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Moment-to-Moment BOLD Signal Variability Reflects
Regional Changes in Neural Flexibility across the Lifespan
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Variability of neuronal responses is thought to underlie flexible and optimal brain function. Because previous work investigating BOLD
signal variability has been conducted within task-based fMRI contexts on adults and older individuals, very little is currently known
regarding regional changes in spontaneous BOLD signal variability in the human brain across the lifespan. The current study used
resting-state fMRI data from a large sample of male and female human participants covering a wide age range (6 – 85 years) across two
different fMRI acquisition parameters (TR � 0.645 and 1.4 s). Variability in brain regions including a key node of the salience network
(anterior insula) increased linearly across the lifespan across datasets. In contrast, variability in most other large-scale networks de-
creased linearly over the lifespan. These results demonstrate unique lifespan trajectories of BOLD variability related to specific
regions of the brain and add to a growing literature demonstrating the importance of identifying normative trajectories of
functional brain maturation.
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Introduction
BOLD signal variability is often considered as a source of un-
wanted noise. This is in contrast to theories proposing that
biological variability is necessary for optimal brain function
(McIntosh et al., 2010; Garrett et al., 2013b; Tognoli and Kelso,
2014). For example, the coordination dynamics theory proposes
that networks fluctuate among integration, segregation, and
metastable configurations (Tognoli and Kelso, 2014). Metasta-
bility requires a balance between integration and segregation

where signal variability within a network facilitates shifting be-
tween integration and segregation. That is, networks demonstrat-
ing high integration or segregation without variability cannot
flexibly shift between configurations. Conversely, networks with
high variability can shift flexibly through integrative and segrega-
tive configurations. Another approach highlighting the impor-
tance of neural variability is the “Bayes optimal theory,” which
proposes that, if neurons fired identically to stimuli over time,
then systems would not adapt to that stimulus in different
circumstances (Beck et al., 2008). These perspectives posit that
variability in neuronal response is a critical component of
brain function.

Accumulating research has demonstrated differences in BOLD
variability between older adults compared with younger adults in
a number of task-based fMRI contexts. BOLD variability in the
majority of brain regions decreases during task-based fixation
periods (i.e., task-absent) in older adults compared with younger
adults (Garrett et al., 2010). Increased BOLD variability has also
been linked to younger individuals, with faster reaction time and
more consistent performance in perceptual matching and atten-
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Significance Statement

Although brain signal variability has traditionally been considered a source of unwanted noise, recent work demonstrates that
variability in brain signals during task performance is related to brain maturation in old age as well as individual differences in
behavioral performance. The current results demonstrate that intrinsic fluctuations in resting-state variability exhibit unique
maturation trajectories in specific brain regions and systems, particularly those supporting salience detection. These results have
implications for investigations of brain development and aging, as well as interpretations of brain function underlying behavioral
changes across the lifespan.
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tional cueing tasks (Garrett et al., 2011).
Greater BOLD variability during the fixa-
tion period of a task is also associated with
more efficient behavioral performance
in younger adults compared with older
adults (Garrett et al., 2013a). Such studies
generally demonstrate that BOLD vari-
ability decreases across development, with
fewer regions demonstrating increased
variability across development. Nonethe-
less, both increases and decreases in vari-
ability have been found throughout the
frontal, parietal, and temporal brain areas.
In addition, increased left inferior frontal
junction variability has been linked to im-
proved performance on a cognitive flexibil-
ity task, but impaired performance on an
inhibition task (Armbruster-Genç et al.,
2016). This suggests that the beneficial im-
pact of regional BOLD variability may be
task and circuit dependent. Finally, in-
creased variability in the nucleus accumbens
has been associated with greater financial
risk taking in older age (Samanez-Larkin
et al., 2010). Together, these studies dem-
onstrate that greater variability is associated
with younger individuals, faster and more
consistent performance, and cognitive
flexibility, demonstrating its importance
as a neural signature of optimal task
performance.

The aforementioned studies have mainly
examined the effects of BOLD variability
within task-based fMRI contexts in younger
adults (20 –35 years old) and older adults
(65– 80 years old). However, no studies to date have character-
ized resting-state BOLD variability or variability across the entire
lifespan. This is important for two reasons: First, although previ-
ous studies analyzed fixation periods within task-based fMRI
paradigms, fixation periods are short in duration and may be
influenced by task-based processing demands (Northoff et al.,
2010). Resting-state fMRI offers temporal continuity across the
time series and is unaffected by possible task-based influences
that could affect individuals at varying ages differentially. Second,
exploring variability across the lifespan allows for characteriza-
tion of both linear and quadratic effects. This is important be-
cause such effects are present in lifespan resting-state fMRI
studies charting functional connectivity trajectories (Betzel et al.,
2014; Cao et al., 2014).

To explore these questions, the current study used two groups
of resting-state fMRI data (n � 187 and n � 191; age range, 6 – 85
years) to examine lifespan trajectories of BOLD variability and to
demonstrate replicability of findings across different multiband
acquisition parameters. Based on predictions from the previous
task-based fMRI studies examining fixation periods between task
blocks (Garrett et al., 2010), we expected to find that a majority of
voxels would demonstrate decreases in variability across the lifes-
pan and that a minority of voxels would demonstrate increases in
variability across the lifespan.

Materials and Methods
Participants. Two resting-state fMRI datasets (fast TR group: n � 191,
TR � 0.645 s; slow TR group: n � 187, TR � 1.4 s), each containing 10

minutes of data, were downloaded from the Nathan Kline Institute
(NKI)-enhanced database (Nooner et al., 2012) (Fig. 1). Both groups
included participants from a wide age range (6 – 85 years of age) and
differed principally in multiband TR acquisition time. Group 1, the “fast
TR group” (TR � 0.645 s), included 191 participants [132 female; mean
age � 42.26 years old, SD � 23.60; mean full-scale IQ � 104.31, SD �
14.06; mean framewise displacement (FD) � 0.12, SD � 0.04]. Handed-
ness was assessed using the Edinburgh Handedness Questionnaire (EHQ)
(Oldfield, 1971) on a scale of �100 to 100; 19 participants had negative
scores. Group 2, the “slow TR group” (TR � 1.4 s), included 187 partic-
ipants (131 female; mean age � 42.46 years old, SD � 23.30; mean
full-scale IQ � 104.54, SD � 13.75; mean FD � 0.26, SD � 0.12; 20
participants had negative EHQ scores). We included both datasets with
different TRs in our analyses to ensure the robustness and reliability of
any mean square successive difference (MSSD) effects as a function of
age. This procedure mitigates concerns regarding the unknown influence
on the reliability of MSSD results from data acquired using recently
developed multiband EPI protocols (Smith et al., 2013).

Inclusion criteria for both data sets were the following: subjects had no
current or past DSM diagnosis for psychiatric disorders, and �3 mm in
translational head movement and/or 3° of rotational head movement.
There were 177 subjects who appeared in both groups. Subjects appeared
in one group but not the other because of poor/missing functional scans
in one dataset or the other. There were no significant differences in age
(t(376) � 0.08, p � 0.93) or in IQ (t(376) � 0.16, p � 0.87) in the two TR
groups because most subjects contributed data to both groups. However,
there was a significant difference in FD (t(376) � 15.46, p � 4.31 � 10 �42)
between the groups. Larger FD for the slow TR group was expected: head
movement would be naturally smaller for the fast TR group because there
is less time to move between successive volume acquisitions. Because of
these differences in head movement between TR groups and the stringent

Figure 1. Age (top row) and gender (middle row) distribution in the fast and slow TR groups. Scatterplots for each TR group that
represent the relationship between age and FD are pictured in the bottom row.
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head motion analysis corrections that we used, we reasoned that any
MSSD effects that replicated across both groups would ameliorate con-
cerns that head movement influenced the results.

Imaging was performed on a Siemens Trio 3.0 T scanner that collected
a T1 anatomical image and multiband (factor of 4) EPI sequenced
resting-state images (low TR group: 3 � 3 � 3 mm, 40 interleaved slices,
TE � 30 ms, flip angle � 60 degrees, field of view � 222 mm, 900
volumes; high TR group: 2 � 2 � 2 mm, 64 interleaved slices, TE � 30
ms, flip angle � 65 degrees, field of view � 224 mm, 404 volumes).
Participants were instructed to keep their eyes open and fixate on a
central cross in the middle of the screen (http://fcon_1000.projects.nitrc.
org/indi/enhanced/mri_protocol.html).

Image preprocessing. Resting-state scans were preprocessed using FSL,
AFNI,andSPM8functionsthroughDPARSF-A(http://rfmri.org/DPARSF).
The first five volumes were removed to allow the MRI signal to reach
equilibrium. Several steps were undertaken to remove motion artifacts
and other sources of noise from the data before analysis. Resting-state
data were realigned (FSL) and smoothed (FSL: 6 mm) before individual
independent component analyses (ICA) were conducted for all data sets
using automatic dimensionality estimation (FSL’s MELODIC). Noise
components were then classified for 20 subjects in the fast TR group and
20 subjects in the slow TR group (random sampling by choosing subjects
separated by �5 years of age) by transforming independent component
maps into MNI space (3 mm for the fast TR group and 2 mm for the slow
TR group to match their respective acquisition parameters). The result-
ing component classifications were then fed into FMIRB’s ICA-FIX clas-
sification algorithm (Griffanti et al., 2014) to classify noise and non-noise
components from both groups before conducting nuisance regression of
classified noise components from the resting-state scans in subject space.
The ICA-FIX cleaned data were then normalized into MNI space
(DPARSF-A) using an EPI template from SPM (3 mm for the low TR
group and 2 mm for the high TR group to match each group’s respective
acquisition parameters). The data were then despiked using AFNI’s
3dDespike (“New”) algorithm, subjected to nuisance covariance regres-
sion (Friston 24 motion parameters, WM, CSF), linear detrended, and
band-pass filtered (0.01–0.10 Hz) to isolate low-frequency fluctuations that
characterize resting-state BOLD signals (Damoiseaux et al., 2006).

Experimental design and statistical analysis. The current study exam-
ined the relationship between bold variability and age using a voxelwise
within-subjects measure called MSSD. MSSD was calculated on a voxel-
wise basis for all subjects using custom MATLAB scripts. For more de-
tails, see the section “BOLD signal variability.”

The voxelwise relationship between MSSD and age was tested using an
ordinary least-squares (OLS) regression model in FSL using a repeated-
measures design with linear age and quadratic age as regressors of interest
and handedness, FD, and IQ as nuisance regressors. To account for mul-
tiple voxelwise comparisons, spatial maps from the OLS analysis were
subjected to a voxelwise threshold of p � 0.002 (uncorrected) and a
cluster-wise threshold of p � 0.5 (corrected using Gaussian Random
Field theory). For more details on the OLS analysis, see the section
“BOLD signal variability.”

Post hoc testing of significant cluster corrected effects using a linear
regression analysis in SPSS 24 was conducted to further examine linear
and quadratic effects identified from the OLS analysis. This was done to
ensure that significant effects identified from the voxelwise analysis re-
mained significant when averaging MSSD across a number of voxels
and to account for possible influences of gray matter probability (GMP)
and gender. For more details, see section “Post hoc analysis of GMP and
gender, linear, and quadratic effects.”

Additional post hoc testing consisted of examining the relationship
between MSSD values for only the 177 subjects present in both TR
groups. Spearman’s rank-order correlations were conducted in SPSS 24
on the effects examined in the previously described post hoc regression
analyses. For more details, see section “Linear relationship between
MSSD values for subjects in both TR groups.”

BOLD signal variability analysis. Preprocessed time series were con-
verted to z statistics (zero mean, unit SD) before calculating MSSD scores
for each voxel (Von Neumann et al., 1941). MSSD was used in the current
study because of the temporal continuity afforded by resting-state data

and because it avoids the influence of auto-correlation that is exacerbated
by multiband EPI acquisition parameters (Smith et al., 2013) on mea-
sures such as the SD (Arbabshirani et al., 2014). MSSD was calculated by
subtracting time point t from time point t � 1, squaring the result, and
then averaging all resulting values acquired from the entire voxel time
course as follows:

�2 �
�i�1

n�1
� xi�1 � xi	

2

n � 1

Associations between MSSD and age were calculated in FSL using OLS.
Age regressors included the linear (mean centered) and quadratic age
(squared mean centered age). Full-scale IQ, EHQ handedness scores, and
FD were included as nuisance regressors. The resulting t-maps were first
examined using a liberal voxelwise correction (uncorrected p � 0.40) with-
out cluster size correction. These more general results demonstrated the
reliability of the effects across the two different acquisition times (Fig. 1).

T-maps were then examined by using stricter voxel wise (uncorrected
at p � 0.002 for linear effects and at p � 0.05 for quadratic effects; see
Results for additional details) and cluster size (corrected at p � 0.05)
correction to identify results less susceptible to type 1 errors (Eklund et
al., 2016). Spatial maps identifying brain areas with significant overlap-
ping effects across both TR groups were produced to further isolate rep-
licable effects. Overlapping effects across TR groups were identified by
resampling the slow TR group results to have the same voxel resolution as
the fast TR group results (down-sampling the slow TR group cluster-
corrected spatial t-maps to 3 mm 3). We then overlaid the fast TR group
cluster-corrected results on corresponding cluster-corrected maps for
the slow TR group to identify cluster-corrected effects present in both TR
groups. MSSD values from each TR group for overlapping significant
cluster corrected voxels were then extracted and converted to z statistics
to create scatterplots for visualization of lifespan trajectories.

Post hoc analysis of GMP and gender, linear, and quadratic effects.
Three regression analyses were run to rule out the influence of GMP and
gender and also to further explore linear and quadratic voxelwise effects.
The primary goal of these follow-up tests was to account for differences
in gray matter and gender and to confirm that voxelwise effects persisted
when averaging MSSD across a group of voxels. Following previous work
accounting for changes in gray matter (Damoiseaux et al., 2008), we used
ROIs of the overlapping cluster-corrected results from the previous vox-
elwise analysis to calculate individual subject estimates of GMP. GMP
and gender were then used in subsequent analyses as nuisance regressors.
GMP was assessed by segmenting the T1 structural images into gray
matter, white matter, and CSF probability maps in SPM and taking the
mean GMP in the ROI. A secondary goal of further exploring linear and
quadratic effects was also performed through these three post hoc regres-
sion analyses.

Three post hoc regression models were run. The first post hoc regression
model tested whether the MSSD linear effects indeed extend across the
lifespan without the quadratic predictor in the model, and to confirm
that these linear effects persisted when accounting for GMP and gender.
As with previous regression tests, this model used linear age (mean cen-
tered) as a regressor of interest along with handedness, IQ, FD, GMP, and
gender as nuisance covariates. This model was run on ROIs representing
significant group-overlapping linear effects from the cluster-corrected
voxelwise analysis.

A second post hoc regression model was used to test whether a qua-
dratic effect better explained the MSSD trajectory than the linear effect
from the first regression model. This model used linear age (mean cen-
tered) and quadratic age (squared mean centered age) as regressors of in-
terest, along with handedness, IQ, FD, GMP, and gender as nuisance
covariates. As with the first model, this model was run solely on ROIs
representing significant group-overlapping linear effects from the
cluster-corrected voxelwise analysis. We determined that a quadratic
model was a better fit compared with the linear model if the quadratic
term was statistically significant ( p � 0.05).

Finally, a third post hoc regression model was used to confirm that
voxelwise quadratic effects persisted when controlling for GMP and
gender. This model used linear age (mean centered) and quadratic age
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(squared mean centered age) as regressors
of interest, along with handedness, IQ, FD,
GMP, and gender as nuisance covariates. This
model was run on ROIs representing group-
overlapping quadratic effects from the voxel-
wise analysis.

Results
Associations between MSSD and linear
effects of age
The average whole-brain MSSD value across
all subjects was 0.2073 (SD � 0.0102, range:
0.1734–0.2359) for the fast TR group and
0.443 (SD � 0.0194, range: 0.3916–0.4886)
for the slow TR group, indicating significantly
smaller MSSD for the fast TR group (t(376) �
148.581, p � 0.0001). This mirrored differ-
ences in head motion metrics across TR
groups and was also expected because
there should be less difference between
the BOLD signal for consecutive volumes
when they are acquired closer together in
time. Therefore, any effects replicating
across both TR groups should not be due
to the absolute size of MSSD, but rather to
the contrasts of interest.

Within-subject voxel-wise whole-brain
group average correlations between z-score
normalized MSSD (zMSSD), non-norma-
lized SD (SD), percent-change normalized
MSSD with a mean of 100 (%MSSD), and
percent-change normalized SD with a mean
of 100 (%SD) showed that SD, %MSSD,
and %SD were strongly positively correlated
with each other (rs 
 0.98) (Table 2) and
negatively correlated with zMSSD (rs �
�0.25).

Previous research has demonstrated
that MSSD and SD are strongly correlated
(r 
 0.97) within the context of a task-
based fMRI study (Garrett et al., 2011). To
determine how MSSD and SD are related
in the context of a resting-state fMRI study,
voxelwise estimates of SD were calculated
on non-normalized time courses for all gray
matter voxels. Average correlations between
MSSD and SD for gray matter voxels across
the whole brain were then calculated across
all subjects in each TR group. Strong posi-
tive correlations were present for both the
fast (mean r � 0.73, SD � 0.037) and slow
(mean r � 0.72, SD � 0.046) TR groups,
replicating previous findings of strong cor-
respondence between MSSD and SD.

General linear age MSSD effects revealed both increases and
decreases in functionally distinct cortical and subcortical brain
areas. Spatial maps for each TR group with a liberal voxelwise
criteria (p � 0.40) and no cluster size correction (Fig. 2) demon-
strate that MSSD increases linearly across the lifespan in salience
network (SN) nodes (bilateral anterior insula) and bilateral ven-
tral temporal cortices. Linear decreases in MSSD as a function
of age appear in the thalamus and basal ganglia and brain
networks representing visual, sensorimotor, central executive

network (CEN), and nodes of the default mode network
(DMN). These results demonstrate that an intrinsic brain pat-
tern of BOLD variability related to maturation across the lifes-
pan is characterized by an increase in SN and ventral temporal
cortex (VTC) variability and a decrease in variability for most
every other brain area, including nodes in the CEN and DMN,
along with brain areas in visual, sensorimotor, and subcortical
areas. These general results were replicated across both TRs,
providing evidence for the robustness of the observed effects.

Spatial maps (Fig. 3) and scatterplots (Fig. 4) are presented
from brain regions where there was a significant cluster-

Figure 2. Liberal voxelwise corrected ( p � 0.40 uncorrected) t-maps without cluster correction. Blue represents the fast TR
group and red represents the slow TR group. General linear MSSD increases can be seen in SN nodes such as the bilateral anterior
insula and anterior cingulate cortex and also in the VTC. General linear MSSD decreases can be seen in subcortical, visual, sensori-
motor, DMN (posterior cingulate and medial prefrontal cortex), and CEN (supramarginal gyrus and dorsal–lateral prefrontal
cortex) brain areas. Colored bars represent t values.
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corrected association with age in both TR groups. This included
a linear MSSD increase across the lifespan in the right dorsal
anterior insula (dAI) and left VTC and a linear MSSD decrease
across the lifespan in bilateral visual and sensorimotor networks,
as well as the bilateral thalamus and basal ganglia regions.

Associations between MSSD and nonlinear effects of age
There were no quadratic effects of age that survived stringent
voxelwise (p � 0.002, Fast TR group df � 189, Slow TR group
df � 185) and cluster wise (p � 0.05) correction. There were two
quadratic effects that survived a more liberal voxelwise (p � 0.05)
and cluster wise (p � 0.05) correction. Although these effects in
isolation are more susceptible to type I errors (Eklund et al.,
2016), the overlap across two different TR acquisitions provides
some evidence for the reliability of these effects. There was a
positive quadratic effect for the thalamus in the slow TR group
and a negative quadratic effect for the right lateral VTC in both

TR groups. The positive quadratic cluster-
corrected effect in the slow TR group did
overlap with a positive quadratic effect in
the fast TR group that was not cluster cor-
rected (voxelwise p � 0.05; Fig. 5). This
demonstrates that an area of the thalamus
had high MSSD in young and old age but
low MSSD in middle age. The positive
quadratic-overlapping TR group effect
was in a more dorsal–anterior portion of
the thalamus compared with the linear
MSSD decrease effect, which was in a
more ventral posterior portion of the thal-
amus. The negative quadratic effect in both
groups was in the right lateral VTC (Fig. 5).
This demonstrates that an area in the right
VTC had low MSSD in young and old age,
but high MSSD in middle age.

Post hoc analysis of GMP and gender,
linear, and quadratic effects
To examine the specificity of the voxelwise
effects, we performed three follow-up post
hoc tests to determine whether these rela-
tionships could be accounted for by age-
related changes in GMP or gender and to
further explore linear and quadratic effects.
The first post hoc regression model used
linear age as the regressor of interest, and
handedness, IQ, FD, GMP, and gender as
nuisance regressors. This test produced
significant post hoc effects for linear age
for all overlapping ROIs across both TRs
except for the sensorimotor ROI in the
slow TR group, which produced a mar-
ginally significant effect (Table 1). This
demonstrates that significant linear ef-
fects persisted across the lifespan after ac-
counting for GMP and gender in the
absence of a quadratic regressor.

The second post hoc regression model
added quadratic age as a factor of interest
back into to the first post hoc regression
model and produced a significant nega-
tive quadratic effect for the right dAI in
the slow TR group, a marginally signifi-

cant positive quadratic effect of the basal ganglia in the fast TR
group, a marginally significant positive quadratic effect for the
sensorimotor ROI in the fast TR group, and marginally signifi-
cant positive quadratic effects for the thalamus in both the fast TR
and slow TR groups (Table 1). No other quadratic effects were
significant. This confirms that a model including a quadratic
factor generally does not outperform a model including the linear
factor for most linear effects (except for the dAI in the slow TR
group) after accounting for gray matter and gender. This also
demonstrates slight U-shaped influences on sensorimotor and
basal ganglia ROIs for the fast TR group and on the thalamus for
both TR groups.

The third post hoc regression model showed that the positive
voxelwise quadratic effect in the thalamus remained significant in
both the fast TR group and the slow TR group (Table 1). One
outlier from the fast TR group and one outlier from the slow TR
group were removed for the quadratic thalamus effect (SD 
 4).

Figure 3. Spatial maps showing brain areas surviving voxelwise ( p � 0.002 uncorrected) and cluster size ( p � 0.05 corrected)
associations between MSSD and age. Red indicates the slow TR group (1.4 s), blue is the fast TR group (0.645 s), and violet is the
voxel overlap between fast and slow TR groups, neuroscientific convention. Significant cluster-corrected voxels overlapping across
both TR groups demonstrate linear increases in the right anterior cingulate and left VTC and linear decreases in thalamus, senso-
rimotor cortex, and in the primary visual cortex.
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The negative voxelwise quadratic effect in the right VTC also
remained significant in both the fast TR group and slow TR
group. This demonstrates that voxelwise quadratic effects still
persist after accounting for GMP and gender.

Linear relationship between MSSD values for subjects in both
TR groups
To determine the consistency of MSSD values for subjects present
in both TR groups, Spearman’s rank-order correlations were re-
calculated using MSSD values for the 177 subjects common to
both groups for all post hoc analyses. Significant positive corre-
lations were replicated for all post hoc regression effects as in the
original manuscript (left VTC linear increase: �(175) � 0.291, p �
0.000085; right dAI linear increase: �(175) � 0.470, p � 3.9022 �
10�11; sensorimotor linear decrease: �(175) � 0.634, p � 2.7058 �
10�21; visual linear decrease: �(175) � 0.685, p � 6.9544 � 10�26;
thalamus linear decrease: �(175) � 0.595, p � 2.5408 � 10�18;
basal ganglia linear decrease: �(175) � 0.361, p � 7.8534 � 10�7;
right VTC negative quadratic: �(175) � 0.425, p � 3.7767 �

10�9). This demonstrates that MSSD values were similar in both
the fast and slow TR analyses for each subject that was present in
both TR groups.

Age–FD and age–sample size relationships
One possible concern with the current study is related to how the
association between age and head motion may affect measures of
MSSD across the lifespan. To further investigate the relationship
between age and head motion (e.g., FD), linear regression models
were run using age (mean centered) and age squared (squared
mean center age) as regressors in a stepwise model. In the fast TR
group, we observed a positive quadratic relationship between age
and FD (F(2,188) � 3.99, p � 0.02, R 2 � 0.04; �linear � 0.092, p �
0.209; �qaudratic � 0.164, p � 0.025), whereas in the slow TR
group, we observed a positive linear relationship between age and
FD (F(1,185) � 25.22, p � 0.000001, R 2 � 0.12; �linear � 0.0346,
p � 0.000001). Adding a quadratic term to the linear model for
the slow TR group failed to produce a significant change in the F
statistic (Fchange � 0.756). Scatterplots visualizing the age–FD rela-
tionship for both TR groups can be found at the bottom of Figure
1. Despite the significant relationships between age and FD, the
voxelwise and post hoc regression analyses used FD as a nuisance
regressor that accounted for such relationships while still demon-
strating significant effects across both analyses.

Another possible concern related to the current study could be
that there was an unequal age distribution of participants: this
dataset includes more subjects in early and old age compared
with middle age. To determine whether this unequal distribution
led to overfitting for young and older individuals compared with
middle age individuals, we investigated whether there was a rela-
tionship between age and the unstandardized residuals for each
post hoc regression analysis. Visual inspection of these scatter-
plots demonstrated that residuals were evenly distributed across

Figure 4. Scatterplots depicting linear MSSD effects across the lifespan. ROIs were taken
from areas of cluster-corrected TR group overlap (violet colors) in Figure 3. Blue circles are males
and red circles are females.

Figure 5. Negative quadratic effect overlap for both TR groups with scatterplots showing
MSSD effects (voxelwise at p � 0.05 and cluster corrected at p � 0.05 for both TR groups). Blue
circles are males and red circles are females. Scatterplots show MSSD values for the fast TR group
effect (voxelwise at p � 0.05) and slow TR group effect (voxelwise at p � 0.05 and cluster
corrected at p � 0.05).
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the entire age range, suggesting that analysis did not overfit
the regression line systematically at young and old age.

Discussion
Brain signal variability has been linked to optimal neural function
(Garrett et al., 2013b) and has been hypothesized to help facilitate
shifts between integrative and segregative brain networks (Tog-
noli and Kelso, 2014). Previous studies have focused on identify-
ing differences in BOLD variability between younger and older
adults within the context of task-based fMRI paradigms (Garrett
et al., 2010, 2011, 2012). The current study investigated resting-
state BOLD variability across the lifespan for the first time. We find
linear and quadratic changes in lifespan BOLD variability tra-
jectories in distinct brain areas similar to lifespan changes in
resting-state functional connectivity (Betzel et al., 2014) and
task-related univariate activity (Kennedy et al., 2015). The cur-
rent study also complements research demonstrating develop-
mental maturation of structural brain properties such as total
cerebral volume and white/gray matter maturation (Giedd et al.,
1999).

Overall, we found that variability increases linearly in SN
nodes (anterior insula) and the VTC across the lifespan. In con-
trast, brain signal variability decreases across the lifespan in most
every other brain area, including subcortical, visual, sensorimo-
tor, DMN, and CEN regions. Cluster corrected results across two
TRs demonstrated BOLD signal variability linearly increased
across age in the right dAI and left VTC, whereas linear decreases
were localized bilaterally in visual, sensorimotor, thalamic, and
basal ganglia areas. Last, we demonstrate preliminary support for
a positive quadratic thalamus effect that was spatially distinct
from the linear decrease thalamus effect and a negative right VTC
quadratic effect.

Brain variability across the lifespan
The current results align with research demonstrating that BOLD
variability mostly decreases in old age: fewer brain regions show
increased variability with old age (Garrett et al., 2010, 2011).
However, the current results do not align with previous evidence
for a general cortical–subcortical dichotomy where subcortical
areas increase in variability across age compared with cortical
areas (Garrett et al., 2013b). Instead, the current study found
different MSSD trajectories based on functional systems (e.g.,
SN vs the rest of the brain) rather than a cortical–subcortical
dichotomy. These data also conflict with previous results
showing both increases and decreases in BOLD variability
across age in frontal, temporal, and parietal areas (Garrett et
al., 2010; Garrett et al., 2013b). The current study also con-
flicts with previous EEG results (McIntosh et al., 2008) and
BOLD variability studies (Garrett et al., 2011) that led re-
searchers to propose an inverted U-shaped trajectory in which
brain variability is low in children and older adults, but high in
middle age (Garrett et al., 2013b).

One explanation for the divergent findings is that we used
resting-state data, whereas previous studies focused on fixation
and task periods within the context of task performance. Previous
research indicates that completing task-based fMRI affects
resting-state BOLD fMRI (Northoff et al., 2010). Therefore, pre-
ceding task trials in task-based fMRI may affect variability ana-
lyzed during fixation periods. Furthermore, it is typical to isolate
low-frequency fluctuations in resting-state data through band-
pass filtering (0.01– 0.10 Hz), something typically not done in
task-based fMRI BOLD variability analyses. Finally, the current
study used multiband acquisition data whereas previous studies
did not. Additional research should explore how interspersed
task blocks affect BOLD variability during fixation periods com-

Table 1. Results from post hoc regression analyses

Fast TR group, 0.645 s Slow TR group, 1.4 s

R 2 (df) F �linear ( p value) �quadratic ( p value) R 2 (df) F �linear ( p value) �quadratic ( p value)

Left VTC linear increase M1 0.189 (6, 184) 7.15 0.389 (4.3463 � 10 �7) — M1 0.163 (6, 180) 5.83 0.323 (0.000061) —
M2 0.204 (7, 183) 6.71 0.410 (1.2892 � 10 �7) �0.140 (0.063) M2 0.170 (7, 179) 5.24 0.335 (0.000037) �0.091 (0.214)

Right insula linear increase M1 0.143 (6, 184) 5.13 0.308 (0.00013) — M1 0.114 (6, 180) 3.86 0.3 (0.00039) —
M2 0.144 (7, 183) 4.40 0.312 (0.000125) �0.034 (0.663) M2 0.147 (7, 179) 4.40 0.325 (0.000112) �0.195 (0.009)

Sensorimotor linear decrease M1 0.168 (6, 184) 6.17 �0.352 (0.002) — M1 0.120 (6, 180) 4.09 �0.356 (0.000092) —
M2 0.180 (7, 183) 5.72 �0.382 (0.001) 0.125 (0.102) M2 0.121 (7, 179) 3.52 �0.358 (0.000088) 0.033 (0.660)

Visual linear decrease M1 0.222 (6, 184) 8.78 �0.429 (1.9072 � 10 �7) — M1 0.173 (6, 180) 6.28 �0.360 (0.000009) —
M2 0.226 (7, 183) 7.65 �0.436 (1.408 � 10 �7) 0.069 (0.345) M2 0.177 (7, 179) 5.51 �0.367 (0.000007) 0.069 (0.346)

Thalamus linear decrease M1 0.174 (6, 184) 6.48 �0.433 (1.9711 � 10 �7) — M1 0.123 (6, 180) 4.21 �0.256 (0.005) —
M2 0.183 (7, 183) 5.84 �0.431 (2.1183 � 10 �7) 0.139 (0.065) M2 0.138 (7, 179) 4.08 �0.257 (0.005) 0.132 (0.083)

Basla ganglia linear decrease M1 0.116 (6, 184) 4.03 �0.376 (0.000006) — M1 0.113 (6, 180) 3.83 �0.368 (0.00001) —
M2 0.127 (7, 183) 3.79 �0.387 (0.000004) 0.116 (0.136) M2 0.115 (7, 179) 3.33 �0.373 (0.000008) 0.048 (0.528)

Right VTC negative quadratic M3 0.197 (7, 183) 6.40 �0.203 (0.015) �0.233 (0.003) M3 0.093 (7, 179) 2.63 �0.078 (0.354) �0.270 (0.001)

Model 1 investigated whether linear effects persisted across the lifespan in the absence of a quadratic regressor when averaging MSSD across a group of voxels and accounting for gray matter probability and gender. Model 2 ruled out that
a quadratic effect better explained the linear effect from Model 1 when averaging MSSD across a group of voxels and accounting for gray matter probability and gender. Model 3 investigated whether quadratic effects persisted across the
lifespan when averaging MSSD across a group of voxels and accounting for gray matter probability and gender. Beta coefficients are reported in standardized form.

Table 2. Within-subject voxelwise whole-brain group average correlations between zMSSD, non-normalized SD, percentage-change normalized MSSD with a mean of 100
(%MSSD), and percentage-change normalized SD with a mean of 100 (%SD)

Fast TR group Slow TR group

zMSSD SD %MSSD %SD zMSSD SD %MSSD %SD

zMSSD — — — — — — — —
SD �0.392 �0.44
%MSSD �0.251 0.9811 �0.314 0.9838
%SD �0.392 1 0.9811 �0.439 0.9999 0.9839

SD, %SD, and %MSSD are strongly correlated with each other and negatively correlated with zMSSD.
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pared with rest, how BOLD variability
may differ when isolating specific fre-
quency bands, and the influence of multi-
band acquisition parameters on BOLD
variability.

Functional connectivity across
the lifespan
Two previous studies using the NKI data-
base (age range 7– 85 years old, TR � 2.5)
demonstrate that modularity (how well
major networks are partitioned into
smaller integrative and segregative com-
munities, e.g., SN, DMN) generally shows
a linear decrease across the lifespan, indi-
cating reduced functional subnetwork au-
tonomy (Betzel et al., 2014; Cao et al.,
2014). Betzel et al. (2014) also demon-
strated general within-network node
functional connectivity decreases along-
side general between-network node func-
tional connectivity increases for the DMN,
CEN, visual, and sensorimotor networks. In
the current study, general decreases in
MSSD across the lifespan for most networks
(except the SN) may be related to decreased
modularity because increased variability is
thought to enhance functional specificity by
facilitating flexibly switching between inte-
grative and segregative states (Tognoli and
Kelso, 2014).

In addition, Betzel et al. (2014) found
that salience/ventral attention network
nodes (including the right dAI) demon-
strated positive quadratic trajectories for within-network
node comparisons. They also found increased lifespan
between-node connectivity involving the dorsal attention net-
work, DMN, and CEN. Therefore, the dAI demonstrated func-
tional connections in different directions from the general
decreased connectivity found between most other brain areas.
Cao et al. (2014) conducted ROI-to-whole-brain functional
connectivity analyses and demonstrated linear decreases of
whole-brain functional connectivity metrics for nodes within
salience (including the right dAI), default, attention, visual,
and subcortical regions; positive quadratic effects were found
for the parahippocampus and thalamus, whereas negative
quadratic effects were found in the frontal, temporal, and pa-
rietal areas.

The current results demonstrating differential variability
patterns in the right dAI compared with other brain areas are
consistent with Betzel et al. (2014), who found that the right
dAI showed differential patterns of functional connectivity
across the lifespan compared with the rest of the cortex. The
positive thalamic quadratic effect and the negative quadratic
effect for the VTC in the current study align with Cao et al.
(2014), who found a positive thalamic quadratic effect and
negative temporal quadratic effect for functional connectivity.
Other work indicates that dorsal–anterior portions of the thal-
amus strengthen their functional connections to frontal areas,
whereas ventral–posterior portions of the thalamus weaken
their functional connections to temporal areas from child-
hood to adulthood (Fair et al., 2010). These dissociations in
thalamic connectivity mirror the spatially distinct thalamic

variability results in the current study, in which a dorsal–
anterior thalamic area demonstrates a positive quadratic effect
and a ventral–posterior thalamic area a negative linear effect.
These studies, in conjunction with the current study, suggest
that the right dAI, thalamus, and temporal cortex present with
unique types of variability and functional connectivity lifes-
pan trajectories compared with other brain areas. Future work
is needed to explore the relationship between BOLD variabil-
ity and functional connectivity across the lifespan.

Behavioral relevance of MSSD lifespan trajectories
On a systems level, different brain networks interacting with
varying degrees of variability may reflect the inverted U-curve
trajectories (see Fig. 6) present across the lifespan for various
behavioral measures (Cepeda et al., 2001; Hommel et al., 2004; Li
et al., 2004; Tran and Formann, 2008). The right dAI within the
SN in particular has been identified as a “hub” that participates in
a myriad of cognitive processes including network switching,
salience detection (Menon and Uddin, 2010), and integrating
sensory networks (Nomi et al., 2016). Therefore, increased vari-
ability in the right dAI is notable because of its dynamic interac-
tion with almost every brain system and its involvement in nearly
every cognitive process (Uddin et al., 2014; Uddin, 2015). Spec-
ulatively, it is possible that large differences in variability between
SN nodes and other brain areas/systems could produce the sub-
optimal behavioral performance seen in early childhood and old
age. In middle age, variability between different brain areas/sys-
tems may reach more of an equilibrium, resulting in optimal be-
havioral performance—an idea consistent with theories proposing

Figure 6. Speculative model describing the proposed relationship between linear increases and decreases in BOLD
variability across the lifespan and the inverted U-shaped curve of lifespan behavioral performance characterizing many
behavioral tasks. The yellow arrow indicates linear increases in BOLD variability for SN nodes and the blue arrow indicates
linear decreases in BOLD variability for CEN, DMN, sensorimotor (SM), and visual areas. In early and old age, large differ-
ences in variability between brain networks leads to suboptimal behavioral performance. The red arrows indicate that
optimal behavioral performance may come from the intrinsic balance between high and low variability between different
brain networks in middle age.
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that a balance between excitation and inhibitory neuronal pro-
cesses facilitates optimal brain function (Shew et al., 2011). Ad-
ditional studies that characterize the relationship between
resting-state and task-based fMRI BOLD variability across the
lifespan are crucial for understanding the behavioral significance
of the current findings.

Physiological influences on the BOLD signal across
the lifespan
A concern in lifespan neuroimaging studies is neurovascular cou-
pling; that is, how neural activity interacts with brain vasculature
across age to influence the BOLD signal artificially (D’Esposito et
al., 2003). Although it is difficult to completely rule out physio-
logical confounds, previous work suggests that vascular changes
are not responsible for the BOLD variability trajectories observed
in the current study. First, previous developmental BOLD
variability research argued that global unidirectional vascular-
coupling age effects cannot explain multidirectional BOLD
variability trajectories (Garrett et al., 2010). Second, whereas
early studies demonstrated an influence of vascular coupling
on BOLD signal activity in aging research (D’Esposito et al.,
1999), recent studies claim that these effects were driven by the
inclusion of voxels biased toward younger subjects’ task acti-
vation in statistical analyses (Aizenstein et al., 2004) and by
using task designs that produce attentional and motor differ-
ences in older individuals compared with younger individuals
(Grinband et al., 2017). Because the current study found mul-
tidirectional trajectories of BOLD variability (increases, de-
creases, and quadratic effects), avoided analyzing voxels
biased toward any age range by focusing analyses on only
voxels with significant age trajectories, and used resting-state
fMRI data that were not influenced by task design, vascular
coupling influences across age should be minimized.

Summary
The current study identified general lifespan trajectories of
resting-state BOLD variability that complements previous re-
search showing structural and functional lifespan changes within
the brain. We demonstrate that variability in SN nodes increases
linearly across the lifespan, whereas variability from most other
large-scale networks decreases linearly over the lifespan. We also
demonstrate a positive quadratic thalamic effect and a negative
quadratic right VTC effect. These findings add to a growing lit-
erature demonstrating the contributions of neural variability to
flexible cognition.
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