Skip to main content
. 2016 Sep 26;8(2):1469–1473. doi: 10.1039/c6sc03383k

Table 3. Further optimization of C(sp2)–H hydroxylation a , b .

Inline graphic
Entry Copper salts Base Acid Yield
3a 2a
1 Cu(OAc)2 + CuBr Cs2CO3 PivOH 59 12
2 Cu(OAc)2 + CuBr Cs2CO3 1-Ad-COOH 61 13
3 c Cu(OAc)2 + CuBr Cs2CO3 1-Ad-COOH 63 12
4 c , d Cu(OAc)2 + CuBr Cs2CO3 1-Ad-COOH 63 11
5 c , d , e Cu(OAc)2 + CuBr Cs2CO3 1-Ad-COOH 66 8
6 c , d , e , f Cu(OAc)2 + CuBr Cs2CO3 1-Ad-COOH 67 8
7 c , d , e , f Cu(OPiv) 2 + CuBr Cs 2 CO 3 1-Ad-COOH 75(80) g 0
8 c , d , e , f Cu(OCOiPr)2 + CuBr Cs2CO3 1-Ad-COOH 68 0
9 c , d , e , f Cu(OCO)2 + CuBr Cs2CO3 1-Ad-COOH 45 0

aReaction conditions: 1 (0.1 mmol), Cu(OAc)2 (0.2 mmol), CuBr (0.08 mmol), base (0.15 mmol), acid (0.15 mmol), ligand (0.1 mmol), DMSO (1.0 mL), 100 °C, air, 6 h.

bYield determined by 1H NMR analysis of crude reaction mixture using CH2Br2 as an internal standard.

cAcid (0.18 mmol).

dCuX2 (0.15 mmol).

eDMSO (0.5 mL).

fLigand (0.04 mmol).

g105 °C.