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Abstract: Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ 

polymerization technique, and its performance characteristics were investigated. Weight 

losses of samples were determined by Thermal Gravimetry Analysis (TGA). The 

microencapsulated samples with 23% and 49% paraffin showed less decomposition after 

330 °C than with higher percentage of paraffin. These samples were then subjected to a 

thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated 

by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core 

and coating materials were also tested by Fourier transform infrared spectrophotometer 

(FTIR), and the surface morphology of the samples are shown by Field Emission Scanning 

Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin 

waxes show little change in the latent heat of fusion and melting temperature after one 

thousand thermal recycles. Besides, the chemical characteristics and structural profile 

remained constant after one thousand thermal cycling tests. Therefore, microencapsulated 

paraffin wax/polyaniline is a stable material that can be used for thermal energy  

storage systems. 
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1. Introduction 

One of the most significant discussions in energy storage is the use of the Phase Change Materials 

(PCM) for thermal energy storage. PCMs are able to absorb and release large amounts of latent heat 

according to the increase and decrease in the temperature of the surroundings. They are classified as 

organic, inorganic and eutectic compounds [1–3]. Among PCMs, organic materials, such as paraffin 

and fatty acids, are more suitable for thermal energy storage, because of their high energy storage 

capability. Lifespan and the expenses regarding the use of storage material affect the economic 

feasibility of thermal storage system. Thence, significant changes in the melting point, as well as the 

latent heat fusion during the thermal cycling of phase change materials are not favorable. Commercial 

PCMs are used for latent heat energy storage, because of their availability and low cost [4–7]. A solar 

thermal system with latent heat storage undergoes one melt/freeze cycle per day. This might be called 

a normal cycle, while a repeated melt/freeze cycle test, conducted in the laboratory with a hot plate or 

similar system, is called an accelerated thermal cycle test [8]. Some issues regarding the use of these 

materials include the instability of material properties and corrosion of container [2]. The choice of 

PCM container is directly related to thermal stability of PCM material in such a way that it should be 

able to repeat the cooling and heating cycles. Sharma et al. have measured the melting point, latent 

heat of fusion and specific heat of stearic acid, acetamide and paraffin wax after cycling [9]. Paraffin 

wax and acetamide were found to be more stable over the 300 thermal cycles. However, the 

commercial grade of these materials has been measured after 1500 thermal cycles [10]. It has also been 

outlined that there is no obvious change of the melting point during thermal cycling. Thus, paraffin 

wax and acetamide have been considered to be promising PCM for some applications. Shukla et al. 

studied the thermal cycling of organic and inorganic PCM. Thereby, organic PCM has been considered 

more suitable than inorganic PCM for the purpose of thermal cycling tests [11]. On the other hand, the 

compatibility of PCM with other materials has attracted great attention of some researchers, because it 

directly affects the lifetime of encapsulation material, which covered the PCM. Some problems 

regarding the material compatibility with PCM have been explained by Mehling et al. [12], such as 

corrosion of the metal in contact with inorganic PCM, stability loss of plastics in contact with organic 

PCM and migration of liquid or gas through plastic, which in turn affect the performance of contained 

organic or inorganic PCM, as well as the outside environment. Thus, based on this feature, the PCM 

must have a long life during the thermal cycling test. Besides, the changes in latent heat values and 

phase transition temperature for a large number of melting and solidification processes must be as low 

as possible [13]. PCM should be tested by an accelerated cycle to measure the change in melting point, 

latent heat storage and specific heat, before being used in an actual thermal cycle. Uddin et al. studied 

the operation cycling of microencapsulated paraffin [14]. They evaluated the chemical structure, 

surface morphology and energy storage/release capacity after cycling test. Furthermore, Alkan et al. 

also carried out a number of investigations into the thermal reliability of microencapsulated docosane 
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with polymethyl methacrylate (PMMA) [15]. They found that there is no significant change in latent 

heat and melting point after 1000, 3000 and 5000 cycles. In addition, Ahmet Sari et al. studied the 

accelerated thermal cycling test for microencapsulated n-octacosane for 1000, 3000 and 5000 repeated 

melting and freezing cycles [16]. They concluded that the chemical structures of microcapsules were 

not affected by thermal cycling. In another study, Sude Ma et al. conducted the thermal cycling test of 

microencapsulated paraffin wax/PMMA for 200, 500 and 1000 cycles [17]. They indicated that 

microencapsulated paraffin wax has satisfactory thermal reliability.  

In this study, we develop a facile method for the synthesis of paraffin wax/PAn microcapsules with 

different ratios of paraffin wax to polyaniline. Paraffin wax is used as latent heat storage material, and 

Polyaniline is used as the shell of this paraffin wax. The thermal reliability of the microencapsulated 

paraffin wax was distinguished by Thermal Gravimetry Analysis (TGA), Differential Scanning 

Calorimeter (DSC), Fourier transform infrared spectrophotometer (FTIR) and Field Emission Scanning 

Electron Microscopy (FESEM) devices. 

2. Experimental Method 

2.1. Materials and Method 

Paraffin wax with a melting point of 53–57 °C and aniline (C6H7N) were used as core and shell 

materials, respectively. Ammonium persulfate (APS, (NH4)2S2O8) was used as the oxidant and silicon 

oil for a uniform heating rate during polymerization. All chemicals were used as received without 

further purification. Water purification was done through distillation followed by deionization with the 

aid of ion-exchange resins. 

Paraffin wax/PAn microcapsules were synthesized via in situ polymerization of adsorbed aniline 

monomer on the surface of paraffin wax. In the first step, paraffin wax was melted in deionized water 

(150 mL) in a 300 mL beaker at 75 °C, and then aniline was added as a monomer to the beaker, 

followed by stringing for 1 h at the speed of 700 RPM in various ratios of Paraffin wax/PAn 0.1/0.9, 

0.2/0.8, 0.3/0.7, 0.7/0.3 g, that is named S1, S2, S3, S4, respectively. The beaker should be kept in 

silicon oil for a uniform heating rate. In the second step, 2.28 g of APS was dissolved in deionized 

water (100 mL) in the 300 mL beaker at the same condition of the paraffin wax and was added  

drop-wise to the beaker. Finally, the reaction proceeds by the chemical oxidation of aniline monomers 

with APS. Moreover, the color of the solution started to change gradually from the first hours. Initially, 

it was green, and after 2 h, the color changed to red. For the third hour, the red color became darker. 

Ultimately, when the polymerization was completed, it became almost black. 

2.2. Experimental Setup and Procedure 

The experimental setup included a strip heater (24VDC), deep cooler (12VDC), PCM storage box, 

thermocouple, temperature controller (ACS-13A-R/M-Shinko), communication converter  

(IF-400-Shinko) and a PC for data acquisition system. The PCMs are kept in a rectangular box that is 

made of copper. The width length and height of the box are 12 mm, 6 mm and 35 mm, respectively. 

The box was filled with 1 g of PCM. The stainless steel strip heater was glued to the outside of the 

copper box and its flux voltage set to 80 W and 24 V, respectively. The deep cooler consisted of a heat 
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pipe heat sink to cool the storage box. The copper surface of the cooler was attached on the other side 

of the storage box. K-Type thermocouples were used in this experiment, which has temperature range 

of 0–1260 °C and a limited error of ±0.7%. Figure 1 shows the image and schematic of the thermal 

cycling setup [18]. 

Figure 1. (a) Image of repeated thermal cycling test; (b) schematic of repeated thermal 

cycling test [18]. 
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2.3. Characterization of Phase Change Material 

A Differential Scanning Calorimeter (DSC) (model: METTLER TOLEDO 820C-Error ±0.5–1 °C) 

was used to analyze the thermodynamic characteristics of the microencapsulated paraffin wax. In this 

evaluation, DSC was used to measure latent heat, heat capacity and melting temperature of the 

samples. Moreover, the chemical structure stability of microencapsulated was examined using a 

Fourier transform infrared spectrophotometer (model: PerkinElmer Spectrum 400). With TGA (model: 

METTLER TOLEDO SDTA 851-Error ±5 µg ), the microencapsulated paraffin wax was generally 

heated at a constant rate of 10 °C per minute, and the resulting temperatures and the degradation rate 

were measured as a function of time or temperature. FESEM was used to study the morphology of the 

samples. Sample capsules were mounted on copper stubs with dark double-sided carbon tape and 

vacuum-coated with a platinum film (Ion Sputtering Device) and then examined by FESEM (model: 

Zeiss Auriqa). 

3. Results and Discussions 

3.1. Thermogravimetry Test  

Microencapsulated paraffin wax was subjected to heating and cooling cycling test. The TGA and 

Differential Thermal Gravimetry (DTG) result of the capsules are shown in Figure 2.  

Figure 2. Thermal Gravimetry Analysis (TGA) and Differential Thermal Gravimetry 

(DTG) results of microencapsulated S1, S2, S3, S4 and paraffin wax. 
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The TGA result shows the weight loss of microencapsulated paraffin wax in terms of temperature. 

The rates of weight loss are 55%, 60%, 75%, 80% and 100% for S1, S2, S3, S4 and paraffin wax, 

respectively. This can be explained by the fact that the weight loss of the microencapsulated paraffin 

wax depends on the encapsulation ratios of paraffin wax to the microencapsulation [19]. In other 

words, the rate of decomposition of the paraffin wax is decreased due to the increase in coating 

material. This implies that the shell structures of microencapsulated paraffin wax provided a better 

protection and prevented the paraffin wax from leaking out of the capsules. In addition, Differential 

Thermal Gravimetry (DTG) tests for the capsules show the rate of weight loss with temperature. As 

can be seen, the paraffin wax degrades in one step, while paraffin wax/polyaniline microcapsules 

degrade in two steps. The degradation of paraffin wax begins at around 280 °C, and the degradation of 

paraffin/Polyaniline is around 280 °C and 330 °C, with the second step belonging to polyaniline. This 

means that the degradation of the polyaniline is at higher temperature than that of paraffin wax. 

Therefore, polyaniline can protect the paraffin wax as a core material. The recent reports show that the 

decomposition temperature of polyaniline depended on the polymerization condition of aniline 

monomer [20]. From the figure, it is clear that encapsulated paraffin wax, S1 and S2, are more stable 

than S3 and S4, due to a better encapsulation. It means that the high ratio of polyaniline can cover most 

of the paraffin wax during polymerization. Although the latent heats of capsules S1 and S2 are 

expected to be less, due to the low content of paraffin wax, these two capsules could be applied in 

thermal energy storage systems with less failure and more longevity. Hence, microencapsulated 

paraffin wax, S1 and S2, can be chosen to be put in thermal cycling tests due to their high  

thermal stability. 

3.2. Repeated Thermal Cycling Test  

Microencapsulated paraffin waxes were analyzed in the repeated cyclic state. The set-up is 

displayed in Figure 1. The history of temperature-time for a few cycles is shown in Figure 3 

Microencapsulated paraffin wax was tested through 200, 400, 600, 800 and 1000 cycles. 

Figure 3. Thermal cycling operation of hot plate heating and cooling temperature  

with time. 
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different recycles. The average change in the specific enthalpies of heating and cooling are around 30 

to 32 J/g and 60 to 65 J/g for S1 and S2, respectively. Moreover, the latent heat of microencapsulated 

S1 has a variation of 1.2%, 3.2%, 2.2%, 3.2% and 1.6% for melting and 3.3%, 3.3%, 6.1%, 5.8% and 

5.8% for the freezing process after 200 to 1000 cycles, respectively, compared with zero cycles. 

Besides, capsules S2 have shown variation of 4.6%, 6.2%, 6.2%, 6.2% and 7% during their melting 

process and 4.3%, 6.6%, 6.6%, 7.8% and 8.1% during their solidification process for the same range of 

cycles (200–1000). This might stem from the moisture content in the samples, as they absorb moisture 

from the surroundings, or the quality of core materials. This kind of variation is also observable in pure 

material [10]. It is clear that there is no significant change in the latent heat capacity and temperature 

of melting and freezing after thermal cycling, and increasing the number of cycling did not lead to any 

degradation or change in the chemical structure of the paraffin wax. Therefore, the heat storage 

material could form the first crystal structure (in a fresh state of PCM) during the solidification period 

of the repeated thermal cycling. Low impurity or having no impurity at all can be the cause of no 

degradation in the PCM during thermal cycling. The reason might be that there was no chemical 

reaction during thermal energy storage, as well as the release process within the material itself. 

Besides, no chemical reaction occurred in the coating material (polyaniline) or with the holding 

container. Both samples displayed their reproducibility in thermal performance and melting and 

solidifying behavior. They also exhibited an acceptable thermal reliability of the capsules being heated 

by the hotplate. They are able to guarantee a long-term performance of heat storage.  

Table 1. DSC result of the microencapsulated paraffin wax, S1. 

Cycling 
number 

Melting temperature 
(°C) 

Melting latent heat 
(J/g) 

Freezing temperature 
(ºC) 

Freezing latent 
heat (J/g) 

0 53.2 31.0 46.4 32.6 

200 53.2 30.6 44.9 31.5 

400 53.3 30.0 45.2 31.5 

600 53.3 30.3 45.1 30.6 

800 53.5 30.6 45.5 30.7 

1000 53.4 30.5 45.4 30.7 

Table 2. DSC result of the microencapsulated paraffin wax, S2. 

Cycling 
number 

Melting temperature 
(°C) 

Melting latent heat 
(J/g) 

Freezing temperature 
(ºC) 

Freezing latent heat 
(J/g) 

0 53.8 65.1 44.9 66.4 

200 53.2 62.1 44 63.5 

400 53.3 61 44.1 62 

600 53.3 61 44 62 

800 53.3 61 44.2 61.2 

1000 53.4 60.5 46.1 61 

Here, two important parameters used to analyze the phase change properties of paraffin wax (using 

DSC measurements) would be introduced. One is the encapsulation ratio (R) and the other is 

encapsulation efficiency (E) denoted by the following equations [21,22]: 
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ܴ ൌ
,ெெ௦ܪ∆

,ெܪ∆
ൈ 100% (1)

ܧ ൌ
,ெିெ௦ܪ∆  ,ெିெ௦ܪ∆

,ெ௦ܪ∆  ,ெ௦ܪ∆
ൈ 100% (2)

where ∆ܪ,ெ and ∆ܪ,ெ௦ indicate the fusion heat and crystallization enthalpy of the bulk paraffin 

wax, respectively; ∆ܪ,ெିெ௦ and ∆ܪ,ெିெ௦  designate the fusion heat and crystallization 

enthalpy of the microencapsulated one, respectively. Effective encapsulation for paraffin wax within 

the microcapsules is specified by encapsulation ratio, whereas the loading content (10% and 20% for 

S1 and S2, respectively) is determined by the dry weight percent of the core material. By this notation, 

the encapsulation ratio signifies the effective performance of paraffin wax inside capsules for heat 

energy storage and thermal regulation. Besides, both melting and crystallization enthalpies influence 

the value of encapsulation efficiency.  

The encapsulation ratio and encapsulation efficiency of the microencapsulated paraffin wax 

obtained by DSC measurement, as well as calculations are manifested in Table 3. It can be noted that 

these two parameters are proportional to the paraffin wax/polyaniline weight ratio that dominates the 

core material loading. However, upon the synthesis of microcapsules S1 and S2, a compact shell is 

achieved that engenders an effective encapsulation, preventing any leakage from capsules. Moreover, 

the monomer polymerization was not performed completely, resulting in washing out of some of the 

monomers from the product. This led to a high encapsulation ratio and encapsulation efficiency for the 

samples, S1 and S2.  

Table 3. The phase change behavior and performance of microencapsulated paraffin wax. 

Sample Name ∆ࡴ ሺࡶ ⁄ࢍ ሻ ∆ࡴ ሺࡶ ⁄ሻࢍ  
Paraffin wax 
loading (%) 

Encapsulation 
ratio (%) 

Encapsulation 
efficiency (%) 

Paraffin wax 131.92 132.31 – – – 
S1 31 32.6 10 23.4 24.0 
S2 65.1 66.4 20 49.3 49.7 

3.4. Structure Stability of MEPCM 

According to the FTIR result of Sample 1 (S1), the characteristic peaks of the paraffin wax and 

polyaniline can be observed after 200, 400, 600, 800 and 1,000 cycles (Figure 6). The peaks around 

2960–2850 cm−1 and 1465 cm−1 show carbon hydrogen stretching and bending absorption, 

respectively. The symmetric C–H bending absorption of the CH3 group at 1381 cm−1 and the CH2 

rocking absorption band at 729 cm−1 confirm the linear saturated aliphatic structure of the paraffin 

wax [23]. From the IR spectrum, six major absorptions can be observed: at 1592, 1503, 1307, 1220, 

1155 and 824 cm−1, of which 1592 and 1503 cm−1 belong to stretching vibrations of C–C ring and the 

peaks at 1220 and 1370 cm−1 are related to N–H bending, as well as the C–N (or C–C) stretching. The 

peaks at 1155 and 824 cm−1 are also assigned to the in-plane and out-of-plane C–H bending modes. 

The bands of the polyaniline salt are also shown at 1498, 1462, 1306, 1274, 1074 and 789 cm−1. 

Besides, the spectrum for the polyaniline salt demonstrates peaks around 3264, 1653 and 634 cm−1. 

The band of 3264 cm−1 is assigned to the NH2 stretching mode and the 1653 cm−1 peak to the NH2 
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bending vibration. Finally, the 634 cm−1 is related to NH2 wagging. In addition, FTIR results shows 

that with increasing the number of cycles, the change in all peaks is negligible. Figure 6 also indicates 

that the characteristics of microencapsulated paraffin wax remain stable after 1000 cycles. It means 

that the compatibility of the coating material and core remain in good conditions after repeated thermal 

recycles. Moreover, the FTIR results do not show any new peak in comparison with the FTIR of S1 

and S2 before the cycling test. Consequently, the results confirm that the reaction between 

encapsulation materials and the environment is not significant. The low tendency of polyaniline to 

react with paraffin wax and the high stability of polyaniline can also be considered as two strong 

reasons behind the ability of polyaniline as a suitable coating for encapsulation of paraffin wax. 

Figure 6. Structure stability of microencapsulated S1 after different cycling tests. 

 

3.5. Surface Morphology of MEPCM 

Figure 7 shows the surface morphology of microcapsules S1, S2 after 0 and 1000 cycles. Physical 

properties of the capsules can be analyzed by their shape and size. In other words, the comparison of 
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FESEM results for the microcapsules before and after cycling can show the stability, solubility and 

chemical reactivity of the sample. As noted from this figure, the paraffin wax was encapsulated by 

polyaniline. S1 and S2 formed globular capsules with average sizes within the range of 300 to 500 nm. 

This shape remained stable after 1000 cycles. The FESEM results confirm that the flexibility of 

polyaniline is acceptable, because no cracks were observed on the surface of the polyaniline coating 

after 1000 cycles. The results of DSC, FTIR and FESEM confirm that the polyaniline is a suitable 

coating for the purpose of microencapsulating paraffin wax.  

Figure 7. (a) Microcapsules S1 after 0 cycle; (b) microcapsules S1 after 1000 cycles;  

(c) microcapsules S2 after 0 cycle; and (d) microcapsules S2 after 1000 cycles. 

 

4. Conclusions 

In a word, a facile method has been used for the preparation of microencapsulated paraffin 

wax/polyaniline by an in situ polymerization method. TGA results show that the thermal stability of 

the microencapsulated paraffin wax/polyaniline with the ratio of (1:9) and (2:8) is better than that of 

(3:7) and (7:3). To investigate the thermal reliability of the capsules, microencapsulated paraffin 

waxes, S1 and S2, were tested by thermal cycling. DSC results indicated that the average latent heats 

of melting and freezing of the microencapsulated paraffin wax/polyaniline were around 30–32 J/g and 

60–65 J/g for S1 and S2, respectively. These imply that the microencapsulated paraffin 

wax/polyaniline were reliable in terms of the thermal cycling test. Furthermore, the FTIR spectroscopy 

results indicated that the accelerated thermal cycling does not cause any degradation in the chemical 
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structure of the PCM. This means that the reaction between encapsulation materials and environment is 

not significant. FESEM analysis also showed that the microcapsules prepared by in situ polymerization 

were globular in shape. Besides, the surface morphologies of the capsules with the ratio of (1:9) and 

(2:8) are homogenous after 1000 cycling test. This indicated that the coating materials were suitable 

for encapsulation of PCM in thermal energy storage at high temperatures. Based on all these results, 

accelerated thermal cycling tests of microencapsulated paraffin wax/polyaniline reveal that the change 

in the melting and freezing temperatures have negligible magnitudes for latent thermal energy storage 

(LHTES) applications, and the Microencapsulated Phase Change Material (MEPCM) has good  

long-term reliability. 
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