort were
invited to participate in the study, of whom 69 agreed to carry a GPS data logger. All participants
completed the first two weeks of data collection and 62 completed the second two weeks. Data from one
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Figure 1. High-resolution maps showing long-distance movement density in the study area in southern Zambia from October 2013 to
August 2014 overlaid on a National Geographic, ESRI Worldwide base map. Long-distance movements are those that extend beyond the
1200 km2 study area outlined in red. The rainy season includes December, February and April, with the dry season during October, June
and August.

Table 1. Demographic characteristics of the study participants by month and comparison with the remaining eligible population.

number age in years (median (IQR)) per cent male (% (95% CI))

study participants 68 39.1 (19.8–54.7) 50.0 (38.0–62.0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Oct 12 54.5 (42.6–61.7) 41.7 (12.0–71.3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dec 12 45.8 (20.3–57.7) 50.0 (20.0–80.0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feb 11 19.3 (16.6–51.4) 36.4 (6.0–66.7)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Apr 11 39.0 (23.2–41.6) 54.6 (23.1–86.0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

June 12 40.8 (26.9–48.2) 50.0 (20.0–80.0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Aug 10 21.5 (14.5–30.2) 70.0 (39.5–100.0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

remaining eligible individuals 105 23.8 (16.0–42.8) 48.6 (38.9–58.2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

participant were excluded from analysis as they reported they were ill and gave the GPS data logger to
other family members. The other six participants who did not complete the second two weeks declined
further participation. The GPS data loggers were well accepted among participants and even became
popular within the community. The age distribution of participants varied slightly by month (range 19–
55 years; p = 0.04), but there were no differences by sex (p = 0.71) (table 1). The convenience sample of
participants was older than the eligible study population (median age 39 years versus 24 years; p = 0.01)
but not different by sex (p = 0.85) (table 1).

The long-distance movement density maps, which display movement patterns outside the study area,
showed visual evidence of seasonal patterns in population movement (figure 1). There was less long-
distance movement during the rainy season (December and February), with no participants leaving the
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Figure 2. High-resolution maps showing short-distance movement density in the study area in southern Zambia from October 2013 to
August 2014 overlaid on a Quickbird high-resolution satellite image of the study area. Short-distance movements are those within the
1200 km2 study area outlined in red. The rainy season includes December, February and April, with the dry season during October, June
and August.

study area (figure 1). From April through to August, long-distance movement increased as participants
travelled outside the study area and stayed further from home for longer periods (figure 1).

The short-distance maps, which display high-resolution movement patterns within the 1200 km2

study area, did not show visual evidence of seasonal mobility patterns (figure 2). Visual evidence
of seasonal patterns in long-distance but not short-distance movement from the density maps was
supported by density plots of the proportion of movement trajectory by distance from the household
compound (figure 3) and showed longer trips farther from home beginning in April as the rainy season
ended (figure 3). These density plots confirmed that participants spent most of their time close to
their household compound with seasonal, longer trips that included shorter movements around these
distant locations (figure 3). During December and February, only one trip farther than 20 km from the
participant’s home was recorded. However, from April through to August, a total of 14 trips farther than
20 km from participants’ homes were recorded (four in April, seven in June and three in August). This
seasonal pattern of increased long-distance movement following the end of the rainy season coincided
with the typical seasonal peak in clinical malaria cases, and the measured monthly rainfall was consistent
with the expected seasonal rainfall patterns.

Movement density in areas of high and low malaria risk was mapped (figure 4). These maps indicated
that participants spent most of their time at a limited number of local sites (figure 4). There was no
evidence of a seasonal trend in the percentage of time spent away from the household compound
(figure 5a), with a median of 10.6% (IQR: 5.8–23.8) of time spent away from the household compound.
This decreased by nearly half during peak anopheline biting times to a median of 5.6% (IQR: 1.7–14.9) of
time spent away from the household compound (figure 5b).

The amount of time spent in areas of high malaria risk was dependent on whether the household
compound was in an area of high malaria risk (figure 6). The per cent of time spent in areas of high
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malaria risk for participants residing in areas of high malaria risk ranged from 83.2% to 100% (median:
96.4%, IQR: 91.1–98.1), and the per cent of time spent in areas of high malaria risk for participants residing
in areas of low malaria risk ranged from 0% to 36.7% (median 0%, IQR: 0.0–0.66).

The amount of time spent in high-risk areas away from the household compound during peak
vector biting times was not different between participants residing in household compounds in high
malaria risk (median: 5.5%, IQR: 0.98–14.4) and low malaria risk (median: 2%, IQR: 0–18.2) (p = 0.4)
areas (figure 6). During peak biting times, the median time spent within the household compound in
high malaria risk areas was 44.3% (IQR: 33.9–49.2), higher than the amount of time spent away from
the household compound during peak biting times in both high-risk areas (5.4% (IQR: 0.98–14.4)) and
low-risk areas (2.0% (IQR: 0.0–18.2)) (p = 0.001) (figure 6).

4. Discussion
Residents of rural, southern Zambia primarily spent time close to their household compound, with
frequent short movements around their household and infrequent longer trips to distant locations that
included shorter movements around these locations. Long-distance movement patterns showed clear
seasonality. During the rainy season, participants did not travel far from their household compound,
presumably to stay closer to their farms but perhaps also because roads became impassable. As the rainy
season ended, participants began to travel further from their household compound and stayed there for
longer durations.

The convenience sample of 69 participants for this study was small; however, a large amount of
data was generated on movement patterns over a 1 year period that included both rainy and dry
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seasons. The demographic characteristics of this sample was older but resembled eligible participants
in the parent longitudinal cohort. As the longitudinal cohort is a representative sample, the movement
patterns observed in the GPS logger study are probably representative of adults in the underlying
population. Additionally, these patterns are probably generalizable to similar rural, agrarian populations
in sub-Saharan Africa.

The long-distance movement patterns at the end of the rainy season and during the dry season
seemed to be consistent with long-distance foraging patterns used when searching for heterogeneously
distributed food [31,40]. This pattern consists mainly of shorter movements (e.g. frequent short-term
trips close to home) combined with fewer farther movements (e.g. infrequent longer-term trips far from
home) [31,41]. Importantly, participants in this study returned to the same home, which is not typical
of many long-distance foraging patterns. While movement patterns are important for understanding
malaria epidemiology, challenges remain as to how best to incorporate these patterns into malaria
transmission models [42]. Specifically, limited movement away from the home during the rainy season,
increased long-distance travel after the rainy season and minimal mixing between ecologically high and
low malaria risk areas are important factors in modelling micro-scale malaria transmission and planning
elimination strategies.

Malaria prevalence has declined dramatically in parts of southern Zambia, but the region remains
receptive to malaria transmission and clinical cases typically occur each year throughout the rainy
season, increasing at the end of the rainy season in April. This seasonal increase in clinical malaria cases
coincides with increased population mobility. While malaria prevalence is low in the study area, some
surrounding areas have higher malaria prevalence. Movement to these areas for extended periods and
travel back home may result in imported infections. However, this may only be important at the end
of the rainy season in the month of April, as this marks the beginning of the dry season when vector
populations are insufficient to maintain transmission. Thus, these long-distance, seasonal movement
patterns may result in imported infections at the end of the rainy season but are unlikely to facilitate
transmission during the dry season.

Participants spent approximately 5% of time away from their household compound during peak
biting times. However, the spatial resolution of the GPS data loggers and satellite imagery limited
the ability to determine if participants were inside a domestic structure. The malaria risk map used to
determine areas of high and low risk was developed when malaria prevalence was approximately 9%,
and parasite prevalence subsequently dropped to less than 1% at the time of this study. However, as the
map predicted malaria risk based on ecological features, qualitatively these findings remain valid for
determining areas of high and low malaria risk. For short-distance movement patterns, the proportion
of time spent in areas of high malaria risk was strongly dependent on whether the participant’s
household compound was in an area of high malaria risk. Individuals who resided in areas of higher
and lower malaria risk did not spend much time in areas of the opposite risk. However, even a small
amount of time spent in a high malaria risk area could result in infection and the introduction of
parasites into low malaria risk areas, propagating local transmission. Therefore, malaria elimination
interventions implemented at the household level, such as insecticide-treated nets, indoor residual
spraying and reactive case detection, may benefit from the less frequent, long-distance movement during
the rainy season.

5. Conclusion
The human mobility patterns observed in this study can be described as circulatory rural–rural
movement [1], although these GPS quantitative estimates of movement provide more information about
the frequency of travel and measures of risk. These movement patterns suggest how malaria elimination
efforts could be threatened through movement of uninfected residents to higher malaria risk areas and
transmitting parasites to vectors upon returning home [1,8]. These types of movement patterns and their
seasonality should be considered when planning malaria elimination strategies. Because of restricted
mobility during the rainy season, interventions directed at households may be more effective. In areas at
higher ecological risk, interventions could be targeted at households during the rainy season, as mobility
outside of high-risk areas during this time is minimal.
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