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Biophysical-factor-dependent cellular uptake of nanoparticles
(NPs) through receptor-diffusion-mediated endocytosis bears
significance in pathology, cellular immunity and drug-
delivery systems. Advanced nanotechnology of NP synthesis
provides methods for modifying NP surface with different
ligand distributions. However, no report discusses effects
of ligand distribution on NP surface on receptor-diffusion-
mediated cellular uptake. In this article, we used a statistical
dynamics model of receptor-diffusion-mediated endocytosis
to examine ligand-distribution-dependent cellular uptake
dynamics by considering that ligand–receptor complexes drive
engulfing to overcome resistance to membrane deformation
and changes in configuration entropy of receptors. Results
showed that cellular internalization of NPs strongly depended
on ligand distribution and that cellular-uptake efficiency of
NPs was high when ligand distribution was within a range
around uniform distribution. This feature of endocytosis
ensures robust infection ability of viruses to enter host
cells. Interestingly, results also indicated that optimal ligand
distribution associated with highest cellular-uptake efficiency
slightly depends on distribution pattern of ligands and density
of receptors, and the optimal distribution becomes uniform
when receptor density is sufficiently large. Position of initial
contact point is also a factor affecting dynamic wrapping. This
study explains why most enveloped viruses present almost
homogeneous ligand distribution and is useful in designing
controlled-release drug-delivery systems.

1. Introduction
Nanoparticle (NP) uptake into cells through receptor-mediated
endocytosis is crucial in nanomedicine and virology [1–3]. In
general, receptor–ligand complexes form when mobile receptors
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on cell membrane diffuse to binding sites (ligands) on NP surface. Binding of receptor–ligand
complex can drive cellular uptake. NPs are treated as potential carriers in biomedical applications
due to this characteristic in biological systems. Therefore, knowledge on NP–cell interactions can
greatly contribute to fundamental biological understanding and practical applications, including
nanotoxicology, pharmacology and drug delivery [4–9].

In the past decade, a number of studies were conducted to investigate influence of biophysical factors
on cellular uptake of NPs. These studies successfully demonstrated that cellular uptake depends on size
[10–13], shape [14–16], orientation [14,17–19], stiffness [20–22], cytoskeleton viscoelasticity [18,23–25],
cooperativity [26,27], stochastic adhesion [28], membrane wrapping [29–33] and surface charge of NPs
[34–37]. Most of these studies assumed that ligands are uniformly distributed on NP surface. However,
reports rarely mentioned how ligand distribution affects internalization of NPs into cells.

Naturally, most enveloped viruses are typical NPs and must use cell processes to replicate, thus
promoting dramatic biochemical and structural changes in host cells and eventually leading to cell
death. Viruses should enter host cells through receptor–ligand affinity to enable effective infection of
viral particles. Uniform ligand distribution on viral capsid is revealed through experimental advances.
Glycoprotein ligands are fixed in envelope membranes, especially for human immunodeficiency
viruses, and are homogeneously distributed on membranes of mature viruses through ultrastructural
cytochemistry and morphometry [38]. One issue raised is whether uniform ligand distribution of
enveloped virus guarantees its uptake into host cells. Advances in NP synthesis provide various
approaches to modify ligand distribution [39–41]. However, no method can enable controlled drug
release by ligand distribution in drug-delivery systems.

Recently, Schubertová et al. [42] performed extensive coarse-grained molecular dynamics simulations
to explore effects of ligand distribution on rate of cellular uptake of NPs, where receptor diffusion is
inhibited by setting extremely high density, and ligands on NPs are either diffusible or immobile. By
considering various cases of different ligand distributions, the researchers discovered that NPs with
homogeneous ligand distribution are most efficiently wrapped by cell membrane, as inhomogeneous
distribution of ligands may increase activation energy and reduce uptake efficiency. Although this
finding is interesting, in most cases, receptor diffusion plays an important role in NP uptake in
normal cells [5,8–10,16,18,43]. For receptor-diffusion-mediated uptake of NPs, no study can clarify how
distribution of ligands and diffusion of mobile receptors with low average density coupling influence
cellular uptake of NPs.

In this article, we used statistical dynamics model of endocytosis [10,44] by considering cell
membranes embedded with diffusive mobile receptors wrapped around cylindrical particles coated with
differently distributed ligands to investigate effects of ligand distribution on cellular uptake.

2. Model
Figure 1 displays cell membrane containing mobile receptor wrapped around a cylindrical NP of radius
R and coated with immobile ligands. Different from previous dynamic models [10,18], ligand density ξL
is no longer a constant but a function along arc length, x, of the cross section of NPs. For mobile receptors,
we assumed an initially uniform density, ξ0. Once mobile receptors diffuse to binding sites and bind with
ligands on particle surface, receptor density within the contact area becomes identical to ligand density
ξL and may result in local depletion and lead receptor diffusion towards the contact zone, as shown in
figure 1b. Contact edge (either left or right) is denoted as s = a(t).

For free receptor outside the contact region, for example, s ≥ a (t), continuity and diffusion equations
on receptor density ξ (s, t) are given as follows [10,18,44]:

∂ξ (s, t)
∂t

= −∂j(s, t)
∂s

= D
∂2ξ (s, t)

∂s2 , (2.1)

where j(s, t) = −D(∂ξ (s, t)/∂s), that is, receptor diffusion flux with diffusion coefficient D.
Within contact region, s < a(t), ξ (s, t) = ξL(s) and j(s, t) = 0. Conservation of membrane receptors can

be obtained using the following:

d
dt

[∫ a(t)

0
ξL(s)ds +

∫∞

a(t)
ξ (s, t)ds

]
= 0, (2.2)
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Figure 1. Schematic diagram of cellular uptake of NPs with different ligand distributions. (a) Remote mobile receptors diffusing to
binding sites to drive cellular uptake. (b) Receptor density distribution along cell membrane. At the contact region, the receptor density
is not constant.

from which one can deduce the formula

(ξ+
L − ξ+)

da(t)
dt

+ j+ = 0 on s = a(t), (2.3)

where ξ+
L ≡ ξL(a+), ξ+ ≡ ξ (a+, t) and j+ ≡ j(a+, t) stand for receptor–ligand bond density, receptor density

and flux in front of contact edge, respectively. We assumed that ξ (s, t) → ξ0 and j(s, t) → 0 for s → ∞.
Formation of ligand–receptor complexes drives engulfing to overcome resistance from membrane

deformation and changes in configuration entropy of receptors during NP–cell contact. Hence, after
normalization by kBT (kB represents Boltzmann constant and T refers to absolute temperature), free
energy function for cellular uptake of NPs can be derived using the equation [44,45]

F(t) =
∫ a(t)

0

(
−ξL(s)eRL + ξL(s) ln

ξL(s)
ξ0

+ 1
2

Bκ2
p

)
ds +

∫∞

a(t)
ξ (s, t) ln

ξ (s, t)
ξ0

ds, (2.4)

where eRL refers to normalized adhesion energy of a receptor–ligand pair; B corresponds to normalized
bending modulus; κp=1/R represents stress-free curvature of membrane; and kBT ln ξL/ξ0 and
kBT ln ξ/ξ0 are energy values per receptor associated with loss of configuration entropy of bonds and
free receptors. We noted that a similar mathematical framework was developed in previous studies of
biological membranes spreading on substrates coated with uniform [44] and non-uniform ligands [45].

Differentiating equation (2.4) with respect to time leads to the following formula:

dF(t)
dt

= −
(

ξ+
L eRL − 1

2
Bκ2

p − ξ+
L ln

ξ+
L

ξ+
+ ξ+

L − ξ+

)
da(t)

dt
−

∫∞

a(t)
Dξ

(
∂[ln(ξ/ξ0) + 1]

∂s

)2
ds. (2.5)

For a power-balanced process, decrease in rate of free energy should be equal to energy dissipated from
receptor diffusion. Therefore, power balance equation features the form

ξ+
L eRL − 1

2
Bκ2

p − ξ+
L ln

ξ+
L

ξ+
+ ξ+

L − ξ+ = 0. (2.6)

For a given ligand density ξL, diffusion equation (2.1) for receptor density should be subjected to
boundary conditions ξ (∞, t) → ξ0 and ξ+ ≡ ξ (a+, t) provided by equation (2.6). No simple analytical
solution for equation (2.1) exists for arbitrary ligand density in contrast with uniform ligand distribution
[10]. Equation (2.1) can be calculated numerically through adopting finite difference method (for a
detailed description of the method, see our previous study [18]). We assumed independent wrapping
at two sides of initial contact point, and they can be determined by equations (2.1)–(2.6). Once the sum
of two contact edges reaches 2πR, cellular uptake is completed and wrapping time is determined.
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Figure 2. Different ligand distributions considered in the current work. (a) Harmonic distribution, (b) periodic linear distribution and (c)
periodic piecewise distribution.

3. Results and discussions
Hereafter, we used typical values of particle radius R = 20 nm, binding energy of single bond eRL = 15
[46], bending modulus of cell membrane B = 20 [47], diffusion coefficient of receptors on membrane
D = 104 nm2 s–1 [46] and initial receptor densities ξ0 = 50, [10] 500 µm–2 [10]. By fixing average ligand
distribution as ξL0, we considered the three types of ligand distributions, as shown in figure 2:

Case A. Harmonic distribution

ξL(x) = ξL0

[
1 + A sin

(
2λx
R

+ π

2

)]
for x ≤ 2πR;

Case B. Periodic linear distribution

ξL(x) =

⎧⎪⎪⎨
⎪⎪⎩

4nξL0

Tl
x + ξL0(1 − n), 0 ≤ x ≤ 0.5Tl

−4nξL0

Tl
x + ξL0(1 + 3n), 0.5Tl < x ≤ Tl

for x ≤ 2πR; and

Case C. Periodic piecewise distribution

ξL(x) =

⎧⎪⎪⎨
⎪⎪⎩

ξL0 − mξL0, 0 < x < 0.5Tp

ξL0, x = 0, 0.5Tp, Tp

ξL0 + mξL0, 0.5Tp < x < Tp

for x ≤ 2πR,

where ξL0 = 5000 µm–2 [18], that is, average ligand density; AξL0 and 2λ/R represent amplitude and
frequency of ligand density for harmonic distribution, respectively; λ corresponds to positive whole
numbers; ξL0(1 + n) and ξL0(1 − n) refer to maximum and minimum ligand density in linear distribution,
respectively; Tl = 2πR/Nl denotes period of ligand density with periodic linear distribution; Nl is cycle
number; and Tp = 2πR/Np and mξL0 stand for period and amplitude for ligand density under periodic
piecewise distribution with cycle number Np, respectively.
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Figure 3. Normalized wrapping degree as a function of time for different amplitudes of ligand density with λ = 1 and initial receptor
density ξ 0 = 0.01ξ L0 in harmonic ligand distribution.
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Figure 4. Wrapping time as a function of amplitude of ligand density for λ = 1, and initial receptor density at (a) ξ 0 = 0.01ξ L0 and
(b) ξ 0 = 0.1ξ L0 in harmonic ligand distribution.

Figure 2a shows harmonic distribution of ligands. Figure 3 plots numerically determined normalized
wrapping degree, a/(πR), as a function of time at different amplitudes of ligand density with λ = 1 and
position of initial contact point at x = 0. Figure 3 shows that ligand distribution can significantly influence
uptake, and fastest cellular uptake associated with short wrapping time occurs when ligand density is
close to A = 0.1. Figure 4 displays predicted relationships between wavy amplitude and wrapping time.
This figure also indicates that optimal ligand distributions corresponding to a small wavy amplitude
for low receptor density, 0.01ξL0, and zero wavy amplitude for high receptor density, 0.1ξL0, exist for
the shortest wrapping time. Large wavy amplitude can lead to long wrapping time. Figure 5 presents
influence of wavy frequency of ligands on dynamic wrapping. The figure also shows that at large
frequencies, final wrapping time is almost independent of distribution frequency of ligands. For large
wavy frequencies, aside from final wrapping times, whole wrapping procedures are almost identical.

Figure 2b shows periodic linear distribution of ligands. Figure 6 plots wrapping time as a function of
normalized distribution slope 4nR/Tl when position of initial contact point is at x = 0. As indicated in
figure 6, wrapping processes slightly differ at slope range of –0.4 to 0.4. When absolute value of slope
becomes larger than 0.6, completion of wrapping becomes difficult. Figure 7 plots dynamic wrapping for
different frequencies of ligand distribution and shows frequency of ligands that slightly affect the whole
dynamic wrapping for periodic linear distribution of ligands.

In periodic piecewise, distribution of ligands shown in figure 2c. Figure 8 presents wrapping time
as a function of wavy amplitude for cycle number Np = 2. Optimal ligand distribution for fastest uptake
corresponds to a slightly wavy uniform distribution (|m|=0.05). Figure 9 depicts the relationship between
normalized wrapping degree and time for different cycle numbers. Similar to effects of wavy frequency
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Figure 5. Normalizedwrapping degree as a function of time for different frequencies of ligand densitywithA= 0.45 and initial receptor
density ξ 0 = 0.01ξ L0 in harmonic ligand distribution.
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Figure 6. Wrapping time as a function of normalized slope of periodic linear-dependent ligand density for T l = πR and initial receptor
density ξ 0 = 0.01ξ L0.
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Figure 8. Wrapping time as a function of amplitude for cycle number Np = 2 and initial receptor density ξ 0 = 0.01ξ L0 in periodic
piecewise distribution of ligand density.
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of ligand distribution to harmonic distribution and periodic linear distribution, only intermediate
dynamic wrapping slightly depends on cycle number. Cycle number poses almost no effect on final
wrapping time.

Based on the above discussions, slightly wavy pattern commonly results from three different cases of
ligand distribution; this distribution corresponds to high uptake efficiency. Distribution is non-uniform
in terms of wavy amplitude, which usually leads to increased wrapping time. This optimal distribution
results from competition between driving force due to ligand–receptor binding and resistance from
changes in configuration entropy of receptors. Interactions among NPs, non-uniform ligand distribution
and cell membrane bending inevitably form local sparse or dense ligand–receptor bond densities at the
contact area. For low ligand–receptor bond density, shortage of binding energy enlarges wrapping time.
When local ligand–receptor density is high, wrapping time is also increased by high energy dissipated
from changes in configuration entropy of receptors.

Bio-inspired methods from viruses suit designing of drug-delivery systems. Thus, NP–cell
interactions must be biophysically understood. In figures 4, 6 and 8, fast wrapping exists in large-
range ligand distribution around uniform distribution, providing physical insight into robust viral
infection rather than gene expression [48,49]. From the perspective of physical optimization, optimal
size (tens of nanometres) [10,11] and shape (sphere) [16] are revealed. In this study, we confirmed that
ligand distribution is another significant factor determining receptor-diffusion-mediated NP uptake of
cells. Almost uniform ligand distribution of viruses is possibly controlled by physical evolution and
guarantees viral infectivity through receptor-mediated endocytosis.
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Contrary to virus entry to host cells, NP capsules are sometimes expected to dissolve drugs over

time, releasing these medical compounds at slower and steadier pace into target sites [50,51]. Therefore,
according to the present study, controlled-release drug-delivery systems may be integrated by modifying
ligand distribution on NP surface.

We determined influence of ligand distribution characterized by wavy amplitude and frequency on
cellular uptake of NPs. We hypothesized that slight difference in initial contact position of NP with fixed
ligand distribution may lead to notable changes in total wrapping time, because wrapping is highly
nonlinear. To justify this hypothesis, we considered uptake of NPs with different initial contact positions
for cases of harmonic, periodic linear and periodic piecewise distributions. Wrapping time is numerically
determined and plotted in figures 10–12 as a function of normalized positions of contact points under
different amplitudes and frequencies of ligand distributions. Remarkably, dynamic cellular uptake can be
significantly influenced by position changes in initial contact point when distribution amplitude is large,
or when distribution frequency is low. By contrast, influence of positions of contact point on uptake
decreases when wavy amplitude is low, or when wavy frequency is large.

Figures 10c, 11c and 12c show normalized initial boundary density of receptors as a function of
normalized positions of initial contact points in harmonic, periodic linear and periodic piecewise
distributions of ligands, respectively. Figures 10–12 show association of fastest wrapping with contact
position of highest ligand density. Highest ligand density at initial contact position also corresponds
to the largest gradient of initial receptor distribution, largest initial receptor diffusion flux and fastest
initial wrapping speed. Hence, contact-point-position-dependent wrapping may be dependent on initial
wrapping speed. A similar mechanism was revealed in our previous study [18] on cellular uptake of
cylindrical NPs with different orientations.

Interestingly, Schubertová et al. [42] revealed a similar conclusion on uniform ligand distribution,
which is most favorable for NP uptake, by performing coarse-grained molecular dynamics simulations
in extreme cases, wherein receptors are ‘immobile’ due to large density. In this study, figure 4 shows
that uniform distribution features the most efficient case for NP uptake once average receptor density
increases from 0.01ξL0 to 0.1ξL0. This finding is very similar to the case of ‘immobile’ receptors studied
by Schubertová et al. [42]. By contrast, optimal distribution of ligands is no longer uniform but becomes
slightly wavy with amplitude near zero. Although Schubertová et al. [42] did not consider the effect of
receptor diffusion at low density, they found that taking account of the effect of ligand diffusion will not
change the fact that uniform distribution of ligands corresponds to the fastest uptake. We should note
that the effect of ligand diffusion on the NP uptake is quite different from that of receptor diffusion. For
example, in the case of very low receptor density, the NP still can be completely wrapped in as long as
the density of ligands is sufficiently large; receptor diffusion causes this to happen and influences the
total wrapping time. On the other hand, in the case of very low ligand density, no matter the density of
receptor to be low or high, diffusion of ligands cannot make the NP to be wrapped in. When both the
density of ligands and receptors are high, diffusion of either ligands or receptors becomes not important
at all [42].

We aimed to determine how slightly non-uniform distribution of ligands correspond to the most
efficient wrapping in cases of low-density receptors. Related mechanism involves long-time diffusion of
NP to recruit enough receptors to binding sites under low receptor density. During this period, optimized
local balance between adhesion energy as driving force and configurational entropy changes in diffusible
receptors and membrane bending as resistance may change over time, resulting in spatial distribution
pattern of ligands.

4. Conclusion
Based on the effect of NP ligand distribution on cellular uptake, we used statistical dynamics model
of endocytosis by considering receptor–ligand binding, receptor diffusion and membrane deformation.
We discovered that NP dynamic wrapping may depend on wavy-form ligand distribution and receptor
density. We also discovered that wavy frequency almost features no effect on wrapping efficiency. By
contrast, wavy amplitude significantly affects wrapping. The most efficient wrapping case corresponds
to dependence of a range of slightly wavy forms of ligand distribution on receptor density. When
receptor density is adequately high, optimized distribution of ligands becomes uniform. Slight variance
in distribution almost does not change optimal states. As initial wrapping speed varies with positions of
initial contact point, different positions of contact point between NP–cell membranes significantly affect
wrapping when ligand distribution is in wavy form with large amplitudes and/or low frequency. These
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results provide physical understanding from an evolutionary view as to why enveloped viruses manifest
almost homogeneous ligand distributions. Results indicate bio-inspired method of effective NP design
for drug-delivery systems.

This study is restricted by several limitations. Cylindrical NPs and membrane surface tension are
not considered. Kinetic reaction between receptor and ligand molecules [32,46,52–54], and viscoelastic
deformation of cytoskeleton [23,55] are neglected.
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