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Abstract

We use a new high-accuracy all-dimensional potential to compute the cross second virial 

coefficient B12(T) between molecular hydrogen and carbon monoxide. The path-integral method is 

used to fully account for quantum effects. Values are calculated from 10 K to 2000 K and the 

uncertainty of the potential is propagated into uncertainties of B12. Our calculated B12(T) are in 

excellent agreement with most of the limited experimental data available, but cover a much wider 

range of temperatures and have lower uncertainties. Similar to recently reported findings from 

scattering calculations, we find that the reduced-dimensionality potential obtained by averaging 

over the rovibrational motion of the monomers gives results that are a good approximation to those 

obtained when flexibility is fully taken into account. Also, the four-dimensional approximation 

with monomers taken at their vibrationally averaged bond lengths works well. This finding is 

important, since full-dimensional potentials are difficult to develop even for triatomic monomers 

and are not currently possible to obtain for larger molecules. Likewise, most types of accurate 

quantum mechanical calculations, e.g., spectral or scattering, are severely limited in the number of 

dimensions that can be handled.

I. Introduction

Mixtures containing molecular hydrogen and carbon monoxide are of significant industrial 

interest. The well-known water gas-shift reaction produces H2 and CO from combining 

steam with coal or another source of carbon; the resulting synthesis gas is widely used in 
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industry. H2 and CO are also prominent in the proposed advanced gasification power cycles 

that enable capture of CO2.1–3 In both of these cases, the primary interest for 

thermodynamic modeling is in gas-phase properties at moderate pressures. Such modeling is 

made more accurate if the second cross virial coefficient B12(T), representing the first 

deviation from the ideal-gas law due to the two-body interaction between H2 and CO 

molecules, is known at the temperature of interest.

Experimental thermodynamic data for this mixture are scarce, largely because both H2 and 

CO present major safety hazards in the laboratory. The few available vapor-liquid4–6 and 

vapor-solid7,8 equilibrium data are at cryogenic temperatures far from the conditions of most 

industrial interest. The available gas-phase data9–15 will be discussed in Section IV C.

The H2–CO molecular interaction is also of interest in astrophysics. The main reason is that 

CO spectra are easy to observe, in contrast to H2 which is spectroscopically invisible, in 

particular in interstellar molecular clouds. If cross-sections for collision of H2 with CO are 

known, the observed intensities of CO rotational transitions can be used to infer properties 

of interstellar media. H2–CO has been the subject of numerous spectroscopic investigations, 

partly due to its astrophysical importance. These measurement were reviewed by Jankowski 

et al.16

The importance of H2–CO has led to several efforts to produce pair potentials for this 

interaction. A detailed study was published by two of the present authors with 

collaborators,16,17 who studied the intermolecular potential on a set of points in six 

dimensions (6D), i.e., the H-H and C-O bond lengths were varied. From the 6D ab initio 
data, two four-dimensional (4D) analytic potential energy surfaces (PES) were derived by 

averaging over the vibrations of the H2 and CO molecules, corresponding to the two lowest 

(ν = 0 and ν = 1) vibrational states of CO, with H2 in the ground vibrational state in both 

cases. These vibrationally-averaged surfaces were used to compute infrared and microwave 

spectra,16,17 which showed excellent agreement with experimental data and helped to 

interpret such data.

However, some question about the adequacy of the PES remained because of an apparent 

disagreement16 between computed B12(T) and an experimental datum at low temperature 

(near 77 K). It was shown in Ref. 16 that this discrepancy is unlikely to be due to the 

residual errors in the 4D surface. One reason for this disagreement could be the 

semiclassical approximation used by Jankowski et al.16 to compute B12(T). Another possible 

reason could be an approximate description of the intramolecular degrees of freedom which 

were taken into account only indirectly by using the vibrationally averaged surfaces. Thus, 

to investigate these problems, one should employ both a fully quantum method to calculate 

the virial coefficients and an interaction energy surface depending explicitly on all degrees 

of freedom.

In this work, we use the path-integral Monte Carlo method (PIMC) to fully incorporate the 

quantum effects in the calculation of the second virial coefficient. A new, 6D interaction 

energy surface, applied in scattering calculations and partly described by Faure et al.,18 is 

used in our work without any approximations, i.e., the PIMC calculations are also six-
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dimensional. The uncertainty of the pair potential was carefully estimated and additional 

PIMC calculations were performed to determine the uncertainty in B12(T). The result is 

values of B12, with uncertainties, covering the range from 10 K to 2000 K.

Yang and coworkers19,20 recently developed a 6D potential for H2-CO and used it in 

scattering calculations. The cross-sections were generally in qualitative agreement with 

experiment for low-energy scattering, but this agreement was not as good as that for cross-

sections calculated from the 4D potential of Refs. 16 and 17; see the discussion of these 

issues in Ref. 18. Faure et al.18 performed similar calculations with their new 6D potential 

and obtained very good agreement both with experiment and with the cross-sections from 

the 4D potential. In this work, we will examine whether the comparative performance 

between these two potentials also extends to the predicted second virial coefficient.

The determination of the uncertainties of the 6D surface required extensive investigations of 

its properties as described in Secs. II A–II C. The PIMC calculations probe a wide range of 

variables, therefore it was necessary to precisely characterize the range of variables for 

which the fitted potential energy function is reliable, as described in Sec. II D. We have also 

investigated, Sec. II E, characteristic points on the surface. The PIMC methodology is 

described in Sec. III. The results of full-dimensional treatment are presented in Sec. IV A 

and virials resulting from approximate treatments in Sec. IV B. We compare to experimental 

data in Sec. IV C and to values computed with the potential of Yang et al.19,20 in Sec. IV D.

II. H2–CO Potential

The development of a new full-dimensional interaction energy surface for H2–CO (denoted 

as V15) has been partly described in Ref. 18. In the present paper, we will first briefly 

summarize the most important information about this surface and then discuss some features 

of the surface that were not investigated in Ref. 18. Special attention will be given to the 

uncertainties of the surface which determine, together with the statistical uncertainties of the 

PIMC calculations, the uncertainties of the virial coefficients.

To describe the dependence of the interaction energy of H2–CO on the geometry of the 

complex, we use the intermolecular coordinates X = (R, θ1, θ2, ϕ) and the intramolecular 

coordinates Y = (r, s), where R denotes the distance between the centers of mass (COM) of 

monomers (the COM of H2 is placed at the origin of the coordinate system and the COM of 

CO at z = R), θ1 (θ2) denote the angles between the ẑ axis and the vectors starting at the 

appropriate COM and ending up in H (C), ϕ is the dihedral angle between these vectors, 

whereas r and s are the interatomic separations in H2 and CO, respectively. The surface has 

been fitted to the ab initio interaction energies calculated on a 6D grid of dimer geometries 

applying the following hybrid approximation:21–23

(1)
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where Eint,H and Eint,B denote the interaction energies calculated at the “high” and “base” 

levels of theory, respectively, and (rc, sc) = (1.474, 2.165) bohr (1 bohr ≈ 0.52917721 × 

10¬10 m). Eint,B is defined as

where  is the interaction energy calculated at the Hartree-Fock level using the aug-

cc-pVQZ basis set (we use aug-cc-pVXZ basis sets from Ref. 24 with cardinal number X 

taking values 2 (denoted by D), 3 (T), 4 (Q), and 5), whereas  denotes the 

correlation contribution to the interaction energy calculated using the coupled-cluster 

method including up to perturbative triple excitations, CCSD(T), with the complete basis set 

(CBS) 1/X3 extrapolations25 from the calculations in the aug-cc-pVTZ and aug-cc-pVQZ 

basis sets. The CCSD(T) calculations performed to obtain  correlated all 

electrons. Eint,H is defined as

(2)

where

is the correction obtained using an increased-size basis set, aug-cc-pV5Z, whereas

accounts for the electron correlation effects at the level of the coupled-cluster method with 

up to perturbative quadruple excitations, CCSDT(Q), computed in the aug-cc-pVDZ basis 

set using the frozen-core approximation (in this case, the CCSD(T) calculations also utilized 

this approximation). The hybrid approximation defined by Eq. (1) requires one to perform 

the expensive calculations of Eint,H only for the four-dimensional grid, with the 

intramolecular distances frozen at the (rc, sc) values. Thus, the hybrid approximation enables 

us to enhance the overall accuracy of the PES since the most important region near (rc, sc) is 

represented at a very high level of theory. At the same time, the costs of calculations remain 

reasonable since only a fraction of grid points are computed at the high level of theory. The 

analytic form and the procedure of fitting a 6D analytic surface to the hybrid interaction 

energies are discussed in more detail in Ref. 18.

If we use the full-dimensional description of the interacting complex, we need to employ the 

total PES Utot(R, θ1, θ2, ϕ, r, s) to find a geometry of the complex corresponding to the 
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minimum energy. Thus, if we have the V surface representing only the interaction energy of 

the H2 and CO molecules, we need to add the one-dimensional, monomer potentials:

(3)

We used the VH2 potential for H2 from Ref. 26 and the VCO potential for CO from Refs. 27 

and 28. These monomer potentials have minima at r = 1.4011 bohr and s = 2.1322 bohr, 

respectively. We will use the symbol Utot,15 to denote the PES that includes V15.

In this paper, we will also discuss four-dimensional approaches to calculating virial 

coefficients that require the interaction energies averaged over the vibrational motion of both 

molecules. We could have averaged the 6D potential on a set of intermonomer grid points 

and then fit a 4D surface to averaged interaction energies at these points, but instead we have 

performed the averaging on the fly, i.e., in each step of PIMC. Since the direct procedure 

would be time consuming, we have employed an approximate method based on the Taylor 

expansion of the interaction energy with respect to the intramolecular degrees of freedom, as 

described in Refs. 16 and 29.

To estimate uncertainties of computed observables, one has to know the uncertainties of the 

fitted surfaces. The latter uncertainties come from the following sources: (a) uncertainties of 

ab initio interaction energies at the highest level of theory; (b) uncertainties due to the use of 

the hybrid approximation; (c) uncertainties due to fitting. The source (a) has already been 

analyzed in Ref. 16, but only near equilibrium intramonomer separations. We will extend 

this analysis for large extensions of intramonomer separations where single-determinant-

based methods that we use may converge poorly. The source (b) was analyzed in Ref. 18 and 

we will only recapitulate the results. The source (c) will be investigated in the present work.

A. Accuracy of computed interaction energies

The accuracy of the ab initio calculations at the Eint,H level has been estimated in Ref. 16 to 

be about 0.6 cm−1 (relative to the exact interaction energies for a given nuclear 

configuration) in the vicinity of the global minimum with the monomers at (⟨r⟩0, ⟨s⟩0) = 

(1.449, 2.14) bohr. To get the estimates, calculations were performed for 8 grid points in 

inter-molecular coordinates: two distances and four combinations of the angles (one of the 

points was close to the global minimum and another one to the local minimum). For each 

point, CCSD(T) interaction energies were computed in several basis sets, including the basis 

set aug-cc-pV6Z with X larger by one than used in calculations of Eint,H and bases with 

midbond functions. Analysis of basis set convergence including the convergence of CBS 

extrapolated values gave estimates of uncertainties of  resulting 

from basis set truncations amounting to 0.4 cm−1 in the well region and 0.6% for the whole 

PES. For the  contribution, the basis convergence was investigated by performing 

calculations with all electrons correlated in the aug-cc-pVDZ basis and extending the basis 

set to the aug-cc-pVTZ size at the frozen-core level. The effect of freezing the core was 

found to be completely negligible. The extension of basis set size gave changes of the order 
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of 0.1 cm−1. The authors of Ref. 16 also computed the contribution of the iterated quadruple 

excitations to the interaction energy at four grid points. They found that the effect of such 

iterations on interaction energies, , is below 0.1%. 

Accounting for the uncertainties due to basis set incompleteness of  and the neglect 

of , the overall uncertainties of the Eint,H interaction energies were estimated as 0.5 

cm−1 in the well region and 0.7% for the whole surface. Since the total quadruples 

contribution to the interaction energy is of the order of only 1%, whereas that of triples is 

19%, clearly the effects of higher excitations are well below the estimated uncertainties. 

Similarly, the adiabatic corrections and relativistic effects, evaluated in Ref. 30, are of the 

order of 0.1 cm−1. The authors of Ref. 16 concluded that the uncertainties of Eint,H relative 

to exact interaction energies at the adiabatic level with inclusion of relativistic effects are 0.6 

cm−1 or 0.8%.

While the investigations of Ref. 16 were performed for (〈r〉0, 〈s〉0), the estimates should be 

valid for (rc, sc) used in calculations of Eint,H since these coordinates differ by only about 

0.02 bohr. However, the estimates will likely not hold if Eint,H were computed for (r, s) 

departing significantly from this range. Information about such uncertainties is needed in 

order to obtain estimates of the accuracy of interaction energies in 6D. The authors of Ref. 

18 computed Eint,H for the intermonomer coordinates fixed at the near minimum values 

(R,θ1,θ2,ϕ)=(8.0,0°,180°,0°) and sweeping the whole range of (r, s). We now will estimate 

the uncertainties of these values. The convergence in basis set should not change with (r, s), 

but the convergence in the number of excitations may. This is due to the well-known fact 

that methods based on a single-reference determinant start to converge more slowly for 

stretched chemical bonds. To examine this issue, we have performed calculations of the 

interaction energy at the CCSDTQ level for the set of grid points with R = 8 bohr used in 

Ref. 18. The results are presented in Table I. The  correction, calculated in the aug-cc-

pVDZ basis set with frozen core, is compared to the other post-CCSD(T) corrections, 

 and , and the total interaction 

energy  calculated in the same basis set. One can see that for (r, s) ≈ (rc, sc), the 

value of  is −0.051 cm−1, which amounts to 2% of the  contribution and 0.07% 

of . This is only slightly larger than the corresponding contribution of 0.06% at 

(〈r〉0, 〈s〉0) computed in Ref. 16. The contribution is even smaller for smaller values of r and 

s. However, for the most stretched intramolecular distances, (2.05, 2.45) bohr, the value of 

 is as large as −0.89 cm−1 which amounts to 1.4% of . Thus, for this 

configuration the uncertainty of Eint,H has to be increased to about 2%, more than a factor of 

two compared to the region near equilibria of (r, s). For most points in Table I, the original 

estimate of 0.8% holds and only for points in the lower right corner of this table [and the 

point (0.95,2.45)] must it be increased to some value between 0.8% and 2%. Table I shows 

that it is the increase of r that is mainly responsible for the increase of . This is partly 

due to the fact that the H-H bond is maximally stretched by 46% versus only 15% for the C-

O bond. As an aside, one may mention that for the isolated H2, the CCSD method is 

equivalent to the full configuration interaction method, i.e., is exact in a given basis set for 
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any r. Thus, it may be surprising that  depends so strongly on r. This is partly 

accidental, due to the fact that  crosses zero around r = 1.2 bohr and therefore relative 

changes are large. The absolute changes related to r and s are not that different: 0.98 cm−1 

for r changing from 0.95 to 2.05 bohr at s = 2.45 bohr and 0.58 cm−1 for s changing from 

1.90 to 2.45 bohr at r = 2.05 bohr.

The analysis presented above shows that if the whole 6D PES were computed at the Eint,H 

level, the accuracy of the predictions from this surface would be determined by uncertainties 

of PES for near-equilibrium intermonomer separations since this uncertainty extends to quite 

a broad range of (r, s) coordinates and the regions where uncertainties become large is only 

lightly sampled in typical applications in spectroscopy, scattering, and thermodynamics. 

However, Eint,H was computed only at (rc, sc), whereas for other (r, s) the hybrid 

approximation was used. The error of Eint,B is mainly due to the neglect of the post-

CCSD(T) contributions and is therefore of the order of 3% for near-equilibrium monomers. 

The hybrid approximation makes the PES accurate to 0.8% near (rc, sc), but is not 

guaranteed to reduce errors at large monomer deformations. This issue was investigated in 

Ref. 18 on the same set of grid points discussed above and in addition for an analogous set 

located in the region of the local minimum with R = 7 bohr (see Sec. I and Table I in 

Supplementary Information of that work). It was shown there that the hybrid approximation 

reduces uncertainties at 78% of the grid points, i.e., the errors of Eint,hyb relative to Eint,H are 

smaller than the errors of Eint,B. In the region where both r and s are large, the errors of 

Eint,hyb are about 3%, i.e., are larger than the uncertainties of Eint,H (due to the neglect of 

) in this region. Thus, the final conclusion from these investigations is that the reduced 

rate of convergence for stretched bonds leads to smaller additional uncertainties than those 

that result from the use of the hybrid approximation in this region. One may also notice in 

Table SI-I of Ref. 18 that the CCSD(T) approximation deteriorates with increasing r and s 
similarly as CCSDT(Q) does. At R = 8 bohr, the error of less than 3% near equilibrium 

values becomes as large as 6% at (2.05,2.45). The 78% “success rate” listed above for the 

hybrid approximation is partly due to this deterioration since Eint,B inherits this 

deterioration.

B. Accuracy of fitting

The analytic form of the fit should be at the same time flexible enough to describe subtle 

features of the potential and not too flexible to prevent undulating behavior between grid 

points. Clearly, the fitting errors should be smaller than the errors originating from the ab 
initio calculations. The errors of the V15 fit with respect to the training set of ab initio 
interaction energies were briefly discussed in Ref. 18. The root-mean-square error (RMSE) 

is 0.63 cm−1 for all 27 132 grid points used in the final fit. For the 22 668 energies belonging 

to the interaction potential well, the RMSE is 0.16 cm−1, and for the 4464 positive energies 

smaller than our threshold of 1000 cm−1, the RMSE is 1.51 cm−1. We will now present a 

more detailed description of this issue. Figure 1 shows the average, signed average, and 

RMSE errors of the V15 surface with respect to the ab initio data computed for several 

energy intervals. One can see that the average “+” and “−” errors have a rather stable 

amplitude in all intervals within the potential well and only slightly exceed 0.2 cm−1. 
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Moreover, these errors cancel each other to a great extent and the average error is close to 

zero. For the (−10, 0) cm−1 interval of the energy, the errors are especially small, which is 

due to the large number of small energies calculated for geometries belonging to this interval 

with relatively large values of R. The values of RMSE are also very similar for all energy 

intervals within the potential well and barely exceed 0.2 cm−1. This finding shows that the 

accuracy of the fit in terms of RMSE is very uniform for all negative energies and the overall 

RMSE of 0.16 cm−1 is a good representation of the accuracy of the fit everywhere in this 

region. For the positive energies, the absolute values of the averaged energies increase, but 

the relative ones still remain at a very reasonable level. The cancellation of the “+” and “−” 

errors is also very good, e.g., for the (50, 100) cm−1 interval their difference is −0.11 cm−1 

which is less than about 0.2% of the energies in this range. The RMSE in this interval is 0.36 

cm−1, which amounts to 0.7% of the smallest energies from this interval. As one can see, the 

value of RMSE behaves linearly for increasing values of energies. This is consistent with our 

weighting function (see Ref. 18), which enforces the fit to be of uniform accuracy within the 

whole potential well and to have a stable relative error in the repulsive part of the surface. 

This function included the product of three factors depending on the interaction energy and 

on the deformation of the H2 and CO molecules. The latter two factors were introduced to 

enhance the quality of the fit for the grid points with intramolecular distances in the vicinity 

of the monomer's equilibrium separations.

The dependence of the fit accuracy on intramonomer separations is presented in Table II, 

which shows the values of RMSE separately for each (r, s) pair used and divides them into 

three energy ranges: (−∞, 0), (0, 1000), and (−∞, 1000) cm−1. As already seen in Fig. 1, 

RMSEs for negative energies are small: 3-6 times smaller than the ab initio uncertainty of 

about 0.6 cm−1 in the van der Waals minimum region. This demonstrates that the fit is more 

than sufficiently accurate there. The increase of RMSE for (r, s) far from (rc, sc), imposed by 

our weighting function, is fairly weak, only up to 44% for negative energies and up to a 

factor of 4 for the positive ones. In fact, for some values of (r, s), RMSEs are slightly smaller 

than for (rc, sc), most likely just due to numerical fluctuations. While RMSEs either increase 

slowly with s or fluctuate, there is an overall clear increase with r. One reason is, of course, 

the greater variation of r as discussed earlier. Another reason can be an increase of the 

anisotropy of the interaction energy as r increases. The anisotropy is governed by the 

electrostatic component of the interaction energy, and the leading term in the asymptotic 

expansion of this component depends on the quadrupole moment of H2, equal to 0.256, 

0.483, and 0.770 a.u.31 at r = 1.0, 1.4, and 2.0 bohr, respectively, a rather large increase.

We will use in calculations of virials a 4D surface denoted as V15(r0) obtained from V15 by 

setting the intramolecular distances at the vibrationally averaged values r0 = 〈r〉0 = 1.4487 

bohr and s0 = 〈s〉0 = 2.1399 bohr for H2 and CO, respectively. We cannot directly evaluate 

the accuracy of this surface since no calculations have been done at (r0, s0). However, we 

computed the full set of ab initio intermolecular energies at (rc, sc) = (1.474, 2.165) bohr, 

very close to (r0, s0). Clearly, based on the evidence in Sec. II A, the accuracy of the V15(r0) 

surface should be very close to that of V15 calculated at (rc, sc). The appropriate values of 

RMSE are given in the caption of Table II and are 0.16, 0.81, and 0.35 cm−1 for the (−∞, 0), 

(0, 1000), and (−∞, 1000) cm−1 ranges of the interaction energy, respectively.
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It is more difficult to estimate the uncertainty of another 4D PES that will be used in 

calculations of virial coefficients, the 〈V15〉0 surface obtained by averaging V15 over the 

ground-state vibrations of the monomers. However, this surface should be very similar to the 

4D V12 surface16,17. While the value of 〈V15〉0 at an arbitrary point X = (R, θ1, θ2, ϕ) is 

obtained by integrating out the (r, s) coordinates from the 6D PES (no 4D fitting is 

involved), V12 was fitted to the set of averaged ab initio interaction energies at all X grid 

points. The average used interaction energies Taylor expanded around (rc, sc), with the 

values at the expansion point computed at the Eint,H level and the derivatives computed at the 

Eint,B level, which is equivalent to using our hybrid approach. Therefore, we can evaluate the 

errors of 〈V15〉0 on this set of points. Such RMSEs are presented in Table III for both PESs. 

To make a fair comparison with V12, the intervals (−∞, 400) cm−1 and (0, 400) cm−1 used 

in Ref. 16 are also included. Table III shows that the RMSE of 〈V15〉0 for negative 

interaction energies is very small, 0.2 cm−1, showing that the 6D fitting did not introduce 

any spurious errors. However, in all intervals below 400 cm−1, V12 has about twice smaller 

RMSE than 〈V15〉0. This could be expected, since the reference data set is the training set 

for V12. The larger RMSE of 〈V15〉0 does not indicate, however, that it is the inferior of the 

two 4D surfaces. In fact, it is likely that the opposite is true, since 〈V15〉0 employed a much 

wider range of (r, s) in the averaging over intramonomer distances than V12. One has, 

however, to also admit an (unlikely) possibility that the increased errors of ab initio points at 

extreme values of (r, s) might have had a negative effect on the accuracy of 〈V15〉0. For the 

intervals containing energies larger than 400 cm−1, the relations are opposite and the RMSEs 

of V12 are about twice as large as those of 〈V15〉0. The obvious reason is the neglect of such 

energies in fitting V12.

C. Overall uncertainty of fitted surface

The overall uncertainty of our fit surface V15 is a combination of the uncertainties from 

sources (a)–(c) discussed earlier in this section. The uncertainty (a) of Eint,H, i.e., the most 

accurate of our interaction energies computed only at (rc, sc) (and at a few test points) is 0.6 

cm−1 in the region of the potential well and 0.8% in all other regions. The source (b), the use 

of the hybrid approximation, introduces only negligible errors in a fairly broad range of (r, s) 

around (rc, sc), whereas the errors at the maximally stretched bonds are about 3% relative to 

the Eint,H level. The deterioration of the CCSDT(Q) approximation as intramonomer bonds 

are stretched was estimated to amount to only 1.4%, increasing the total basis set and theory 

level truncation uncertainty to 2%, so it is of secondary importance. Source (c), the errors of 

the fit, are about 0.2 cm−1 for negative interaction energies (for all values of r and s) which 

gives 0.2% error near the bottom of the well. If we add the uncertainties in quadrature for 

the region around (rc, sc), i.e., 0.6 and 0.2 cm−1, the overall uncertainty is still 0.6 cm−1. At 

largest (r, s), simply adding the relative errors mentioned above: 2%, 3%, and 0.2%, we get 

an overall uncertainty of about 5%. We approximated this uncertainty (in percent) by the 

function 0.8 + 8|r − rc| + 15|s − sc| − 10|r − rc||s − sc|. For the maximally stretched 

configuration (r, s) = (2.05, 2.45) bohr, this expression gives a relative uncertainty of 8%. We 

interpret this uncertainty in the potential as an expanded uncertainty with coverage factor k = 

2, roughly corresponding to a 95% confidence interval.
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D. Validity ranges of coordinates

The analytic form of the surface is constructed from the long- and short-range parts, which 

ensure the proper physical behavior of the resulting surface, i.e., the inverse-power 

dependence on R at long range and the exponential growth of the interaction energy for 

small R. The long-range part is damped, but the damping is not perfect and all surfaces of 

such form suffer problems when the values of R are very small since the negative 1/Rn terms 

tend to dominate the positive exponential terms in this region. To test the performance of the 

V15 surface for small R, we calculated values of V15 on the same grid of (θ1,θ2,ϕ,r,s) points 

as used in the ab initio calculations18. The angular part is composed of 241 points and the 

intramolecular part of 26 points, giving 6266 points total. We used three values of R: 4.00, 

3.75, and 3.50 bohr, and for each point (θ1,θ2,ϕ,r,s) from the grid, we checked whether the 

interaction energy increases as R decreases. In only three cases, the interaction energy 

slightly decreased when R changed from 3.75 to 3.50 bohr. Thus, we can assume that the 

V15 interaction energy potential has no “holes” for R ≥ 3.5 bohr and can be used for such 

intermolecular distances. It should also be stressed that the smallest value of the interaction 

energy calculated for the test grid at R = 3.5 bohr was 7894 cm−1, so this value of R 
corresponds to the highly repulsive part of the interaction energy surface.

The range of the r and s variables is defined by the intervals of values used in the ab initio 
calculations, i.e., (0.95, 2.05) and (1.90, 2.45) bohr, respectively. Outside of these ranges, the 

interaction energy is extrapolated by our PES, but one cannot expect that the extrapolated 

values are reliable far outside the ranges. Thus, the potential should not be used for r or s far 

from the recommended region. This should not be needed for most physical applications, 

since these intervals include the classical turning points for the v = 2 (v = 3) vibrational state 

of H2 (CO) (for H2, the outer v = 2 classical turning point is slightly outside the range). 

Although quantum mechanical wave functions do probe the region beyond classical turning 

points, the probabilities of particles to penetrate far into these regions are negligible, so the 

reduced accuracy of the PES there is inconsequential. Thus, V15 can be used with full 

confidence in applications where the vibrational excitations of H2 and CO include states 

with v = 2 and v = 3 states, respectively. This means that the constraints on the values of (r, 
s) do not introduce limitation for a wide range of prospective applications.

E. Features of potential energy surface

The positions and values of the global and local minima on the Utot,15 PES are given in 

Table IV. We use two ways of specifying the depth at a minimum. One is the vertical 

interaction energy (Vmin) which is computed with respect to monomers at the same 

intramonomer separation as in the dimer. The other one is the stabilization energy32 

(Utot,min) which is the difference between the total energy at the minimum and the sum of 

the monomer energies at their equilibria. Thus, the two definitions differ by the energies 

needed to deform monomers from their equilibrium configuration to that assumed in the 

minimum dimer. Table IV shows that, at the global minimum found for the linear HH–CO 

arrangement, the vertical interaction energies are very close to the stabilization energies. The 

reason is that even small departures from (re, se) give large positive contribution to the 

interaction energy from the monomer energies in Eq. (3). Thus, at the global minimum such 

deviations are only of the order of 0.001 bohr and the sum of deformation energies is only 
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0.055 cm−1. The local minimum of the PES has been found for the linear HH–OC 

arrangement with R 0.76 bohr shorter than for the global minimum, which is partly due to 

the COM of CO being closer to O than to C. This minimum is 19 cm−1 shallower than the 

global minimum. The deformation energies are even smaller than in the case of the global 

minimum.

The positions and values of the minima of V15 cannot be directly compared with the 

corresponding values of V12,16 since the latter surface was fitted to the interaction energies 

averaged over the vibrations of the monomers. However, one can compare the V12 and 

〈V15〉0 surfaces. Such a comparison is presented in Table V. We have also included the V04
29 

potential. As we can see, the positions of the global minima for 〈V15〉0 and V12 are very 

close to each other and differ by only 0.002 bohr. The interaction energy at the minimum is 

higher by 0.162 cm−1 in the case of 〈V15〉0. This difference is consistent with the 

uncertainties of the two fits discussed in Sec. II B. For the local minimum, the relations are 

similar.

Comparison of Tables IV and V shows that the vertical minimum interaction energy of the 

6D potential is smaller in magnitude by 2.77 cm−1 than the minimum interaction energy of 

〈V15〉0. This happens at almost identical values of intermonomer coordinates. Such a large 

energetic difference is due to the fact that the monomer coordinates are very close to (re, se) 

in the former case whereas the average performed in the latter case tends to favor larger (r, s) 

which correspond to more negative interaction energies. The latter interaction energy is very 

close, within 0.3 cm−1, to the minimum energy of V15(r0), for the same reason. Interestingly, 

the difference is larger for the local minimum, where it amounts to 0.6 cm−1. Thus, the 

potentials 〈V15〉0 and V15(r0) are quite similar near the minima. However, we will see that 

〈V15〉0 performs slightly better in calculations of virial coefficients, so that the significantly 

larger effort needed to obtain this PES is not wasted.

We have also computed the minima for the Yang et al.19,20 PES using the (original) 

intermonomer potential subroutine from the Supporting Information of Ref. 20 and adding 

to it the same intramonomer potentials as used in Utot,15. The results presented in Table IV 

show that these minima are significantly above our minima: by 10.77 and 2.90 cm−1 for the 

global and local minimum, respectively. The value of the global minimum on Utot,Y may 

appear to be in contradiction with the interaction energy equal to −85.937 cm−1 published by 

Yang et al.19 The reason is that this value is an ab initio computed interaction energy. The 

Utot,Y fit gives −79.626 cm−1 for this point on the surface.

III. Path-Integral Calculations of the Second Virial Coefficient

We calculated the second virial coefficient of the H2–CO system using the path-integral 

formulation of quantum statistical mechanics. In this section, we will briefly summarize the 

principal ideas behind this calculation. Our method has been described in detail in previous 

papers both for rigid-rotor22,33 and fully flexible34 models for the molecules.

From statistical mechanics, the second virial coefficient B(T) is given by
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(4)

where  is the partition function of monomer a,  is the partition function of the 

dimer, and V denotes the volume of the box enclosing the system, with the limit V → ∞ to 

be taken at the end of the calculations. Starting from Eq. (4), one can derive the general 

expression

(5)

where the meaning of the effective potential Veff(…) as well as the meaning of the average 

〈⋯〉 and the coordinate R depend on both the assumed description of the molecules involved 

(e.g., rigid or flexible) and the level of theory used to calculate the virial coefficient (e.g., 

classical or quantum mechanics).

If the molecules are considered to be classical rigid linear rotors, then the effective potential 

Veff(…) appearing in Eq. (5) is the actual intermolecular potential, R is the distance between 

the centers of mass of molecules a and b, and the average is performed over molecular 

directions uniformly distributed on a sphere.35 If the molecules are assumed to be quantum 

rigid linear rotors, then it is convenient to evaluate the partition functions in Eq. (4) using the 

path-integral method. This procedure results in a mapping of the quantum partition function 

of two linear rigid rotors into an equivalent classical partition function of two ring polymers 

with P monomers. Each replica of a monomer, identified by an index p = 1, …, P, is a rigid 

rotor whose center of mass is connected by a harmonic potential to the centers of mass of 

two adjacent neighbors, those labeled by the indices p − 1 and p + 1, with the ring condition 

implying that p = P + 1 is equivalent to p = 1. The orientational degrees of freedom between 

adjacent monomers are also coupled via a quasi-harmonic potential. The path-integral 

formulation provides an expression for the spring constant connecting the centers of mass, as 

well as a (numerical) expression of the potential that couples the rotational degrees of 

freedom. At the end, it can be shown22,33 that the path-integral expression for B(T) also has 

the form of Eq. (5) where:

1. The coordinate R is the relative distance between the centers of mass of two 

beads with the same index (p = 1, say) on the molecules a and b.

2. The effective potential appearing in the exponential is the average of the original 

intermolecular potential V(⋯) performed on the pairs of beads of the two 

molecules having the same index p.

3. The average 〈⋯〉 is performed on the configurations that the two ring polymers 

corresponding to molecules a and b have when they do not interact.
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A fully flexible model also results in an expression for B(T) in the form of Eq. (5). In the 

classical case, the average in Eq. (5) is taken over the distribution of bond lengths of isolated 

molecules, as well as their orientations. When the two-body partition function of flexible 

molecules is calculated according to the path-integral formulation of quantum-statistical 

mechanics, one again obtains a mapping of the quantum system into an equivalent classical 

system of ring polymers.34 In this case, a ring polymer is associated with every atom of both 

molecules and, again, the quantum expression for B(T) has the form of Eq. (5). The average 

〈⋯〉 is now performed on configurations of isolated molecules where each atom is 

substituted by a P-bead ring polymer. The ring polymers corresponding to atoms within the 

same molecule interact among themselves with a potential energy that is the average of the 

intramolecular potential on the P configurations characterized by the same value of the index 

p. Analogously to the rigid-rotor case, the effective potential Veff(…) appearing in Eq. (5) 

becomes the average of the original intermolecular potential on the P configurations with the 

atoms of both molecules having same index p.

As is well known, molecular hydrogen exists in two types, depending whether the nuclear 

spins are in a singlet state (para-H2) or in a triplet state (ortho-H2). Their thermodynamic 

properties are only significantly different at very low temperatures (where the para form is 

energetically favored). Since the simulation of ortho-H2 is plagued by a sign problem that 

would make Monte Carlo sampling much more laborious, in this work we limited ourselves 

to considering para-H2 only. Details on the method can be found in Ref. 22 for the rigid case 

and in Ref. 34 for the flexible case.

In our calculations, we evaluated the integral in Eq. (5) using the VEGAS algorithm36 with 

10 000 integration points. In evaluating the average 〈⋯〉 for each value of the sampled 

coordinate R, we used 12 independent ring-polymer configurations for each of the molecules 

a and b. These configurations were sampled with a dedicated Monte Carlo routine, which 

included uniformly distributed random overall rotations. The path-integral mapping is exact 

in the limit P → ∞. In practice, however, a finite value of P is sufficient to reach converged 

results. The value of P for which convergence is reached depends on the specific system and 

model under consideration, as well as on the temperature of the simulation and the required 

accuracy of the calculation; P is in general higher when quantum effects are more 

pronounced (usually, when the temperature decreases and for smaller masses).

In the case of rigid rotors, we observed well converged results by choosing P as a function of 

the temperature T according to the relation P = (2800 K)/T + 7. In the case of flexible 

molecules, however, the “quantumness” of the system is largely determined by the fact that 

atoms are confined in molecules. In the H2–CO system, the requirement to properly describe 

the quite extensive zero-point motion of hydrogen atoms confined in H2 molecules makes 

the dependence of P on the temperature less pronounced. We observed convergence in the 

results by taking P = 48, independent of the temperature. In all cases, B(T) was calculated by 

analyzing the results of 16 independent simulations at each temperature.

The Utot,15 PES described in Section II was used in PIMC calculations. Since a calculation 

of virial coefficients (unlike the scattering calculations reported in Ref. 18) requires 

evaluation of the potential at all values of R, care had to be taken regarding the short-range 
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behavior of V15 (and, consequently, Utot,15), which may become unphysical at very small 

values of R. V15 was developed using grid points down to R ≥ 4.5 bohr, but as described in 

Sec. II D, it behaves reasonably (increasing positive values with decreasing R) for R > 3.5 

bohr. Further investigation revealed that if r and s are close to rc and sc, respectively, which 

is the case in construction of all 4D surfaces derived from V15 and studied here, the resulting 

surfaces can be used for any point with R ≥ 0.15 nm ≈ 2.8 bohr. At shorter R, we imposed a 

hard core. For the fully flexible calculations, criteria based on atomic positions are 

necessary; our cutoffs in this case were 0.1 nm for the C-H distance and 0.09 nm for the O-H 

distance, with a hard core imposed if either distance was smaller than the cutoff.

IV. Results and Discussion

A. Virials from full-dimensional calculations

In Table VI, we give values of B12 calculated from Utot,15 as described above over the 

temperature range from 10 K to 2000 K. The expanded uncertainty U(B12) (coverage factor 

k = 2, approximately corresponding to a 95% confidence interval) has two contributions. 

The first results from the uncertainty in the pair potential. To get this contribution, we 

calculated B12 for the “plus” and “minus” perturbations of V15, obtained by adding and 

subtracting the uncertainty described in Sec. II C. We assume these perturbed potentials to 

correspond to an expanded (k = 2) uncertainty. The contribution to the expanded uncertainty 

is then simply half the difference between B12 calculated from the “plus” and “minus” 

potentials. The second contribution comes from the statistical uncertainty in the PIMC 

calculations. These two contributions are added in quadrature to obtain U(B12). At the 

conditions investigated here, the uncertainty in the pair potential is the dominant 

contribution to the overall uncertainty.

B. Virials from approximate treatments

In previous work on hydrogen,34 we described several levels of approximation to the full 6D 

PES that one might consider to simplify the calculation of B12. Results from these 

approximations are given in Table VI.

First, we consider a rigid-rotor model in which flexibility is completely ignored by fixing the 

intramolecular bond lengths at their equilibrium values re and se. We denote this potential as 

V15(re) and the resulting B12 are tabulated in Table VI.

Second, we consider the potential V15(r0), in which we fix the bond lengths at the values r0 

and s0 obtained as the expectation values over the ground-state rovibrational wave functions. 

As argued for the first time in Ref. 37, monomers are on average in their average geometries, 

rather than in their equilibrium geometries, so a better agreement with experiment or with 

all-dimensional theory should be obtained using such averaged geometries.

Third, we consider the surface 〈V15〉0, proposed originally in Ref. 38, obtained by averaging 

the full-dimensional interaction energy over the product of ground-state rovibrational wave 

functions of the two monomers. 〈V15〉0 is a 4D potential (same dimensionality as rigid-rotor 

potential), but it does not correspond to any fixed values of (r, s). A PES averaged in this 
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way was shown in Ref. 38 to perform better compared to full-dimensional calculations than 

a reduced-dimensionality potential computed at r0.

Finally, we consider the “improved rigid rotor” surface 〈V15〉T, which we have used 

previously22,34 for the H2 dimer. This surface is like 〈V15〉0, except that the monomer wave 

functions used in averaging over intramonomer coordinates are not only the ground-state 

wave functions, but instead are the full set of monomer rovibrational wave functions (more 

accurately, all those contributing beyond a small threshold of significance) weighted 

according to their Boltzmann factors at the temperature of the calculation. In the low-

temperature limit, 〈V15〉T reduces to 〈V15〉0, but it should be more accurate at higher 

temperatures where excitations above the ground state become important.

In order to examine the magnitude of quantum effects and the adequacy of a first-order 

treatment of those effects, the last two columns of Table VI contain results from a classical 

calculation and from a semiclassical calculation of B12(T). For the semiclassical calculation, 

we use the effective potential approach of Takahashi and Imada,39 implemented as described 

by Schenter,40 the same methods as used in the calculations of Ref. 23. Both the classical 

and semiclassical calculations are performed with the potential 〈V15〉0, so it is that column 

in the table to which those approximations should be compared.

In Table VI and in Fig. 2, we see that the three 4D approaches that incorporate flexibility in 

some way, V15(r0), 〈V15〉0, and 〈V15〉T, give virials very close to each other and to the 

rigorous 6D calculation at most of the temperatures studied. Below about 125 K, the 

approximations begin to underestimate the fully flexible result, but in relative terms these 

errors are still small, reaching a maximum at 10 K of about 5% for 〈V15〉0 and 〈V15〉T and a 

little over 6% for V15(r0). These deviations at lower temperatures are probably due to 

increased importance of quantum effects. Quantum calculations explore PESs globally and 

can be expected to be sensitive to actual couplings of inter- and intramolecular degrees of 

freedom which are only present in Utot,15. As expected, the “improved rigid rotor” approach 

〈V15〉T is better at high temperatures where excited rovibrational states are more populated, 

but the improvement over 〈V15〉0 and even over the rigid-rotor surface V15(r0) is only slight, 

because those simpler 4D surfaces already produce quite accurate B(T) as can be seen in 

Fig. 2. Also as expected, the error of B(T) computed from the potential V15(re), in which 

vibrational motion in monomers is completely ignored by fixing the bond lengths at their 

equilibrium values, is larger than the errors of the approximations that incorporate these 

vibrations in some way.

The classical approximation with the 〈V15〉0 potential agrees very well with the full-

quantum calculations using the same potential for T > 1000 K. For lower T, the agreement 

gradually deteriorates, but it is still good down to about 500 K, and is reasonable down to 

perhaps 200 K. The semiclassical approach is much better, with near-perfect agreement 

above 200 K and still very good agreement (within about 1 cm3/mol) down to about 50 K, 

finally producing large errors below about 30 K.

We have also compared with virials computed from the 4D potentials V04 from Ref. 41 and 

V12 of Ref. 16, fully accounting for quantum effects with PIMC. The agreement with values 
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obtained from our present rigid-rotor potential V15(r0) is excellent (within 0.5% except near 

where B(T) crosses zero) throughout the entire range of temperatures. This shows that the 

improvements of the level of ab initio theory since 2004 lead to negligible changes of virials. 

The improvement made since that time was almost entirely due to the increased 

dimensionality and complete accounting for quantum effects.

Finally, we note that, to our knowledge, the semiclassical approach can only be applied to 

the 4D potentials; see a derivation of this approach in Ref. 23. Incorporation of flexibility, 

which is inherently a quantum effect, requires the PIMC method. Therefore, the semi-

classical approach is only a viable simplification if the 〈V15〉0 approximation or the 〈V15〉T 

approximation is considered to be adequate.

C. Comparison with experimental data

B12 cannot be measured directly; it is inferred from experiments with mixtures and 

knowledge of the pure-component values B11 and B22. When necessary in our data analysis, 

we used values of B from the equation of state of Leachman et al.42 for H2 and of Lemmon 

and Span43 for CO.

Brewer12 measured the “excess” second virial coefficient at 0 °C, defined as the difference 

between B12 and the arithmetic mean of the pure-component second virials:

(6)

 can be obtained by measuring the pressure change upon mixing equal volumes of pure 

gases at constant temperature (or the volume change upon mixing at constant temperature 

and pressure). Brewer converted his measured value of  to B12 = 10.13 

cm3 mol−1, but current values of the pure-component virials yield B12 = 9.7 cm3 mol−1. 

Between the uncertainty of the experiments and of the pure-component virials, the 

uncertainty of this value of B12 is probably on the order of 1–2 cm3 mol−1. Michels and 

Boer-boom11 performed a volume-of-mixing experiment at 25 °C whose result is equivalent 

to , yielding B12 = 12.6 cm3 mol−1; the uncertainty in B12 is probably 

similar to that for Brewer's result.

Dymond and Smith44 analyzed the volumetric data for H2–CO mixtures of three different 

compositions taken by Scott9 at 25 °C and by Townend and Bhatt10 at 0 °C and 25 °C. The 

resulting values of B12 scattered over approximately 2 cm3 mol−1; we used the average in 

our comparisons.

Schramm et al.13 used an expansion technique to derive B12 at four temperatures from 77.3 

K to 213.15 K. It appears that their values were obtained by a relative technique with the 

room-temperature results of Townend and Bhatt10 as derived by Dymond and Smith44 used 

as a baseline.
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It is also possible to extract B12 from data for the solubility of solid CO in gaseous H2 at 

moderate pressure, as described previously for the He–H2 system.45 The solubility 

measurements of Dokoupil et al.8 were analyzed by Reuss and Beenakker,46 who derived 

B12 at seven temperatures from 36 K to 60 K. The measurements of Verschoyle7 were 

mostly at pressures too high for analysis at the second virial level to be appropriate, but we 

were able to derive three values at approximately 63 K and one value at approximately 58 K.

In principle, the measurements of hydrogen fugacity in H2–CO mixtures of varying 

compositions by Bruno and Schroeder14 from 403 K to 463 K could yield B12. However, our 

analysis of these measurements found widely different B12 at different compositions, which 

is unphysical and indicates that these data are not precise enough to use for the purpose of 

deriving B12. The density data of Cipollina et al.15 are at pressures too high to be able to 

extract virial coefficients.

In Fig. 3, we plot our calculated results along with the available experimental data at 

cryogenic temperatures. Error bars are plotted for those data sources where uncertainties 

were reported or could be estimated from the information given in the reference. The 

uncertainties in our results (see Table VI) are smaller than the symbols on the plot for all but 

the four lowest temperatures. We do not plot the various simplifying approximations 

discussed above, because the differences would be too small to see on the scale of the plot. 

Agreement with the B12(T) data of Dokoupil et al.8 and Schramm et al.13 is excellent, and 

the calculated results are at least consistent with the more scattered data of Verschoyle.7

The B12 datum near 77 K reported by Schramm et al.13 has been problematic for theory. 

Although estimates both from theory and from comparisons with spectral data suggested 

uncertainties of the V04 PES of the order of 1 cm−1 in the well region, in order to get 

agreement with this datum (which was the lowest temperature experimental virial used in 

that comparison), the PES had to be scaled by a factor of 1.042 which implies a 4 cm−1 error 

at the minimum. In 2012, Chefdeville et al.47 had to use a similar scaling to obtain 

agreement with their scattering data. However, at about the same time, two of us and 

coworkers demonstrated16,17 that the estimate of the uncertainty of the V04 PES was correct 

and no scaling was needed. Indeed, later it was found48 that the discrepancies seen in Ref. 

47 were due to an experimental error. The authors of Ref. 17 wrote that the difference 

between their B12 calculated semiclassically and the datum of Schramm et al.13 near 77 K 

may be due to inadequacy of the semiclassical calculation of quantum effects at low 

temperatures. This opinion was supported by the fact that for the H2–H2 dimer at 75 K the 

fully quantum result is by a factor 1.25 larger in magnitude than the semiclassical one.33 Our 

results do not support that conjecture. In Table VI, it can be seen that the difference between 

the semiclassical result and the fully quantum PIMC result is still small at 77 K, only about 

1 cm3/mol, and in fact that fully incorporating quantum effects shifts the calculated B12 

slightly further away from that datum, resulting in a discrepancy of about 5 cm3/mol. In 

conjunction with the other results shown in Fig. 3, we believe it is likely that this reported 

experimental point was slightly too low, and/or had greater uncertainty than the authors 

estimated. However, the two results are consistent to within mutual uncertainties.
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Figure 4 similarly compares our calculations to experimental data at higher temperatures, 

including near room temperature where there have been several investigations. Once again, 

our results are consistent with the experimental data but have smaller uncertainties. In Fig. 4, 

we did not plot the curves for the virials obtained with the V15(r0), 〈V15〉0, and 〈V15〉T 

PESs, since these curves would be indistinguishable from the one shown in the plotted range 

of temperatures (cf. Fig. 2).

D. Comparison with potential of Yang and coworkers

We also attempted to perform calculations of B12(T) with the recent VY pair potential of 

Yang et al.19,20 We found this to be impossible for two reasons. The first problem is with the 

long-range behavior of that potential, which fails to decay to zero at long range if the 

intramolecular distances r and s differ from their equilibrium values.

The second issue is more subtle. The potential of Yang et al.19,20 was fitted for values of r 
between 1.01 and 1.81 bohr, which was adequate for their scattering calculations. However, 

the flexible calculation of B12(T) requires evaluating the potential over the entire probability 

distribution for the bond lengths of the H2 and CO molecules. Because of the highly 

quantum nature of the H atom, even for the ground-state vibration the fraction of states 

outside the limits of the VY potential is several percent (a similar issue arises with the 6D 

potential of Ref. 16; this was part of the motivation for developing V15 which covers a wider 

range of r). In order to avoid evaluating the potential of Yang et al. at conditions where it is 

not valid, we consider it in a four-dimensional form similar to our V15(r0), as rigid rotors 

with the intramolecular distances fixed at r0 and s0, denoted as VY(r0).

The problem with the long-range behavior of the potentials of the type used by Yang et al. is 

well known.49 In order to correct it, we constructed a combination potential in which VY(r0) 

was used at short and medium distances, but V15(r0) was used when the intermolecular 

distance R exceeded 9 bohr. We refer to this asymptotically corrected potential as VY,AC(r0).

Points calculated with the PIMC method from VY,AC(r0) are plotted on Figs. 3 and 4. It can 

be seen that VY,AC(r0) overestimates B12 throughout the temperature range by an amount 

that, while not too large, is clearly inconsistent with our results and with the available 

experimental data. The discrepancy is not due to the approximation of the potential of Yang 

et al. by a 4D form; comparison of the V15 and V15(r0) columns in Table VI shows that full 

inclusion of flexibility would make B12 slightly more positive (less negative), which is the 

opposite direction from that needed to reconcile the VY,AC(r0) results with experiment.

After analyzing the behavior of VY,AC(r0) in comparison to V15, cf. Table IV, we believe the 

reason for the discrepancy is that the potential of Yang et al.19,20 gives interaction energies 

that lie too high (too positive or insufficiently negative) at most configurations. This was 

already noted by Faure et al.18 for the minimum-energy configuration, where the difference 

was attributed to the lower level of theory used by Yang et al. Now we see from Table IV 

that inaccuracy in the fit also contributes to this deviation. The relative differences between 

our B(T) and that calculated from Yang's et al. potential are larger than the comparison of 

Table IV might suggest. The reason is that in the region very close to the minimum the 
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agreement is better than in other regions (there are points with negative interaction energies 

where discrepancies exceed 30 cm−1.)

V. Conclusions

A flexible (six-dimensional) potential for the interaction of H2 and CO developed at a high 

level of theory [up to CCSDT(Q)] and with large basis sets has been analyzed to determine 

its uncertainties. Using the results from Ref. 16, performing additional calculations, and 

analyzing the errors of the fit, we determined the uncertainties to be about 0.8% for the 

monomers near equilibria, increasing to about 8% for monomers at their maximum 

deformations. The range of monomer bond lengths included in the set of grid points for the 

ab initio calculations was sufficiently wide to support the quantum-mechanical probability 

distribution of intramolecular distances (which is wider than that of the corresponding 

classical vibration, especially for H2). This feature is important to avoid spurious results in 

PIMC calculations that incorporate flexibility. Similarly, the range of R values that the 

analytic fit is valid for was determined.

The agreement of full-dimensional calculations with most of the available experimental 

virial coefficients is excellent, and theoretical virials have generally smaller uncertainties 

than virials from these experiments. For all the experimental virials published with 

uncertainties, the experimental and theoretical error bars overlap or nearly overlap. We 

believe that the theoretical virials can be the benchmark data for modeling gas-phase 

thermodynamics in these systems. The few experimental data points that do not agree well 

with theory also disagree with other data, and probably have unrecognized errors. The 

excellent agreement with a large subset of data also confirms the high accuracy of the V15 

potential.

We have examined the performance of various approximations of our procedures. The low-

energy scattering results reported for V15 by Faure et al.18 established that the four-

dimensional 〈V15〉0 potential was adequate to reproduce low-energy scattering data. In the 

present work, we have established a similar result for the interaction second virial coefficient 

B12. The 〈V15〉0 potential produces second virial coefficients that remain within 

uncertainties of the fully flexible quantum treatment except at very low (below 50 K) 

temperatures. We explain the larger discrepancies at very small T by the overwhelming 

quantum character of virials in that regime. The use of the simpler 4D potentials V15(r0) and 

V15(re) result in larger discrepancies, but V15(r0) performs almost as well as 〈V15〉0, in 

contrast to the performance on spectra.38 The fact that the reduced dimensionality 

approaches give satisfactory agreement with experiment is an important finding, since for 

larger molecules full-dimensional treatment is not possible at the present time. We have also 

compared our virials to those computed using the potentials V04
29 and V12

16 and found that 

the latter virials are in very good agreement with those computed from 〈V15〉0. This shows 

that the increased levels of ab initio theory applied in development of consecutive potentials 

do not bring significant improvements in accuracy of virials with the present accuracies of 

experiments. Furthermore, a semiclassical calculation of the second virial coefficient from 

〈V15〉0 is sufficient to account for quantum effects as long as the temperature is not below 

approximately 50 K.
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Fig. 1. 
The average and RMS errors of the interaction energies of H2–CO predicted by V15 

calculated with respect to the ab initio values for 27 132 geometries with R ≤ 12 bohr. The 

errors are calculated in the intervals of energy indicated by the vertical dotted lines, except 

that the points corresponding to the lowest energy range represent the errors calculated for 

all energies lower then −100 cm−1. The abscissas of the symbols are taken in the middle of 

these intervals. There are also plotted, for both surfaces, the average values of the positive 

and the negative errors.
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Fig. 2. 
Deviations of approximate virials from the virials computed using the full-dimensional 

approach with flexible potential Utot,15.
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Fig. 3. 
Values of B12 for H2 with CO at low temperatures, calculated with full consideration of 

flexibility and quantum effects with the PIMC approach, and compared with experimental 

data. Uncertainties for the calculations are smaller than the size of the symbols except for the 

four lowest temperatures. The virials computed from the V15(r0) potential are not shown 

since they would be nearly indistinguishable from those computed from the Utot,15 potential.
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Fig. 4. 
Values of B12 for H2 with CO at high temperatures, calculated with full consideration of 

flexibility and quantum effects with the PIMC approach, and compared with experimental 

data. The virials computed from the V15(r0) potential are not shown since they would be 

nearly indistinguishable from those computed from the Utot,15 potential.
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Table I

Values of the , , , and  contributions compared with the total interaction energy 

, calculated for the intermolecular geometry defined by (R,θ1,θ2,ϕ)=(8.0,0°,180o,0°) and the grid of 

values of the intramolecular geometries (r, s). For one more intramolecular geometry tested, (rc, sc) = (1.474, 

2.165) bohr, the values of , , , , and  are equal to −74.399, −1.804, −0.835, 

−0.051 and −77.089 cm−1, respectively. The aug-cc-pVDZ basis set and frozen core has been used in these 

calculations. The distances are given in bohr, energies in cm−1.

r\s 1.90 1.99 2.13 2.30 2.45

0.95 -48.693 -46.317 -42.259 -36.761 -31.421

-0.868 -0.858 -0.831 -0.780 -0.718

-0.335 -0.395 -0.498 -0.638 -0.772

+0.005 +0.013 +0.032 +0.060 +0.092

-49.892 -47.556 -43.557 -38.119 -32.819

1.20 -69.012 -65.118 -58.521 -49.685 -41.222

-1.224 -1.223 -1.212 -1.180 -1.133

-0.442 -0.515 -0.640 -0.807 -0.963

-0.014 -0.006 +0.010 +0.033 +0.053

-70.691 -66.861 -60.363 -51.640 -43.266

1.40 -86.460 -81.123 -72.114 -60.115 -48.702

-1.592 -1.605 -1.618 -1.619 -1.598

-0.538 -0.619 -0.756 -0.934 -1.097

-0.042 -0.038 -0.029 -0.024 -0.027

-88.633 -83.384 -74.517 -62.691 -51.423

1.67 -109.620 -101.998 -89.177 -72.197 -56.154

-2.267 -2.313 -2.384 -2.466 -2.519
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r\s 1.90 1.99 2.13 2.30 2.45

-0.685 -0.769 -0.906 -1.073 -1.215

-0.112 -0.119 -0.135 -0.176 -0.243

-112.685 -105.198 -92.602 -75.911 -60.130

2.05 -136.289 -124.787 -105.507 -80.108 -56.259

-3.725 -3.863 -4.096 -4.401 -4.664

-0.936 -0.994 -1.075 -1.143 -1.169

-0.311 -0.356 -0.452 -0.637 -0.887

-141.262 -130.000 -111.130 -86.289 -62.980
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Table II

The values of the RMSE of the fit with respect to to ab initio energies calculated for the given values of the 

intermolecular coordinates (r, s) and for three intervals of the interaction energy. The only point from the 

intermolecular grid not given in the table is (rc, sc) = (1.474, 2.165) bohr. In this case the calculated RMSE 

values are 0.16, 0.81, and 0.35 cm−1 for (−∞, 0], (0, 1000), and (−∞, 1000) ranges of the interaction energy, 

respectively. All energies are given in cm−1 and distances in bohr.

r\s 1.90 1.99 2.13 2.30 2.45

energy range (−∞, 0)

0.95 0.16 0.13 0.11 0.11 0.15

1.20 0.14 0.13 0.12 0.11 0.11

1.40 0.16 0.15 0.14 0.13 0.12

1.67 0.19 0.19 0.18 0.17 0.16

2.05 0.24 0.23 0.22 0.22 0.23

energy range (0, 1000)

0.95 0.97 0.91 1.00 0.93 1.07

1.20 1.13 1.12 1.11 1.12 1.09

1.40 1.15 0.95 0.82 0.78 0.74

1.67 1.48 1.54 1.61 1.49 1.44

2.05 2.32 2.03 2.26 2.53 3.29

energy range (−∞, 1000)

0.95 0.41 0.39 0.42 0.39 0.46

1.20 0.48 0.47 0.46 0.47 0.46

1.40 0.49 0.41 0.36 0.34 0.32

1.67 0.62 0.65 0.67 0.62 0.60

2.05 0.98 0.85 0.96 1.05 1.34

J Chem Phys. Author manuscript; available in PMC 2018 February 07.



N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Garberoglio et al. Page 29

Table III

The values of RMSE calculated for several intervals of interaction energy for the 〈V15〉0 surface with respect 

to the set of the ab initio vibrationally averaged interaction energies used to fit the V12 surface.16,17 For 

comparison, the values of RMSE calculated for V12 are also given. All energies are in cm−1 and distances in 

bohr.

range 〈V15〉0 V12

(0, 1000) 0.935 2.320

(0, 400) 0.394 0.156

(−∞, 0) 0.145 0.077

(−∞, 400) 0.193 0.090

(−∞, 1000) 0.373 0.865
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Table IV

Comparison of some characteristic points of the H2–CO PES. The distances are given in bohr and energies in 

cm−1.

R rH2 rCO VH2(rH2) VCO(rCO) Vmin Utot,min

(θ1,θ2,ϕ)=(0°,180°,0°)

Utot,15
a 7.8977 1.4021 2.1319 0.0419 0.0139 -91.1649 −91.1091

Yang et al.b 8.0000 1.4011 2.1359 −85.937

Utot,Y
c 8.0000 1.4011 2.1359 0.0000 1.8023 −79.626

Utot,15 8.0000 1.4011 2.1359 0.0000 1.8023 -90.2631 −88.4607

Utot,Y
a,c 7.9156 1.4025 2.1319 0.0814 0.0139 -80.4394 −80.3441

(θ1,θ2,ϕ)=(0°,0°,0°)

Utot,15
d 7.1398 1.4016 2.1325 0.0108 0.0103 -72.1001 −72.0789

Utot,Y
c,d 7.1858 1.4015 2.1325 0.0070 0.0103 -69.1956 −69.1782

a
The global minimum.

b
The ab initio computed value reported by Yang et al., Ref. 19.

c
The value computed by us from the original Yang et al.19 intermonomer potential using the same monomers' potentials as in Utot,15.

d
The local minimum.
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Table V

The positions, Rmin, and values, Vmin, of the global and local minima of the 〈V15〉 and V15(r0) surfaces. The 

corresponding values obtained for the earlier surfaces V04
41 and V12

16,17 are also given for comparison. The 

distances are given in bohr and energies in cm−1.

(θ1,θ2,ϕ)=(0°,180°,0°) (θ1,θ2,ϕ)=(0°,0°,0°)

Rmin Vmin

V04 7.918 -93.049 7.171 -72.741

V12 7.911 -94.096 7.168 -73.738

〈V15〉0 7.913 -93.934 7.169 -73.930

〈V15〉0
a 7.898 -93.921 7.140 -73.881

V15(r0)b 7.950 -94.234 7.156 -74.522

a
Computed for the listed value of R corresponding to the minima of the full-dimensional surface (Table IV).

b
Computed for r0 = 1.44874 bohr and s0 = 2.13989 bohr16.
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Table VI

Calculated values of B12 (in cm3/mol) as a function of temperature T, calculated with the fully flexible model 

Utot,15 = V15 + VH2 + VCO and at various levels of approximation. All calculations use PIMC except for the 

classical (cl) and semiclassical (semi) results reported in the last two columns. The expanded uncertainty 

U(B12) in the third column, in cm3/mol and reported with coverage factor k = 2, is for the fully flexible 

calculation and incorporates both contributions from the uncertainty of the pair potential and the statistical 

uncertainty of the PIMC calculation.

T (K) V15 +VH2 +VCO U(B12) V15(re) V15(r0) 〈V15〉0 〈V15〉T 〈V15〉0 (cl) 〈V15〉0 (semi)

10 −4296 313 −4132 −4572 −4518 −4519 −101765 −1325

15 −1364 68.2 −1343 −1445 −1434 −1434 −5819 −616

20 −722.9 30.5 −712.0 −757.6 −752.4 −752.0 −1684.4 −491.0

25 −470.9 17.2 −461.6 −487.6 −485.3 −485.0 −834.2 −387.4

30 −339.2 11.4 −331.8 −349.4 −347.8 −347.8 −521.5 −307.0

40 −207.2 6.5 −202.3 −212.4 −211.4 −211.5 −277.8 −203.3

50 −142.8 4.6 −138.7 −145.5 −144.9 −144.9 −179.2 −143.7

60 −104.3 3.7 −101.3 −106.4 −105.9 −105.9 −126.9 −106.3

80 −61.61 2.46 −59.50 −62.80 −62.52 −62.51 −72.78 −63.37

100 −38.67 1.85 −36.98 −39.35 −39.17 −39.17 −45.38 −39.82

125 −21.68 1.47 −20.32 −22.04 −21.86 −21.91 −25.78 −22.33

150 −11.04 1.15 −9.88 −11.20 −11.09 −11.10 −13.81 −11.40

175 −3.81 1.00 −2.84 −3.89 −3.80 −3.81 −5.80 −3.99

200 1.44 0.88 2.24 1.37 1.46 1.41 −0.15 1.30

225 5.38 0.74 6.03 5.28 5.37 5.33 4.06 5.24

250 8.40 0.69 8.93 8.30 8.38 8.33 7.28 8.29

275 10.75 0.62 11.22 10.69 10.76 10.71 9.84 10.68

300 12.70 0.59 13.06 12.60 12.68 12.64 11.86 12.61

350 15.51 0.50 15.82 15.47 15.53 15.50 14.88 15.48

400 17.48 0.46 17.75 17.46 17.52 17.49 17.01 17.49

450 18.91 0.41 19.13 18.92 18.96 18.94 18.53 18.94

500 20.00 0.38 20.16 19.99 20.04 20.01 19.66 20.01

600 21.43 0.32 21.53 21.42 21.46 21.45 21.17 21.45

700 22.27 0.31 22.33 22.28 22.31 22.29 22.10 22.30

800 22.79 0.28 22.81 22.78 22.82 22.81 22.65 22.82

900 23.10 0.26 23.09 23.09 23.12 23.12 22.96 23.12

1000 23.28 0.27 23.24 23.26 23.30 23.28 23.15 23.28

1200 23.39 0.23 23.30 23.35 23.37 23.39 23.26 23.37

1400 23.30 0.20 23.19 23.26 23.27 23.29 23.20 23.28

1600 23.09 0.22 22.99 23.07 23.09 23.12 23.01 23.09

1800 22.87 0.22 22.75 22.83 22.85 22.90 22.78 22.85

2000 22.64 0.20 22.48 22.58 22.59 22.65 22.54 22.59
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