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Abstract

Two prominent ideas in the study of decision-making have been that organisms behave near-

optimally, and that they use simple heuristic rules. These principles might be operating in different 

types of tasks, but this possibility cannot be fully investigated without a direct, rigorous 

comparison within a single task. Such a comparison was lacking in most previous studies, because 

a) the optimal decision rule was simple; b) no simple suboptimal rules were considered; c) it was 

unclear what was optimal, or d) a simple rule could closely approximate the optimal rule. Here, we 

used a perceptual decision-making task in which the optimal decision rule is well-defined and 

complex, and makes qualitatively distinct predictions from many simple suboptimal rules. We find 

that all simple rules tested fail to describe human behavior, that the optimal rule accounts well for 

the data, and that several complex suboptimal rules are indistinguishable from the optimal one. 

Moreover, we found evidence that the optimal model is close to the true model: first, the better the 

trial-to-trial predictions of a suboptimal model agree with those of the optimal model, the better 

that suboptimal model fits; second, our estimate of the Kullback-Leibler divergence between the 

optimal model and the true model is not significantly different from zero. When observers receive 

no feedback, the optimal model still describes behavior best, suggesting that sensory uncertainty is 

implicitly represented and taken into account. Beyond the task and models studied here, our results 

have implications for best practices of model comparison.
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Many forms of human perception seem close to the ideal set by Bayesian optimality 

(Geisler, 2011; Körding et al., 2007), according to which the brain maximizes performance 

given noisy and ambiguous sensory input. In most of these cases, such as in cue combination 

(e.g. Alais & Burr, 2004; Ernst & Banks, 2002; Gu, Angelaki, & Deangelis, 2008; for more 

examples, see Trommershauser, Körding, & Landy, 2011), the optimal decision rule is 

simple. It has been argued that when the optimal decision rule is complex, the brain has an 

incentive to use a computationally simple and reasonably effective, though strictly 
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suboptimal decision rule – also called a heuristic (Gigerenzer & Gaissmaier, 2011; Simon, 

1956).

Evidence for this proposal has been mixed. On the one hand, there is no strong evidence for 

optimality in complex tasks. In some studies that claim that people follow a complex optimal 

rule, simple suboptimal rules were not considered (e.g. Geisler & Perry, 2009; see also 

Bowers and Davis, 2012). In other studies, the optimal rule fitted about equally well as a 

simple rule (Mazyar, Van den Berg, & Seilheimer, 2013; Palmer, Verghese, & Pavel, 2000; 

Qamar et al., 2013). In some perceptual experiments, the optimal rule outperformed simple 

rules, but only a few simple rules were tested (Ma, Navalpakkam, Beck, van Den Berg, & 

Pouget, 2011; Ma, Shen, Dziugaite, & van den Berg, 2015). Finally, it has been argued that 

in reports of near-optimality in cognitive tasks (Chater, Tenenbaum, & Yuille, 2006; Norris, 

2006), the optimal model was given excessive flexibility in order to fit the data (Bowers & 

Davis, 2012; Gigerenzer, 2004; Jones & Love, 2011), making the optimality label suspect.

On the other hand, some claims of suboptimality might be premature. For ball-catching, a 

suboptimal but simple “gaze heuristic” has been proposed (Dienes & McLeod, 1996; 

McLeod, Reed, & Dienes, 2003). However, in such complex sensorimotor tasks, the 

definition of optimality depends on largely unknown costs, making it difficult to 

conclusively claim that behavior is suboptimal; in fact, in a simplified setting, ball-catching 

was found to be near-optimal (Faisal & Wolpert, 2009; López-Moliner, Field, & Wann, 

2007).

Thus, optimality and simplicity have so far not been directly compared in a strongly 

distinguishing paradigm. In addition, none of the above studies made an effort to establish 

how much room there is for an untested model to fit better than the study’s favored model, 

whether optimal or simple. To address both issues, we used a visual categorization task that 

did not suffer from the shortcomings above: optimality was not ambiguous, and there are 

many plausible simple rules that make substantially different predictions from the optimal 

rule. Moreover, in analyzing the data from this task, we attempt to establish how close our 

best-fitting model is to the unknown true model.

We want to emphasize that in this paper, ‘simplicity’ refers to the number of operations in 

the observer’s decision rule. In previous literature, simplicity has been used in at least two 

other meanings. The first is the simplicity of the observer’s interpretation of a visual scene. 

The “simplicity principle”, initiated by Wertheimer and other Gestalt psychologists, states 

that the observer reports the simplest interpretation of a visual scene that is consistent with 

the sensory input, for example leading to a preference for perceiving continuity (Chater, 

1996). In our task, the two hypotheses about the state of the world, left and right, are equally 

complex in this sense. The second meaning is simplicity in terms of the number of 

parameters (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). In our case, all the models 

we will discuss below have two parameters, and the only thing that differs is the observer’s 

decision rule. Thus, we are not talking about simplicity from the point of view of the 

experimenter comparing models, but about simplicity from the point of view of the observer 

doing the task.
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EXPERIMENT 1

We designed our experiment such that the statistical structure of the task was easy for 

subjects to learn, but optimal inference was hard. The task was a visual target categorization 

task on four oriented stimuli. On each trial, we presented observers with a target and three 

identical distractors (Fig. 1A); the target orientation and the (common) distractor orientation 

were drawn independently from the same Gaussian distribution with a mean of vertical and a 

standard deviation of σs=9.06° (Fig. 1B). Subjects reported whether the target stimulus was 

tilted to the right or to the left of vertical. Correctness feedback was provided on each trial.

Apparatus and stimuli

Subjects were seated at a viewing distance of approximately 60 cm. All stimuli were 

displayed on a 21-inch LCD monitor with a refresh rate of 60 Hz and a resolution of 1280 

by 1024 pixels. The background luminance was approximately 29.3 cd/m2. Each stimulus 

display contained four stimuli, placed on an invisible circle centered at the center of the 

screen and with a radius of 5° of visual angle. The angular positions of the stimuli were 

−135°, −45°, 45°, and 135° relative to the positive horizontal axis. Each stimulus was a 

Gabor patch with a peak luminance of approximately 35.2 cd/m2, a spatial frequency of 3.13 

cycles per degree, a standard deviation of 8.18 pixels, and a phase of 0. On each trial, three 

of the stimuli were identical; these were distractors. The fourth stimulus, whose location was 

chosen from the four possible locations with equal probabilities, was the target. Target and 

distractor orientations were independently drawn from a Gaussian distribution with a mean 

of 0° (vertical) and a standard deviation of 9.06°.

Experimental procedure

Each trial started with a fixation dot on a blank screen (500 ms), followed by a stimulus 

display (50 ms). Then a blank screen was shown until the subject made a response. Subjects 

pressed a button to report whether the target was tilted to the right or to the left relative to 

vertical. After the response, correctness feedback was given by coloring the fixation dot red 

or green (500 ms) (Fig. 1A).

The experiment consisted of three sessions on different days. Each session consisted of 5 

blocks, and each block contained 200 trials, for a total of 3 × 5 × 200 = 3000 trials per 

subject. To avoid the learning effect, data from the first session (1000 trials) were excluded 

in the analysis. Nine subjects participated in this study (seven female, age range 23 to 30 

years), all of them scientifically trained but naïve to the task. At the beginning of the first 

session, subjects were orally briefed about all detailed experimental designs including the 

descriptions about the stimulus distribution: the target orientation and the common distractor 

orientation are drawn from the same bell-shaped distribution; the orientations occur most 

often at vertical and the width of the distribution is 9.06° (Fig. 1B).

Experiment 1 data

Human behavior in this task exhibits several interesting patterns (Fig. 1C). The proportion of 

“right” responses increases monotonically with target orientation (Fig. 1D, top), but also 

depends on distractor orientation. More surprising is that the proportion of “right” responses 
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does not increase monotonically with distractor orientation (Fig. 1D, bottom). On second 

thought, this is intuitive: suppose the target is vertical, and the distractors are slightly tilted 

to the right. Then, the distractors can easily be confused with the target, and therefore the 

subject will often report “right”. By contrast, when the distractors are strongly tilted to the 

right, they are easily identified as distractors and a sophisticated subject will only use the 

item that is most likely to be the target in their response (in this example, make a random 

guess).

MODELS

We study four categories of models: the optimal model, simple heuristic models, two-step 

models, and generalized sum models.

The optimal model

The optimal observer has learned the generative model of the task and incorporates this 

knowledge during decision-making. We first discuss the generative model (Fig. 2A). We 

denote the binary variable C the direction of tilt relative to vertical (−1 for left, +1 for right). 

A distractor orientation sD is drawn from a Gaussian distribution with a mean of 0 and a 

standard deviation of σs. A target orientation sT is drawn from that same Gaussian 

distribution but truncated to only negative values (when C=−1) or only positive values (when 

C=1); thus, the conditional distribution of sT is a half-Gaussian. Stimuli appear at four fixed 

locations. The target location, L, is chosen with equal probability for each of the four 

possibilities. The orientation at that location is sT, and the orientations at the three other 

locations are all sD. Finally, we assume that the observer makes a noisy measurement xi of 

each orientation. We assume that each xi is independently drawn from a Gaussian 

distribution whose mean is the true stimulus (sT or sD) and whose standard deviation is σ.

We are now ready to describe the optimal observer’s inference process. Given a set of 

measurements x = (x1, x2, x3, x4), the optimal observer considers each item a potential target 

and computes the weighted average over locations L of the probability that an assumed 

target at L was tilted right, with weight given by the probability that the target was at L. The 

posterior over C (C=1 or −1) is

(1)

where N denotes the set size (in our case, N=4). Eq. (1) represents a weighted average over 

L, which is an example of the Bayesian operation of marginalization. We can simplify Eq. 

(1) to
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(2)

Given that the priors over C and L are uniform, and p(x) is just a normalization, we only 

need to compute p(x|C,L), the likelihoods of C=±1 given L. To compute these, the optimal 

observer marginalizes over all unknown variables other than C and L. These variables are 

the stimulus orientations s, the values of target and distractor orientations, sT and sD.

(3)

where 1L is a vector of zeroes except for a 1 in the Lth dimension and δ(x) is Dirac delta 

function.

The optimal observer reports “right” when the posterior probability of a right tilt, p(C=1|x), 

exceeds the posterior probability of a left tilt, p(C=−1|x). Starting from Eq. (2), we see that 

this is the case when

(4)

Evaluating Eq. (3) and then substituting in Eq. (4), we find that the optimal decision rule 

(Opt rule) is to report “right” when

(5)

where Weighti(x) reflects the strength of the evidence that the target is at L:

(6)
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Here,  and Var  are the sample mean and variance of x with the Lth element left out, 

respectively. The first term in the expression for WeightL(x) comes from 

 and the other two terms come from  in 

Eq.(3). To aid our intuition, we visualize the optimal decision rule for the hypothetical 

scenario that set size N=3, in Fig. 2B.

Interestingly, each of the components of the weight term has a clear intuitive meaning: they 

can be interpreted as being associated with the target, the distractor mean, and the distractor 

variance, respectively. Since both the target orientation and the common distractor 

orientation are drawn from a Gaussian distribution with a mean of 0, the Lth item is more 

likely to be the target when the Lth measurement is closer to 0 (target term), and the mean of 

the measurements at the other locations is closer to 0 (distractor mean term). Moreover, the 

subject knows that the three distractor orientations are the same, so an item is more likely to 

be the target when the variance of the measurements at the other three locations is smaller 

(distractor variance term). In the following, we will examine whether human subjects take 

all these aspects of the task statistics into account.

Simple heuristic models

Several simple heuristic decision rules are plausible for this task. These rules, some of which 

have been widely used in previous studies, postulate how the observer integrates information 

across locations. According to the (signed) Max rule, the observer reports the direction of tilt 

of the measurement that is most tilted in either direction (Baldassi & Verghese, 2002; 

Eckstein, 1998; Green & Swets, 1966; Nolte & Jaarsma, 1967; Palmer et al., 2000). 

According to the Sum rule, the observer reports the direction of tilt of the sum of the four 

measurements (Baldassi & Burr, 2000; Green & Swets, 1966; Kramer, Graham, & Yager, 

1985; Palmer et al., 2000). We also conceived three new simple heuristics. According to the 

Min rule, the observer reports the direction of tilt of the measurement that is least tilted in 

either direction. According to the Var rule, the observer reports the direction of tilt of the 

measurement which, when left out, leaves the smallest variance of the remaining three 

measurements. Finally, according to the Sign rule, the observer reports the common 

direction of tilt when all measurements are tilted in the same direction, and the least frequent 

direction of tilt otherwise (guessing in case of a tie). All of these rules perform above 

chance, but they make very different predictions from the Opt rule.

Two-step models

We then considered “two-step models”, in which the observer does not marginalize over 

target location but instead follows a simple strategy of first deciding which item is the target, 

then reporting its direction of tilt. This suboptimal decision process is similar to the “Take 

The Best” heuristic algorithm (Gigerenzer & Goldstein, 1996), in which decisions are based 

solely on the cue that best discriminates between options, and to some other two-step models 

in perception (Fleming, Maloney, & Daw, 2013; Jazayeri & Movshon, 2007).

Different two-step models can be constructed based on how the target is selected in the first 

step. One way is to transform the Opt model to a two-step model by replacing the (optimal) 
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marginalization over L in Eq. (1) with (suboptimal) maximization: the first step is to infer 

the target location, , and the second step is to infer the target tilt  given that location:

(7)

When we evaluate the first line of Eq.(7) and make use of the fact that p(L) is uniform, we 

get:

(8)

Retracing the derivation from Eq. (3) to Eq. (5) shows that finding  amounts to maximizing 

WeightL(x) in Eq. (6):

(9)

The second step is inferring the target tilt if we assume that the target location is :

The simplicity of this expression is easily understood: if the observer assumes that the target 

is in the Lth location, then only the measurement at that location should be used for the 

report of target tilt.

Whereas Eq. (9) uses the entire WeightL(x) expression to decide on a target location, we will 

also consider that the target location is decided based on maximizing a subset of the terms in 

that expression. This would correspond to taking into account only part of the statistics of 

information in the task. In total, we end up with seven two-step models. Two of these we 

discussed already: the Min model (target term only) and the Var model (distractor variance 

term only). The remaining 5 models we named MaxT2, MaxT12, MaxT13, MaxT23, and 

MaxT123 (T refers to term), where the numbers refer to the terms kept in the expression.
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Generalized Sum models

As a third category of suboptimal models, we considered “generalized sum models” in 

which the observer does marginalize over potential target locations. We construct this 

category by systematically perturbing the optimal decision rule. The perturbation consisted 

of leaving out a subset of the terms in the weight term (Eq.(6)), for a total of seven models 

(excluding the null perturbation), which we refer to as SumErf models. A further 

approximation, erf(x) ≈ x, results in a total of seven new models, which we call SumX 

models.

MODELING METHODS

Quantifying model complexity

To quantify the computational complexity of the models, we first counted the number of 

arithmetic operations in their decision rules. We treated functions of the measurements x as 

arguments, since they change from trial to trial. The other parameters (σ and σs) were taken 

as constants. We defined four types of operations: 1) Linear operations (L): addition and 

subtraction between arguments and constants, or between arguments; multiplication of an 

argument by a constant; 2) Quadratic operations (Q): multiplication of arguments; 3) Non-

linear operations (NL): non-linear operations (exponentials, reciprocals, square root, error 

functions) of arguments; 5) Sorting operations (Sort): taking the maximum or minimum, or 

comparing with zero. We combined products of exponentials of polynomials in x into a 

single exponential of a polynomial, and simplified each polynomial expression to have no 

parentheses. Note that our definition of complexity is meant to be domain-specific, i.e. for 

comparing decision rules applied to abstracted sets of internal representations in a perceptual 

task. It is unlikely that this definition would be meaningful across domains.

To evaluate decision rule complexity in a more biological manner, we used a neural 

encoding model. The observations on a given trial do not consist of a scalar measurement x 
and noise level σ, but of a vector of spike counts of a group of orientation-tuned neurons r. 

For spike count variability belonging to the “Poisson-like” family of distributions 

(exponential family with linear sufficient statistics), x and σ2 can be identified with  and 

, respectively, where a and b are constant vectors (Ma, 2010). Then we expressed the 

weight term into a rational polynomial function and counted the number of occurrences of 

a·r and b·r. We counted the other operations in the same way as above.

The results of both quantifications are shown in Table A1. According to either measure, the 

optimal decision rule is much more complex than any of these simple heuristic rules, and 

more complex than some of the two-step rules. The generalized sum models tend to be 

similarly complex to the Opt model. Other ways of quantifying decision rule complexity can 

be conceived, but we expect them to yield the same conclusions.
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Model predictions

Each model had the same two parameters: sensory precision  (where σ is the standard 

deviation of the sensory noise), and lapse rate, λ. We tested combinations of parameter 

values on grid. The grid for J consisted of 31 equally spaced values between 0.001 and 0.3. 

The grid for λ consisted of 51 equally spaced values between 0 and 1. For each of the 17 

models, each of the 31×51 parameter combinations, each of the 9 subjects, and each of their 

2000 trials, we computed the probability of reporting “right”  given the target and 

distractor orientations, sT and sD, on that trial, , where M denotes a 

certain model. Since this probability could not be computed analytically, we used Monte 

Carlo simulations with 1000 sampled measurement vectors (x1, x2, x3, x4); for each, we 

applied the model’s decision rule and counted the proportion of “right” reports. This served 

as an estimate of the probability of reporting “right” in the absence of lapses 

. The probability of reporting “right” in the presence of lapses 

was then

Model fitting

To fit each model for a given subject, we used its model predictions obtained above to 

compute the log likelihood of the parameter combination (J, λ), which is the logarithm of 

the probability of all of the subject’s responses given the model and each parameter 

combination:

(10)

where i is the trial index, Ntrials is the number of trials, and we have assumed that there are 

no sequential dependencies between trials. We found the values of the parameters on the grid 

that maximized log LM(J, λ). We verified that in no case, the maximum was on an edge of 

the grid. Using a different method for finding the maximum of the likelihood function, 

namely a custom-built evolutionary algorithm, gave approximately the same fits and 

qualitatively identical model comparison results.

Model comparison

For Bayesian model comparison, we estimated the marginal likelihood of each model for 

each subject, p(data|M). The marginal likelihood of a model is obtained by integrating the 

parameter likelihood over the parameters,
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For the parameter prior p(J, λ), we assumed a uniform distribution on the rectangle defined 

by the ranges mentioned above. For numerical convenience, we took the logarithm, giving 

the log marginal likelihood (LML):

(11)

where . This form prevents numerical problems associated with 

the integrand becoming too small. We used a Riemann sum over the previously defined 

parameter grid to approximate the integral.

As an alternative to Bayesian model comparison, we could use one of several well-known 

information criteria: Akaike information criterion (AIC), a small-sample variant of it 

(AICc), and the Bayesian information criterion (BIC). All of these penalize the maximum 

log likelihood, LLmax(M), by a term increasing with the number of free parameters. 

However, since all models have two parameters, all penalty terms cancel when taking the 

difference between two models, and the difference reduces to the difference between the 

models’ LLmax(M) values. All information criteria therefore yield the same differences, and 

we will refer to them as *IC.

Model recovery

To validate our methods, we performed a model recovery analysis. We generated 9 synthetic 

data sets of 3000 trials from each one of the 25 models. Each data set corresponded to an 

actual subject, in the following sense. To make our synthetic data realistic, we chose each 

parameter value to be the weighted average of the maximum-likelihood estimates of that 

parameter obtained from the subject’s data under each of the 25 models, weighted by the 

posterior probability of the model. (Many other ways of choosing parameters for synthetic 

data will also work.) We then fitted each of the 25 models to each of the 225 synthetic data 

sets. We found that the correct model had the highest LML and the lowest *IC in the same 

137 out of 225 cases. Most of the confusions (79/88) arose within one of two sets of models. 

One set contains the Opt, SunErfT3, SumErfT13, SumErfT23, SumXT3, SumXT13, 

SumXT23, and SumXT123 models. The other set contains Sum, MaxT2, SumErf, 

SumErfT1, SumErfT2, SumErfT12, SunXT1, SumXT2, and SumXT12. Within each of 

these two sets, we cannot distinguish the models. When we averaged over different data sets 

generated from the same model, the correct model won in all cases (25/25; for the confusion 

matrix of mean LML, see Fig. A1).
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No data set generated from a simple heuristic or a two-step model was fitted better by the 

Opt model than by the true model. Moreover, the LML and *IC differences were large 

(Table 1), indicating that one cannot mistake data from those models for being generated 

from Opt. In other words, the Opt model is not able to mimic the simple models and is not 

more flexible than simple models in fitting the data. (We already expected that because all 

models have the same two parameters.)

MODELING RESULTS

Comparison between the optimal model and the simple heuristic models

Figure 3 shows the fits of the Opt model and the simple heuristic models. The Opt model fits 

the data best (Figs. 3A–D). In particular, the Opt model accurately accounts for the 

counterintuitive non-monotonicity of proportion correct as a function of distractor 

orientation (Fig. 1D, bottom; Fig. 3D). All simple heuristic models exhibited systematic, 

clearly visible deviations from the data (Fig. 3B–D). The LML of the Opt model exceeded 

that of the Sum, Max, Min, Var and Sign models by 244 ± 48, 161 ± 43, 282 ± 30, 99 ± 28, 

and 189 ± 32, respectively (paired t-tests: p ≤ 0.01) (Fig. 7A). The Opt model was most 

likely for each of the nine subjects individually (Fig. 7B). We obtained nearly identical 

results using the *IC information criteria (Fig. A2). This suggests that human prioritize 

optimality over simplicity in this visual search paradigm.

Comparison between the optimal model and the two-step models

None of the two-step models fits the data well (Fig. 4A–C). Bayesian model comparison 

confirms this (Fig. 7A–B): the mean LML of the Opt model exceeds that of the two-step 

models by 253 ± 48, 256 ± 47, 130 ± 34, 38 ± 10 and 126 ± 34 (p < 0.01). The Opt model is 

more likely than any of the two-step models for all nine subjects (Fig. 7B). We obtained 

nearly identical results using the *IC information criteria (Fig. A2). This suggests that in 

perceptual decision-making, human observers do not follow the heuristic of only relying on 

the most discriminative cue.

Comparison between the optimal model and the generalized sum models

So far, none of the simple models tested can account for human behavior. Among the 

“generalized sum models”, those without the distractor variance term (Term 3) fitted poorly 

to human data (Figs. 5–6). The LML of the Opt model was higher than the log likelihoods of 

the models without Term 3 by 256 ± 47 (SumErf), 265 ± 46 (SumErfT1), 256 ± 47 

(SumErfT2), 266 ± 46 (SumErfT12), 266 ± 46 (SumXT1), 249 ± 48 (SumXT2), and 265 

± 46 (SumXT12) (p < 0.001; Fig. 7A–B). However, models that included Term 3 were not 

distinguishable from the Opt model: the LML differences were −1.9 ± 1.3 (SumErfT3; p = 

0.22), 21.7 ± 9.1 (SumErfT13; p=0.05), −8.2 ± 4.1 (SumErfT23; p = 0.10), −4.8 ± 3.3 

(SumXT3; p = 0.20), 12.2 ± 5.7 (SumXT13; p = 0.08), −8.9 ± 5.8 (SumXT23; p = 0.19), and 

−3.1 ± 2.1 (SumXT123; p = 0.20). We obtained nearly identical results using the *IC 

information criteria (Fig. A2). Thus, like in the synthetic data used for model recovery, seven 

suboptimal models (SumErfT3, SumErfT13, SumErfT23, SumXT3, SumXT13, SumXT23, 

and SumXT123) fitted the data about as well as the Opt model. However, these are by no 

means simple models (Table 1). Our results suggest that the distractor variance term (Term 
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3) is a crucial component of the decision rule, implying that subjects used the knowledge 

that the three distractors have the same orientation in their decision.

Model agreement

We found that seven (out of 24) suboptimal models can describe human behavior equally 

well as the Opt model. This might seem unsatisfactory, because it seems no definite 

conclusion can be drawn about whether people are optimal or not. Here, we argue that it is 

flawed to think of the distinction between optimal and suboptimal models as categorical, and 

that the seven well-fitting suboptimal models are for all practical purposes identical to the 

Opt model. A first hint of this was provided by the earlier model recovery analysis, in which 

we found that models within this group of eight models are indistinguishable (Fig. A1). 

However, we can quantify similarity between models in more detail. We will do this in two 

ways.

One way to think of model similarity is in terms of predicted accuracy. We computed the 

proportion correct predicted by different models given the same set of simulated stimulus 

vectors (consisting of 100,000 trials) across a range of values of the noise parameter σ (0.01 

to 10 with a step of 0.01). We found that the accuracy levels predicted by these eight models 

are nearly identical (Fig. 8A), which means that observers using any of these eight decision 

rules would all obtain near-maximal accuracy.

This analysis still leaves two possibilities: the seven alternative models do well because they 

are nearly identical to the Opt model in their trial-to-trial predictions, or because they 

account better than the Opt model for some trials and worse for others. In other words, we 

are not just interested in whether an observer uses a rule that allows near-maximal accuracy 

for a given noise level, but also in whether they use the specific decision rule Eq. (5).

To distinguish between these possibilities, we examined the trial-to-trial agreement between 

the model predictions of the Opt model and of each alternative model, under a lapse rate of 

zero. (A nonzero lapse rate would simply replace some responses by coin flips and is 

therefore uninteresting.) At each value of the noise level σ, we simulated 100,000 

measurement vectors drawn from the generative model. For each measurement vector, the 

Opt and the alternative model made a deterministic prediction for the binary response. 

Comparing these predictions across all measurement vectors, we obtain a “proportion 

agreement”. We then plotted this quantity as a function of the noise level σ (Fig. 8B). The 

seven models that were indistinguishable from the Opt model made trial-to-trial predictions 

that agreed with those of the Opt model on more than 95% of trials. This shows that the 

models that fit about as well as the Opt model do so because the predictions of these models 

and the Opt model strongly agree from trial to trial.

A structure on the space of decision rules?

Although we tested many more models than is common in psychophysics studies, the set of 

all possible models is obviously infinite, which make it hard to infer whether an untested 

model would fit better. However, we are in the special circumstance that our models only 

differ in their decision rules. Here, we make use of this property to explore the structure of 

Shen and Ma Page 12

Psychol Rev. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the decision rule space, with the goal of making inferences beyond the decision rules we 

tested.

In our task, a decision rule is a mapping from a measurement vector  and the 

parameter σ to a binary response . There are infinitely many such mappings; when 

we fix σ, one can think of them as different ways of dividing four-dimensional space into 

black and white regions (for a three-dimensional analog showing the decision boundary, see 

Fig. 2B). One could shrink the space of decision rules by imposing that d must be 

antisymmetric under the sign flip , and invariant under permutations of the elements 

of x. In addition, one could impose smoothness constraints or neural constraints. Even so, d-

space will still be infinite-dimensional and will not be a vector space in an obvious way. 

However, it is possible to equip it with a metric structure, which we will describe now.

In the previous section, we introduced the proportion of trial-to-trial agreement between two 

decision rules. There, it was a function of σ, but we can reduce it to a single number by 

averaging over σ:

(12)

In this equation, δ denotes the Kronecker delta function, which equals 1 when its two 

subscripted integer arguments are equal to each other and 0 otherwise. The average 〈…〉 is 

over everything: noise realizations, stimuli, and the parameter σ (for which we again use the 

range (0,10]). Agreement is linearly related to the Hamming distance (Hamming, 1950) 

computed across the two binary strings of  values obtained by evaluating both decision 

rules on randomly sampled (σ, x) pairs. Incidentally, this means that Agreement equips the 

space of decision rules with a metric structure.

The Agreement metric is less general than Kullback–Leibler (KL) or Jensen-Shannon (JS) 

divergence: Agreement is designed for comparing two deterministic decision rules acting on 

the same internal representation, whereas the divergences can be used to characterize 

similarity between any two models. However, Agreement has the advantage of capturing the 

trial-to-trial similarity between model predictions: while the divergences only compare the 

predicted distributions of responses conditioned on the stimuli, s, Agreement compares the 

predicted individual responses conditioned on the internal representation x. Consider an 

example in which a specific stimulus s is repeated many times, and two models A and B 

both predict the subject to report “right” on 70% of these trials. Then, KL/JS divergence 

between A and B will be 0. However, Agreement between A and B might differ greatly. One 

extreme possibility is that A and B make the exact same prediction for every x that is 

generated from s, that is, Agreement is 100%. The other extreme possibility is that A and B 

make maximally distinct predictions; in this case, Agreement is only 40%.

Relation between Agreement with Opt and goodness of fit

Now that we have used Agreement to define a structure on model space, we can examine 

how goodness of fit (log marginal likelihood, or LML) depends on Agreement. As a first 
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step, we visualized the space of decision rules using multi-dimensional scaling. This method 

converts the matrix of Agreement values between pairs of decision rules (25×24/2=300 

values in total) into distances in a low-dimensional space (Borg & Groenen, 2005). We 

found that the models that lie farther away from the Opt model in this low-dimensional 

space tend to fit worse (Fig. 8C). This suggests that Agreement is informative about 

goodness of fit. We now examine this suggestion in more detail.

Given a data set, an ideal conclusion to draw would be that one particular decision rule, say 

d*, has the highest LML in the space of all plausible mappings d. In practice, we can only 

test a small number of d, so it is helpful to know whether there exists a monotonic 

relationship between LML and Agreement with d*. In fact, a sufficient condition for d* 

being the only maximum in all of d-space is that LML is lower whenever Agreement to d* is 

lower. The LML landscape does not necessarily obey this property globally, and is in fact 

unlikely to; for example, there could be local maxima (multimodality) or ridges. However, 

the property might still hold in most of the d-space, and therefore we think that the 

correlation between LML and Agreement (CLA) is informative.

Across the 25 models we tested, we find that a model’s LML is strongly correlated with its 

Agreement with the Opt model, with a correlation of 0.99 (Fig. 8D). The correlation was 

much lower when we correlated LML with the Agreement with a model other than Opt, 

except for the seven other best models (Fig. 9A, Fig. A3). These observations suggest that 

the more similar a model’s lapse-free trial-to-trial predictions are to the eight best models, 

the better the model (with a lapse rate) fits the human data.

In synthetic data generated using parameters fitted to subject data (see “Model recovery”), 

CLA with the Opt model as the reference model was only high when the data were 

generated from the seven other best models (Fig. 9B, Fig. A4). Moreover, the CLA with a 

specific model as the reference model was high when the synthetic data were generated 

using that model (Fig. 9C, Fig. A5). Therefore, the observed high correlation between a 

model’s LML on subject data and its Agreement with one of the eight best models is 

consistent with the eight best models being close to the true model underlying the data.

However, this argument relies on the small, rather arbitrary, and possibly biased set of 

models that we tested here. In particular, the high correlation would be unsurprising if the 

models tested all reside in a local neighborhood of the Opt model. In addition, a drawback of 

the analysis above is that Agreement was defined on models without a lapse rate, whereas 

LML was computed on the same models with a lapse rate. To further investigate how close 

the eight best models are to the true model underlying the data, we now introduce an 

independent approach.

HOW GOOD ARE THE BEST MODELS?

Here we use an information-theoretical method to determine how well a model fits in an 

“absolute” sense, specifically, how much room there is for an untested model to fit better 

than the eight best models. The basic idea can be illustrated with a simple example: if a 

biased coin has a probability p of coming up heads, and we try to account for the outcomes 
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of N independent tosses of that coin, then the best we can do is to state for each toss that the 

probability of heads is p. When N is large, the log likelihood of this model will be the sum 

of Np log p (from the heads outcomes) and N(1−p) log (1−p) (from the tails outcomes), 

which is the negative entropy of a sequence of this coin’s toss outcomes. No model can have 

a higher log likelihood: the log likelihood of any model is bounded from above by the pure 

stochasticity of the data. The argument below amounts to estimating how close the log 

likelihood of our best models is to the upper bound given by the negative entropy.

Kullback-Leibler divergence

The data D produced by a model M follow a probability distribution p(D|M). If we assume 

that there is a true model Mtrue, then its data distribution is p(D|Mtrue). A principled measure 

of the distance between a model M and the true model Mtrue is the Kullback-Leibler 

divergence between these two data distributions (Cover & Thomas, 2005):

This quantity is always non-negative and can be evaluated as:

(13)

where

(14)

is the entropy of the data distribution p(D|Mtrue), and

(15)

is the cross-entropy between p(D|Mtrue) and p(D|M), and, as we will see below, closely 

related to model log likelihood. Since DKL is non-negative, the negative entropy is an upper 

bound on the negative cross-entropy. The KL divergence corresponds to unexplained 

variation, the entropy to subject stochasticity (“unexplainable variation”), and the negative 

cross-entropy to the goodness of fit (“explained variation”). Thus, goodness of fit, KL 

divergence, and unexplainable variation sum up to a perfect fit (zero). No model can fit the 

data better than allowed by the stochasticity of subject responses.

Both terms in Eq. (13) involve a sum over all possible data sets D generated from model 

Mtrue, but we have only a single one available, namely the subject data. Therefore, both 

terms have to be estimated based on that one data set, which we denote by “data”, as before. 
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Before we resolve this issue, we will first simplify Eqs. (14) and (15) by assuming 

independence of trials and discretizing the stimuli.

Negative entropy term

A possible data set consists of a binary vector of length Ntrials, consisting of +1 and −1 

responses: . We now assume that the trials are conditionally independent 

of each other. We can then evaluate the negative entropy of p(D|Mtrue), starting from Eq. 

(14):

where  is the subject’s response on the ith trial.

To make further progress, we need to define unique stimulus conditions that have 

sufficiently many trials. To this end, we binned the data as in Fig. 1B: 9 quantiles for sT 

crossed with 9 quantiles for sD. We denote the number of trials when the stimuli are in the jth 

stimulus bin (j=1,…, 81) by Nj, and, among those, the number of trials when the subject 

responded “right”, by nj. Thus, we reduce each subject’s data to 81 counts. We verified that 

the number of bins did not meaningfully affect our results.

Using this discretization, the distribution  is the same for all trials i in the same 

stimulus condition. Therefore, we can group the trials by stimulus bin j, and negative 

entropy becomes

Defining , we have

(16)

Negative cross-entropy term

We now turn to the cross-entropy of p(D|Mtrue) and p(D|M), as given by Eq. (15). This term 

is difficult to estimate, because responses in different stimulus bins are independent only 
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conditional on the parameters. Unfortunately, the parameters θ (J and λ) are unknown and 

have to be estimated from the data or marginalized over. Here, the former is easier. For each 

model, we used every other trial to obtain maximum-likelihood estimates  of the parameters 

(using the same parameter grid as before), and then used these values to evaluate model 

predictions on the other half of the trials. Then, we can use a trial factorization and stimulus 

binning analogous to the ones done above for the entropy, to arrive at

(17)

where  denotes the probability of response  under model M on a trial on 

which the stimuli are in the jth bin. In practice, we computed the latter values as a weighted 

average of the proportions of  across a fine grid of stimulus combinations in the jth bin, 

with weights given by the probabilities of those stimulus combinations.

Estimating the terms: deviance approach

We now have expressions for the two terms in the KL divergence under the trial factorization 

and stimulus binning, Eqs. (16) and (17). The KL divergence is the difference between these 

two quantities. In computing this, we face a problem: {πj}, the predicted proportion of 

 responses under the true model, are unknown because the true model is unknown. We 

will first describe the standard way to deal with this problem, then our way.

The standard way to deal with the problem that {πj}are unknown is to estimate them as the 

empirical proportions of  responses, in other words, as . Then, the estimator of 

the negative entropy becomes

(18)

and the estimator of the negative cross-entropy becomes

(19)

where
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(20)

is the cross-validated log likelihood of model M (compare Eq. (10)). The difference between 

these two terms is then the estimator of KL divergence:

Up to an irrelevant factor of 2, this is also known as the deviance (Wichmann & Hill, 2001). 

It is common to perform a statistical test on the deviance to determine whether it is 

significantly different from 0. If it is not, then the model is statistically “as good as 

possible”.

Although such an analysis of deviance is widespread, it suffers from a fundamental problem: 

 is an unbiased estimator of πj, but  log  is not an unbiased estimator of πj log 

πj. In fact, the bias in estimating entropy has been characterized in detail (Grassberger, 1988, 

2003). Therefore, we explore a different solution here.

Estimating the terms: new approach

Negative entropy term—To estimate the negative entropy, we use the Grassberger 

estimator (Grassberger, 2003), evaluated on the same half of the data as used to estimate the 

cross-entropy:

(21)

where the numbers Gn are obtained through G0=0, G1=−γ–log 2 (where γ = 0.577215…is 

Euler’s constant), G2=2−γ–log 2,, and for n ≥ 1, G2n+1=G2n and . Thus, 

Negative cross-entropy term—The negative cross-entropy term is linear in πj and 

therefore does not suffer from the same biased estimation problem. Therefore, we use the 

estimator of Eq. (19), 

KL divergence—Our estimator of the KL divergence is then the difference of Eqs. (21) 

and (19):
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(22)

Significance testing—To test whether DKL is significantly greater than 0, we can no 

longer assume a chi-squared distribution, as is common for establishing significance of 

deviance (Collett, 2002, sects 3.8; Wichmann & Hill, 2001). In fact, we do not know how to 

compute a confidence interval on the expression in Eq. (22). Therefore, we make a further 

approximation by regarding our Grassberger estimate of negative entropy as the truth, and 

only computing a confidence interval on the cross-entropy term. This can lead to false 

alarms (a model is falsely declared as being substantially different from the truth) but not to 

misses; thus, it is a conservative approach if we aim to test whether our best models are 

indistinguishable from the truth.

To compute a confidence interval for the cross-entropy, we use a Bayesian approach (i.e. we 

compute a credible interval), i.e. we compute the posterior probability distribution over Eq. 

(17). First, we compute the posterior over πj assuming a flat prior; a Jeffreys’ prior would 

not substantially change our results. Then, the posterior over πj is a beta distribution with 

mean  and variance . The next step is to approximate the beta 

distribution with a normal distribution with the same mean and variance, and make use of 

the independence of the πj. Then, the posterior over  has 

mean LLcv as before (Eq. (20)), and variance

(23)

This yields a 95% credible interval of the estimate of the KL divergence:

(24)

For every subject, we computed: the LLmax of a random coin-flip model (−Ntrials·0.5 log 2), 

the Grassberger estimate of negative entropy (Eq. (21)), LLcv(M) for all models, and the 

95% credible interval of the estimate of the negative cross-entropy for the Opt model (Eq.

(24)) (Fig. 10, Table 2). For most subjects, the estimate of negative cross-entropy is lower 

than the estimate of negative entropy; for two subjects, they are reversed. Since it is 

mathematically impossible for negative cross-entropy to exceed the negative entropy, this is 

an indication of estimation error. For eight out of nine subjects, the negative entropy was not 

significantly higher than the negative cross-entropy of the Opt model, indicating that the Opt 

model fits the data very well in an “absolute” sense (Table 2). The same applies to the seven 

models that are indistinguishable from the Opt model (see Table A2).
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Across subjects, the mean KL divergence between the Opt model and the true model is not 

significantly greater than 0 (p = 0.15, one-sided Wilcoxon signed-rank test), confirming that 

the Opt model explains most of the explainable variation. The same is true for the seven 

other best models (SumErfT3: p = 0.25, SumErfT13: p = 0.13, SumErfT23: p = 0.25, 

SumXT3: p = 0.21, SumXT13: p = 0.13, SumXT23: p = 0.18, SumXT123: p = 0.21).

We can restate the comparison between negative cross-entropy and negative entropy in 

perhaps more intuitive terms. The negative cross-entropy, when divided by the number of 

trials and then exponentiated, represents the geometric mean probability of the model 

correctly predicting the subject’s response on a given trial. Similarly, the negative entropy 

divided by the number of trials and exponentiated represents the geometric mean probability 

of correctly predicting the subject’s response on a given trial given the empirical response 

frequencies. For example for the Opt model, the prediction accuracy values are 0.63±0.01 

and 0.62±0.01, respectively (for individual subjects, see Table 2). This means that the Opt 

model predicts about as well as possible based on random variability in the data. Taken 

together, these results show that there is relatively little room for an untested model to fit 

better than our eight best models.

In summary, we so far have used two approaches to infer the models in the model space 

beyond the models we tested. Both approaches support the conclusion that the Opt model 

and the seven other best models are close to the true model.

EXPERIMENT 2: IMPLICIT REPRESENTATION OF UNCERTAINTY

Although the Opt decision rule was derived using the principles of Bayesian inference, our 

finding that the rule describes human behavior well does not imply that people reason with 

probabilities. In particular, an observer can, through the trial-to-trial feedback provided in 

the experiment, learn the Opt rule as a policy or look-up table, without ever representing 

probabilities in their brain. In earlier work, we therefore distinguished optimal computation 

from probabilistic computation (Ma, 2012). In the latter, the observer uses an implicit 

representation of sensory uncertainty, or even of an entire probability distribution over a 

sensory stimulus, in downstream computation. There is substantial evidence that people do 

this (for a review, see Ma & Jazayeri, 2014) but not much from tasks in which the decision 

rules is as complicated as here.

To vary uncertainty, one can vary stimulus reliability. In Experiment 2, we determined 

whether people are optimal when we train them at high stimulus reliability and test at low 

stimulus reliability. This test is a special case of “Bayesian transfer”, a term coined by 

Maloney and Mamassian (Maloney & Mamassian, 2009) to indicate that a truly probabilistic 

Bayesian observer should maintain priors, likelihoods, and cost functions as building blocks 

that can be mixed and matched according to the task demands; the experimental prediction is 

that people should generalize nearly immediately to a new prior, likelihood, or cost function 

and combined with other components that they learned previously. In our case, we 

generalize from a narrow likelihood function (high stimulus reliability) to a wide one (low 

stimulus reliability).
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Methods

Experiment 2 was identical to Experiment 1 except for the following differences. The 

experiment consisted of three sessions, held on different days. Each session contained 6 

blocks of 150 trials each. During the instruction phase on the first day, subjects viewed a plot 

of the Gaussian orientation distribution p(s) for a single item (not conditioned on C); the 

meaning of this plot was explained to them using vocabulary that matched their background. 

Subjects also viewed 30 stimuli whose orientations were drawn from p(s).

Blocks 1 and 4 of each session were training blocks, in which the stimuli were presented at 

high contrast (peak luminance of the Gabor patch: 120 cd/m2), and correctness feedback was 

provided after each trial. The other blocks were testing blocks. The stimuli in these blocks 

had lower contrast (peak luminance: 56 cd/m2) and no feedback was provided. Five subjects 

(3 female) participated in Experiment 2; all subjects were naïve to the experiment.

The instruction and training were meant to make the subjects to learn the stimulus 

distributions and correct any biases on left/right reporting, which are the same in both 

training and testing trials. However, the likelihood functions on the testing trials could not be 

learned from the training trials, because the stimuli had different reliability.

Results

We performed the same analysis as in Experiment 1 on the testing trials of Experiment 2. We 

found that the Opt model is still among the best-fitting models (Fig. 11A–B) and Bayesian 

model comparison revealed model rankings consistent with Experiment 1 (Fig. 11C–D). The 

Opt model and the seven other best models from Experiment 1 have higher LML than the 

other models.

Moreover, the Agreement and information-theoretic analyses yield the same conclusions as 

in Experiment 1: a model’s LML is strongly correlated with its Agreement with the Opt 

model (r = 0.99, Fig. 11F), much less with its Agreement with a model outside of the best 

eight (Fig. 11G), our estimate of KL divergence between any of the eight best models and 

the true model is not significantly different from 0 (Fig. 11H; e.g., Opt: p = 0.31, one-sided 

Wilcoxon signed-rank test), and also hold for the seven other best models. These results 

suggest that the sensory uncertainty is internally represented and that people combine this 

information with the task demands to achieve near-optimal performance, instead of using a 

fixed policy or look-up table.

DISCUSSION

We tested the optimal decision rule against a series of suboptimal rules, including many 

simple heuristic rules, in a relatively complicated perceptual decision-making task involving 

multiple stimuli. We found that the optimal rule describes the rich patterns in human 

behavior extremely well, and better than the heuristic rules that we tested. Moreover, even 

without trial-to-trial feedback, the Opt model still provides the best fit, and the Opt model is 

still close to the true model in a absolute sense according to both the Agreement analysis and 

the KL divergence estimates, suggesting that the near-optimal behavior is not a result of 

establishing a look-up table through feedback, but a result of probabilistic computation.
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It should be kept in mind that our model observer is not optimal in an absolute sense (Ma, 

2012), because measurement noise is not zero. In fact, this noise itself might reflect 

suboptimality in earlier stages of processing (Pouget, Beck, Ma, & Latham, 2013), or 

attentional limitations (Mazyar, Van den Berg, & Seilheimer, 2013). Our notion of 

optimality pertains solely to the decision rule applied to noisy sensory information.

We found that seven suboptimal models fit the data as well as the Opt model. However, 

those models are indistinguishable from the Opt model both in a model recovery test and in 

trial-to-trial model agreement. This argues for dropping the hard distinction between optimal 

and suboptimal, and instead talking about “models indistinguishable from optimal”.

Although we tested a relatively large number of models, model space contains infinitely 

many more models. Therefore, we introduced and computed two quantities to estimate how 

well the Opt model and the seven other best models fit relative to untested models: a) the 

correlation across models between log marginal likelihood and trial-to-trial agreement with 

one of the best models, and b) an estimate of the KL divergence between the eight best 

models and the true model. The first approach defines a structure on the space of decision 

rules, but it only applies when decision rules are deterministic and act on the same internal 

representation. (However, it can likely be generalized by using KL divergence instead of 

Agreement.) The second approach is much more general, but involves many approximations. 

Taken together, however, we believe that we have provided evidence that it is difficult to find 

a rule that fits the data better than the Opt rule (and rules indistinguishable from it).

Although we were able to define “complexity” for our mathematically specified decision 

rules, the way in which we did so was rather arbitrary. Coming up with a general definition 

of the complexity of a mapping between internal representation and decision might be even 

more difficult, for several reasons. First, it is unclear how to define complexity when the 

decision rule does not admit a neat mathematical description, as is the case for MAP 

estimation when the task distributions are empirical (Griffiths & Tenenbaum, 2006). Second, 

a mathematically complex computational-level rule might be simple for neurons to 

implement, or conversely. For example, some complex optimization problems can be solved 

using “simple” network operations (Deneve, 2008; Hopfield & Tank, 1985; Hornik, 

Stinchcombe, & White, 1989; Nessler, Pfeiffer, Buesing, & Maass, 2013; Nessler, Pfeiffer, 

& Maass, 2008). These ambiguities in the meaning of the complexity or simplicity of a 

decision process pose as much of a challenge to those proposing simple heuristics as an 

organizing principle as they do to us. In fact, such ambiguities may make any debate 

between optimality and simplicity ill-defined. A better-defined broad question is in what 

task domains human behavior is indistinguishable from optimal.

Although it seems safe to claim that subjects are not always near-optimal in perceptual tasks, 

the evidence for that statement is surprisingly weak. First, apparent suboptimality can arise 

when there are many parameters to learn, the distributions are complex, the parameters vary 

greatly across trials (Landy, Goutcher, Trommershäuser, & Mamassian, 2007), or the 

subjects are not fully attending to a stimulus (Morales et al., 2015). However, when given a 

large number of training trials (Körding & Wolpert, 2004) or a real-life backstory (Seydell, 

McCann, Trommershäuser, & Knill, 2008), people exhibit near-optimal behavior even under 

Shen and Ma Page 22

Psychol Rev. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



those conditions. When subjects do not perfectly learn the parameters, the optimal model 

should take into account evolving posteriors over those parameters; subjects might then still 

be optimal given the limited information about the parameters they have available (Fiser, 

Berkes, Orbán, & Lengyel, 2010). Second, unexplained biases that seem suboptimal have 

been reported when people estimate the direction of moving dots (Jazayeri & Movshon, 

2007; Rauber & Treue, 1998; Szpiro, Spering, & Carrasco, 2014); however, such biases 

might be due to the inhomogeneous nature of the tuning curves in the population encoding 

the stimulus (Wei & Stocker, 2015). Third, it has been suggested that people use a 

probability matching strategy, which is suboptimal (Wozny, Beierholm, & Shams, 2010). 

However, evidence in that study was mixed and somewhat indirect; in a direct comparison of 

probability matching and optimal estimation, the latter described human data better (Acuna, 

Berniker, Fernandes, & Kording, 2015). In our data, when we tested a probability matching 

version of the Opt model on our data, we found that its log likelihood is lower than that of 

the original Opt model by 73 ± 23 (Fig. 12), and that the original Opt model is more likely 

for all nine subjects. Fourth, in some domains of perception, heuristic models have 

historically been popular. An example is the maximum-of-outputs model in visual search 

(Nolte & Jaarsma, 1967). However, a review of studies in which that model did well showed 

that the optimal model described human data as well or better (Ma, Shen, Dziugaite, & Van 

den Berg, 2015). Thus, when we restrict ourselves to perceptual studies in which the 

generative model is well characterized, observers have fully learned the generative model, 

and proper model comparison has been performed, strong evidence for suboptimality in 

human behavior seems to be absent. Once recent challenge to this claim involved a task 

combining an uncertain perceptual judgment with a speeded reaching movement; the claim 

was there that subjects’ behavior obeyed a two-step model (Fleming et al., 2013). This needs 

to be explored further.

What does our work imply for cognitive decision-making tasks? In some cases, such as 

predicting the weather, choosing a job, or playing chess, it might forever remain unknown 

whether people use near-optimal or simple rules, because both optimality and simplicity are 

hard to define, and people’s prior beliefs, computational constraints, and utility functions are 

unknown and very difficult to estimate. However, there is a rich arena of cognitive tasks that 

are restricted, parameterized, and allow for quantitative modeling. Examples include the 

learning of category boundaries (Ashby & Maddox, 2005), strategies for information 

gathering (Coenen, Rehder, & Gureckis, 2014; Steyvers, Tenenbaum, Wagenmakers, & 

Blum, 2003; Wason, 1960), estimation of everyday quantities (Griffiths, Chater, Kemp, 

Perfors, & Tenenbaum, 2010), category-based induction (Osherson, Smith, Wilkie, López, & 

Shafir, 1990), and intuitive physics (Battaglia, Hamrick, & Tenenbaum, 2013). In all these 

realms, it is possible and important to develop large numbers of plausible suboptimal, simple 

models and perform analyses similar to the ones we did here. This is, however, rarely done 

(Bowers & Davis, 2012), placing claims of near-optimality and Bayesian reasoning in such 

tasks on shaky ground. On the other hand, there is also no evidence in any of these domains 

that people use simple heuristics as proposed by Gigerenzer. It might be that people are near-

optimal in tasks in which probabilities have to be manipulated implicitly rather than 

explicitly (Chen, Ross, & Murphy, 2014; Maloney, Trommershäuser, & Landy, 2007).
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Beyond the task or models studied here, our approach might help to establish criteria that 

must be satisfied before it can be claimed that any one model describes reality: 1) The model 

should be compared to, and outperform, a large number of alternative models. 2) The better 

the trial-to-trial predictions of the model agree with that of an alternative model, the better 

that alternative model should fit. 3) The Kullback-Leibler divergence between the model and 

the underlying true model should not be estimated to be significantly different from zero.
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APPENDIX

Decision rules of all models

Here, we give for every model the condition for which the observer reports “rightward”.

Optimal model

 

Opt:

Simple heuristic models

 

Sum:

Max:

Min:

Var:

Two-step models

 

MaxT2:
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MaxT12:

MaxT13:

MaxT23:

MaxT123:

Generalized Sum models

 

SumErf:

SumErfT1:

SumErfT2:

SumErfT3:

SumErfT12:

SumErfT13:

SumErfT23:

SumXT1:
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SumXT2:

SumXT3:

SumXT12:

SumXT13:

SumXT23:

SumXT123:

Table A1
Complexity of the observer’s decision rule in different 
models

The left part of the table shows the number of arithmetic operations of different types for 

each model: linear operations (L), quadratic operations (Q), other nonlinear operations (NL), 

and sorting operations (Sort). The right part of the table shows the numbers of neural 

operations if the decision variable were directly transformed into a neural quantity using the 

theory of probabilistic population codes. All models have only two free parameters; only the 

complexity of the observer’s computation differs.

Arithmetic Operations Neural Operations

Q L NL Sort a·r b·r Q L NL Sort

Opt 32 59 8 1 164 656 724 183 20 1

Sum 0 3 0 1 4 16 15 3 1 1

Max 0 0 4 2 4 4 0 0 4 2

Min 0 0 4 2 4 4 0 0 4 2

Var 28 40 0 2 48 144 164 44 4 2

Sign 0 0 0 4 48 172 188 52 4 2

MaxT2 28 40 0 2 112 412 456 124 4 2

MaxT12 32 48 0 2 104 396 440 108 4 2

MaxT13 32 48 0 2 80 316 356 84 4 2

MaxT23 28 40 0 2 160 652 720 172 4 2
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Arithmetic Operations Neural Operations

Q L NL Sort a·r b·r Q L NL Sort

MaxT123 32 48 0 2 4 4 0 11 12 1

SumErf 0 7 4 1 12 16 12 19 20 1

SumErfT1 8 11 8 1 52 176 192 63 20 1

SumErfT2 28 51 8 1 52 148 168 55 20 1

SumErfT3 28 51 8 1 116 416 460 135 20 1

SumErfT12 32 59 8 1 108 400 444 119 20 1

SumErfT13 32 59 8 1 84 328 360 95 20 1

SumErfT23 28 51 8 1 12 16 12 11 12 1

SumXT1 8 7 4 1 52 176 192 55 12 1

SumXT2 28 47 4 1 52 148 162 47 12 1

SumXT3 28 47 4 1 116 416 460 127 12 1

SumXT12 32 55 4 1 108 400 444 111 12 1

SumXT13 32 55 4 1 84 320 360 87 12 1

SumXT23 28 47 4 1 164 656 724 175 12 1

SumXT123 32 55 4 1 164 656 724 183 20 1

Table A2

For all models and subjects, the probability p that the negative cross-entropy is equal to or 

higher than the negative entropy. Green shading indicates p > 0.05. Models whose names are 

written in green are the eight best models; models whose names are written in read are 

simple heuristic models and two-step models. For the eight best models, most subjects have 

p>0.05, indicating these models are good in an “absolute” sense.

MBC MG RC WYZ XLM YC YL YMH YZ

Opt 0.97 0.2 0.14 0.17 0.05 0.92 0.071 0.099 0.015

Sum <10−16 <10−3 <10−11 <10−16 0.0045 <10−16 <10−16 <10−16 <10−3

Max <10−9 0.034 <10−5 <10−16 0.069 <10−16 <10−16 <10−16 0.01

Min <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16

Var 0.89 <10−7 0.22 0.043 <10−16 0.98 <10−4 0.15 <10−16

Sign <10−3 0.062 0.0011 <10−5 0.15 <10−6 <10−5 <10−16 0.005

MaxT2 <10−16 <10−4 <10−13 <10−16 <10−3 <10−16 <10−16 <10−16 <10−6

MaxT12 <10−16 <10−6 <10−16 <10−16 <10−4 <10−16 <10−16 <10−16 <10−8

MaxT13 0.73 <10−14 0.023 0.0053 <10−16 0.96 <10−9 0.12 <10−16

MaxT23 0.94 0.073 0.28 0.12 <10−4 0.97 <10−3 0.15 <10−7

MaxT123 0.82 <10−10 0.067 0.015 <10−16 0.98 <10−7 0.12 <10−16

SumErf <10−16 <10−4 <10−11 <10−16 <10−3 <10−16 <10−16 <10−16 <10−5

SumErfTl <10−16 <10−4 <10−16 <10−16 0.0075 <10−16 <10−16 <10−16 <10−7

SumErfT2 <10−16 <10−4 <10−12 <10−16 <10−3 <10−16 <10−16 <10−16 <10−5

SumErfT3 0.96 0.47 0.16 0.33 0.068 0.93 0.13 0.15 0.024
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MBC MG RC WYZ XLM YC YL YMH YZ

SumErfT12 <10−16 <10−10 <10−14 <10−16 <10−4 <10−16 <10−16 <10−16 <10−7

SumErfT13 0.96 0.096 0.18 0.29 <10−7 0.96 0.027 0.19 <10−5

SumErfT23 0.95 0.5 0.15 0.33 0.37 0.91 0.13 0.15 0.16

SumXT1 <10−16 <10−4 <10−16 <10−16 <10−3 <10−16 <10−16 <10−16 <10−6

SumXT2 <10−16 <10−3 <10−12 <10−16 0.0016 <10−16 <10−16 <10−16 <10−4

SumXT3 0.95 0.52 0.15 0.32 0.18 0.89 0.15 0.13 0.072

SumXT12 <10−16 <10−5 <10−14 <10−16 <10−4 <10−16 <10−16 <10−16 <10−7

SumXT13 0.96 0.25 0.17 0.33 0.0022 0.92 0.073 0.15 0.0016

SumXT23 0.93 0.46 0.12 0.3 0.41 0.86 0.1 0.12 <10−3

SumXT123 0.95 0.5 0.15 0.33 0.19 0.9 0.15 0.13 0.065

Figure A1. Model recovery analysis
We tested how well synthetic data sets generated from each model (rows) were fitted by 

each model (columns). (A) Model confusion matrix. The color in a cell represents the 

difference in log marginal likelihood between a model and the winning model for the 

corresponding data set. Dark red on the diagonal means that the model used to generate the 

data was found to be most likely. (B) As in (A), but with models clustered by Agreement. 

Models in red are models with high Agreement to the Opt model. Models in blue are from a 

different model set with low Agreement to the Opt model, but similar to each other. Models 

in orange have higher Agreement to the Opt than to the blues models, but they are still well 

distinguishable from the Opt model. Also refer to Fig. 8C.
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Figure A2. Model comparison based on information criteria
Mean and s.e.m. across subjects of the difference in information criterion (AICc or BIC) 

between each model and the Opt model. Note that all models have two parameters, therefore 

all information criteria yield the same differences between models.
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Figure A3. Correlation between log marginal likelihood and Agreement with any one model 
given the real data
Related to Fig. 8D and Fig. 9A. Each plot shows, given the real data, the mean (open circle) 

and s.e.m. (error bar) across subjects of a model’s average log marginal likelihood per trial 

as a function of its Agreement with a reference model; the reference model differs between 

plots. The dashed line represents the best linear fit. r is the Pearson correlation. The names 

of eight best models are in boldface.
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Figure A4. Correlation between log marginal likelihood and Agreement with the Opt model 
given synthetic data generated from any one model
Related to Fig. 9B. For each plot, we generated 9 synthetic data sets from a different 

generating model. The plot shows the mean (open circle) and s.e.m. (error bar) of a model’s 

average log marginal likelihood per trial as a function of its Agreement with the Opt model 

based on those data sets. The dashed line represents the best linear fit. r is the Pearson 

correlation. The names of eight best models are in boldface. Given synthetic data generated 

from one of the eight best models, the correlation is high. Given synthetic data generated 

from a model outside of the eight best, the correlation is low.
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Figure A5. Correlation between log marginal likelihood and Agreement with a reference model 
given synthetic data generated from that reference model
Related to Fig. 9C. For each plot, we generated 9 synthetic data sets from a different 

generating model. The plot shows the mean (open circle) and s.e.m. (error bar) of a model’s 

average log marginal likelihood per trial as a function of its Agreement with the generating 

model. The dashed line represents the best linear fit. r is the Pearson correlation. Given 

synthetic data generated from any one model, the correlation is high.
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Figure 1. Task and data
(A) Trial procedure. Each display contains four items, three of which have a common 

orientation; these are the distractors. Subjects report whether the fourth item (the target) is 

tilted to the left or to the right with respect to vertical. The target location is randomly 

chosen on every trial. (B) The target orientation and the common distractor orientation are 

independently drawn from the same Gaussian distribution with a mean of 0° (vertical) and a 

standard deviation of 9.06°. For plotting purposes, we divided orientation space into 9 

quantiles. (C) Proportion of reporting “right” (color) as a function of target and distractor 

orientation quantiles. (D) Proportion of reporting “right” as a function of target orientation 

sT (top) and distractor orientation sD (top). Error bars are s.e.m. The top curves are not 

expected to be monotonic (see text).
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Figure 2. Generative model
(A) Each node represents a random variable, each arrow a conditional probability 

distribution. Distributions are shown in the equations on the side. N(x; 0, σ2) denotes a 

normal distribution with a mean of 0 and a variance of σ2. H(x) denotes the Heaviside 

function. 1L denotes a vector in which the Lth entry equals 1 and all others equal 0. δ(x) is 

the Dirac delta function. This diagram specifies the distribution of the measurements, x. The 

optimal observer inverts the generative model and computes the conditional probability of C 
given x. (B) Decision boundary of the optimal decision rule if the set size N were equal to 3. 

Each point in the three-dimensional space represents a set of measurements x = (x1, x2, x3). 

On one side of the boundary (the side that includes the all-positive octant), the optimal 

observer reports “right”, on the other side, “left”.
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Figure 3. Model fits of the Opt model and the simple heuristic models
The Opt model fits better than the heuristic models. (A) Proportion of reporting “right” 

(color) as a function of target and distractor orientation quantiles, for individual subjects. 

The top plot shows the data, the top the fits of the Opt model. (B) As (A), averaged over 

subjects. The leftmost plot shows the data from Fig. 1C, the other plots the model fits. (C) 
Proportion of reporting “right” as a function of target orientation sT. Circles and error bars: 

data; shaded areas: model fits. (D) Proportion of reporting “right” as a function of distractor 

orientation sD.
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Figure 4. Model fits of the two-step models
The Opt model fits better than the two-step models. (A) Proportion of reporting “right” 

(color) as a function of target and distractor orientation quantiles, averaged over subjects. 

The leftmost plot shows the data from Fig. 1C, the other plots the model fits. (B) Proportion 

of reporting “right” as a function of target orientation sT. Circles and error bars: data; shaded 

areas: model fits. (C) Proportion of reporting “right” as a function of distractor orientation 

sD.
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Figure 5. Model fits of the generalized sum models of the SumErfT* type
Models contain term 3 (SumErfT3, SumErfT13, and SumErfT23) fit about as well as the 

Opt model. (A) Proportion of reporting “right” (color) as a function of target and distractor 

orientation quantiles, averaged over subjects. The leftmost plot shows the data from Fig. 1C, 

the other plots the model fits. (B) Proportion of reporting “right” as a function of target 

orientation sT. Circles and error bars: data; shaded areas: model fits. (C) Proportion of 

reporting “right” as a function of distractor orientation sD.
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Figure 6. Model fits of generalized sum models of the SumXT* type
Models contain term 3 (SumXT3, SumXT13, SumXT13, and SumXT123) fit about as well 

as the Opt model. (A) Proportion of reporting “right” (color) as a function of target and 

distractor orientation quantiles, averaged over subjects. The leftmost plot shows the data 

from Fig. 1C, the other plots the model fits. (B) Proportion of reporting “right” as a function 

of target orientation sT. Circles and error bars: data; shaded areas: model fits. (C) Proportion 

of reporting “right” as a function of distractor orientation sD.
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Figure 7. Model comparison
(A) Mean and s.e.m. across subjects of the difference in log marginal likelihood between 

each model and the Opt model. (B) Difference in log marginal likelihood between each 

model and the Opt model for individual subjects; bars of different colors represent different 

subjects.
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Figure 8. Model similarity and goodness of fit
(A) Proportion correct as a function of the noise level σ for all models. (B) Proportion of 

trials for which a model makes the same prediction as the Opt model, as a function of σ. (C) 
Averaged prediction agreement (“Agreement”) visualized using multi-dimensional scaling. 

Each dot represents a model, and the distance between two models represents the 

disagreement between those models. The color of a dot represents its log marginal 

likelihood. Models that agree more with the Opt model tend to have a higher log marginal 

likelihood. (D) Mean (open circle) and s.e.m. (error bar) across subjects of a model’s log 

marginal likelihood as a function of its Agreement with the Opt model. Each dot indicates a 

model. The solid line represents the best linear fit. r is the Pearson correlation.
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Figure 9. Correlation between log marginal likelihood and Agreement (CLA) as a potential 
measure of the global maximum of goodness of fit in model space
(A) Agreement, and therefore CLA, is computed relative to a reference model. CLA is high 

when the reference model is the Opt model (red circle, see also Fig. 8D) or one of the seven 

other best models (see also Fig. A3). CLA is significantly lower when the reference model is 

a different model (Wilcoxon rank-sum test, p = 8.4×10−5). (B) Given synthetic data 

generated from one of the eight best models, CLA with the Opt model as the reference is 

high. Given synthetic data generated from a model outside of the eight best, CLA with the 

Opt model as the reference is significantly lower (Wilcoxon rank-sum test, p = 8.4×10−5, see 

also Fig. A4). This serves as a negative control for the high CLA with the Opt model as a 

reference (red circle in (A) and Fig. 8D). (C) Given synthetic data generated from any one 

model, the CLA with that model as the reference is high (> 0.9). Moreover, given synthetic 

data generated from a model outside of the eight best, the CLA with that model as a 

reference is significantly higher than given the real data (Wilcoxon signed-rank test, p = 

2.9×10−4, see also Fig. A5). This serves as a positive control for the low CLAs with the 

models outside of the eight best as reference models (green circles in (A)).
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Figure 10. Information-theoretical estimate of how good the eight best models are
Each column represents a subject. For each subject, the green line represents an estimate of 

the negative entropy of the data, the dashed black line the negative cross-entropy between a 

coin-flip model and the true model, the blue line an estimate of the negative cross-entropy 

between the Opt model and the true model, and the grey lines estimates of the negative 

cross-entropies between other models and the true model. The error bar represents an 

estimate of the 95% credible interval of the negative cross-entropy between the Opt model 

and the true model. The estimate of the negative cross-entropy between the Opt model and 

the true model is not significantly different from the estimate of the negative entropy of the 

data (one-sided Wilcoxon signed-rank test, p = 0.15), suggesting that the Opt model explains 

most of the explainable variation. The same holds for the seven other best models (see main 

text).
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Figure 11. Results of Experiment 2, in which feedback was withheld
(A) Proportion of reporting “right” (color) as a function of each combination of target and 

distractor orientation quantiles (1 to 9), averaged over all 5 subjects. The left plot shows the 

data, the right the fits of the Opt model. (B) Proportion of reporting “right” as a function of 

target orientation. Circles and error bars: data; shaded areas: Opt model fits. (C) Proportion 

of reporting “right” as a function of distractor orientation. (D) Mean and s.e.m. across 

subjects of the log marginal likelihood of each model relative to the Opt model. Shades of 

different colors indicate the category of a model. (E) Log marginal likelihood of each model 

Shen and Ma Page 46

Psychol Rev. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



minus that of the Opt model, for individual subjects. In the bar plots, each color represents a 

different subject. (F) As Fig. 8D, for Experiment 2. (G) As Fig. 9A, for Experiment 2. CLA 

is high when the reference model is the Opt model (red circle) or one of the seven other best 

models, and significantly lower otherwise (Wilcoxon rank-sum test, p = 8.4×10−5). (H) As 

Fig. 10, for Experiment 2. The estimate of the negative cross-entropy between the Opt model 

and the true model is not significantly different from the estimate of the negative entropy of 

the data (one-sided Wilcoxon signed-rank test, p = 0.31), suggesting that the Opt model 

explains most of the explainable variation. The same conclusion holds for the seven other 

best models.
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Figure 12. Comparison between probability matching version of the Opt model and the Opt 
model
Difference in log marginal likelihood between the probability matching model and the Opt 

model for individual subjects. The last column shows the mean and s.e.m. of this difference.
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Table 1
Test for false alarms in model recovery

Comparison between the LML and *IC of the Opt model and other models given synthetic data sets generated 

with suboptimal models.

Opt tested on LML # wins LML difference *IC #wins *IC difference

Simple heuristic 0/45 [−348, −42] (mean −173) 0/45 [42,347] (mean 173)

Two-step 0/45 [−382, −23] (mean −161) 0/45 [23,381] (mean 161)

Generalized sum 12/70 [−436,0] (mean −205) 12/70 [0,435] (mean 204)
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