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Abstract

The concept of allostery in which macromolecules switch between two different conformations is 

a central theme in biological processes ranging from gene regulation to cell signaling to 

enzymology. Allosteric enzymes pervade metabolic processes, yet a simple and unified treatment 

of the effects of allostery in enzymes has been lacking. In this work, we take a step toward this 

goal by modeling allosteric enzymes and their interaction with two key molecular players—

allosteric regulators and competitive inhibitors. We then apply this model to characterize existing 

data on enzyme activity, comment on how enzyme parameters (such as substrate binding affinity) 

can be experimentally tuned, and make novel predictions on how to control phenomena such as 

substrate inhibition.
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1. INTRODUCTION

All but the simplest of cellular reactions are catalyzed by enzymes, macromolecules that can 

increase the rates of reactions by many orders of magnitude. In some cases, such as 

phosphoryl transfer reactions, rate enhancements can be as large as 1020-fold or more.1 A 

deeper understanding of how enzymes work can provide insights into biological phenomena 

as diverse as metabolic regulation or the treatment of disease.2–4 The basic principles of 

enzyme mechanics were first proposed by Michaelis and Menten5 and later extended by 

others.6–8 While the earliest models considered enzymes as single-state catalysts, 

experiments soon revealed that some enzymes exhibit richer dynamics.9,10 The concept of 

allosteric enzymes was introduced by Monod–Wyman–Changeux (MWC) and 

independently by Pardee and Gerhart,7,11–13 providing a much broader framework for 

explaining the full diversity of enzyme behavior. Since then, the MWC concept in which 

macromolecules are thought of as having both an inactive and active state has spread into 

many fields, proving to be a powerful conceptual tool capable of explaining many biological 

phenomena.14–16

Enzymology is a well studied field, and much has been learned both theoretically and 

experimentally about how enzymes operate.17–20 With the vast number of distinct molecular 

players involved in enzymatic reactions (for example, mixed, competitive, uncompetitive, 

and noncompetitive inhibitors as well as cofactors, allosteric effectors, and substrate 

molecules), it is not surprising that new discoveries continue to emerge about the subtleties 

of enzyme action.9,21,22 In this paper, we use the MWC model to form a unifying framework 

capable of describing the broad array of behaviors available to allosteric enzymes.

Statistical mechanics is a field of physics that describes the collective behavior of large 

numbers of molecules. Historically developed to understand the motion of gases, statistical 

physics has now seen applications in many areas of biology and has provided unexpected 

connections between distinct problems such as how transcription factors are induced by 

signals from the environment, the function of the molecular machinery responsible for 

detecting small gradients in chemoattractants, the gating properties of ligand-gated ion 

channels, and even the accessibility of genomic DNA in eukaryotes which is packed into 

nucleosomes.23–29

The remainder of the paper is organized as follows. In section 2.1, we show how the 

theoretical treatment of the traditional Michaelis–Menten enzyme, an inherently non-

equilibrium system, can be stated in a language remarkably similar to equilibrium statistical 

mechanics. This sets the stage for the remainder of the paper by introducing key notation 

and the states and weights formalism that serves as the basis for analyzing more 

sophisticated molecular scenarios. In section 2.2, we discuss how the states and weights 

formalism can be used to work out the rates for the simplest MWC enzyme, an allosteric 

enzyme with a single substrate binding site. This is followed by a discussion of how 

allosteric enzymes are modified by the binding of ligands, first an allosteric regulator in 

section 2.3 and then a competitive inhibitor in section 2.4. We next generalize to the much 

richer case of enzymes with multiple substrate binding sites in section 2.5. Lastly, we 

discuss how to combine the individual building blocks of allostery, allosteric effectors, 
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competitive inhibitors, and multiple binding sites to analyze general enzymes in section 2.6. 

Having built up this framework, we then apply our model to understand observed enzyme 

behavior. In section 3.1, we show how disparate enzyme activity curves can be unified 

within our model and collapsed onto a single curve. We close by examining the exotic 

phenomenon of substrate inhibition in section 3.2 and show how the allosteric nature of 

some enzymes may be the key to understanding and controlling this phenomenon.

2. MODELS

2.1. Michaelis–Menten Enzyme

We begin by briefly introducing the textbook Michaelis–Menten treatment of enzymes.18 

This will serve both to introduce basic notation and to explain the states and weights 

methodology which we will use throughout the paper.

Many enzyme-catalyzed biochemical reactions are characterized by Michaelis–Menten 

kinetics. Such enzymes comprise a simple but important class where we can study the 

relationship between the traditional chemical kinetics based on reaction rates with a physical 

view dictated by statistical mechanics. According to the Michaelis–Menten model, enzymes 

are single-state catalysts that bind a substrate and promote its conversion into a product. 

Although this scheme precludes allosteric interactions, a significant fraction of 

nonregulatory enzymes (e.g., triosephosphate isomerase, bisphosphoglycerate mutase, 

adenylate cyclase) are well described by Michaelis–Menten kinetics.18

The key player in this reaction framework is a monomeric enzyme E which binds a substrate 

S at the substrate binding site (also called the active site or catalytic site), forming an 

enzyme–substrate complex ES. The enzyme then converts the substrate into product P which 

is subsequently removed from the system and cannot return to its original state as substrate. 

In terms of concentrations, this reaction can be written as

(1)

where the rate of product formation equals

(2)

Briggs and Haldane assumed a time scale separation where the substrate and product 

concentrations ([S] and [P]) slowly change over time while the free and bound enzyme states 

([E] and [ES]) changed much more rapidly.6 This allows us to approximate this system over 

short time scales by assuming that the slow components (in this case [S]) remain constant 

and can therefore be absorbed into the kon rate30
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(3)

Assuming that the system (3) reaches steady state (over the short time scale of this 

approximation) quickly enough that the substrate concentration does not appreciably 

diminish, this implies

(4)

which we can rewrite as

(5)

where  is called the Michaelis constant. KM incorporates the binding and 

unbinding of ligand as well as the conversion of substrate into product; in the limit kcat = 0, 

KM reduces to the familiar dissociation constant . Using eq 5 and the fact that the 

total enzyme concentration is conserved, [E] + [ES] = [Etot], we can solve for [E] and [ES] 

separately as

(6)

(7)

where  and  are the probabilities of finding an enzyme in the unbound 

and bound forms, respectively. Substituting the concentration of bound enzymes [ES] from 

eq 7 into the rate of product formation eq 2,

(8)
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Figure 1 shows the probability of free and bound enzyme as well as the rate of product 

formation. The two parameters kcat and [Etot] scale  vertically (if kcat is increased by a 

factor of 10, the y-axis values in Figure 1B will be multiplied by that same factor of 10), 

while KM effectively rescales the substrate concentration [S]. Increasing KM by a factor of 

10 implies that 10 times as much substrate is needed to obtain the same rate of product 

formation; on the semilog plots in Figure 1, this corresponds to shifting all curves to the 

right by one power of 10.

We can visualize the microscopic states of the enzyme using a modified states and weights 

diagram shown in Figure 2.31 The weight of each enzyme state is proportional to the 

probability of its corresponding state (wE ∝ pE, wES ∝ pES)—the constant of proportionality 

is arbitrary but must be the same for all weights. For example, from eqs 6 and 7, we can 

multiply the probability that the enzyme will be unbound (pE) or bound to substrate (pES) by 

 which yields the weights

(9)

(10)

Given the weights of an enzyme state, we can proceed in the reverse direction and obtain the 

probability for each enzyme state using

(11)

(12)

where

(13)

is the sum of all weights. Dividing by Ztot ensures the total probability of all enzyme states 

equals unity, pE + pES = 1. The rate of product formation eq 8 is given by the product of the 

enzyme concentration [Etot] times the average catalytic rate over all states, weighed by each 
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state’s (normalized) weights. In the following sections, we will find this trick of writing 

states and weights very useful for modeling other molecular players.

The weights in Figure 2 allow us to easily understand Figure 1A: when [S] < KM, wE > wES 

so that an enzyme is more likely to be in the substrate-free state; when [S] > KM, wE < wES 

and an enzyme is more likely to be found as an enzyme–substrate complex. Increasing KM 

shifts the tipping point of how much substrate is needed before the bound ES enzyme state 

begins to dominate over the free E state.

It should be noted that the formal notion of states and weights employed in physics applies 

only to equilibrium systems. For example, a ligand binding to a receptor in equilibrium will 

yield states and weights similar to Figure 2 but with the Michaelis constant KM replaced by 

the dissociation constant KD.32 However, the ligand–receptor states and weights can also be 

derived from the Boltzmann distribution (where the weight of any state j with energy Ej is 

proportional to e−βEj) while the enzyme states and weights cannot be derived from the 

Boltzmann distribution (because the enzyme system is not in equilibrium). Instead, the 

nonequilibrium kinetics of the system are described by the modified states and weights in 

Figure 2, where KD for substrate must be replaced with KM. These modified states and 

weights serve as a mathematical trick that compactly and correctly represents the behavior 

of the enzyme, enabling us to apply the well established tools and intuition of equilibrium 

statistical mechanics when analyzing the inherently nonequilibrium problem of enzyme 

kinetics. In the next several sections, we will show how to generalize this method of states 

and weights to MWC enzymes with competitive inhibitors, allosteric regulators, and 

multiple substrate binding sites.

2.2. MWC Enzyme

Many enzymes are not static entities but dynamic macromolecules that constantly fluctuate 

between different conformational states. This notion was initially conceived by Monod–

Wyman–Changeux (MWC) to characterize complex multisubunit proteins such as 

hemoglobin and aspartate transcarbamoylase (ATCase).7,11,12 The authors suggested that the 

ATC enzyme exists in two supramolecular states: a relaxed “R” state, which has high affinity 

for substrate, and a tight “T” state, which has low affinity for substrate. Although in the case 

of ATCase the transition between the T and R states is induced by an external ligand, recent 

experimental advances have shown that many proteins intrinsically fluctuate between these 

different states even in the absence of ligand.33–35 These observations imply that the MWC 

model can be applied to a wide range of enzymes beyond those with multisubunit 

complexes.

We will designate an enzyme with two possible states (an Active state EA and an Inactive 

state EI) as a MWC enzyme. The kinetics of a general MWC enzyme are given by
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(14)

which relates the active and inactive enzyme concentrations ([EA], [EI]) to the active and 

inactive enzyme–substrate complexes ([EAS], [EIS]). In this two-state MWC model, similar 

to that explored by Howlett et al.,36 the rate of product formation is given by

(15)

The active state will have a faster catalytic rate (often much faster) than the inactive state, 

.

As in the case of a Michaelis–Menten enzyme, we will assume that all four forms of the 

enzyme (EA, EI, EAS, and EIS) quickly reach steady state on time scales so short that the 

substrate concentration [S] remains nearly constant. Therefore, we can incorporate the 

slowly changing quantities [S] and [P] into the rates, a step dubbed the quasi-steady-state 
approximation.30 This allows us to rewrite eq 14 in the following form

(16)

Assuming the quasi-steady-state approximation holds, the four enzyme states will rapidly 

attain steady-state values

(17)

In addition, a separate constraint on the system that is necessary and sufficient to apply the 

method of states and weights is given by the cycle condition: the product of rates going 
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clockwise around any cycle must equal the product of rates going counterclockwise.30 It 

should be noted that, to violate the cycle condition, a system must continuously pay energy, 

since at least one step in any cycle must be energetically unfavorable. We shall proceed with 

the assumption that there are no such cycles in our system. For the MWC enzyme (eq 16), 

this implies

(18)

or equivalently

(19)

The validity of both the quasi-steady-state approximation (17) and the cycle condition (19) 

will be analyzed in section A of the Supporting Information. Assuming both statements 

hold, we can invoke detailed balance—the ratio of concentrations between two enzyme 

states equals the inverse of the ratio of rates connecting these two states. For example, 

between the active states [EAS] and [EA] in eq 16

(20)

where we have defined the Michaelis constant for the active state, . Similarly, we can 

write the equation for detailed balance between the inactive states [EIS] and [EI] as

(21)

An enzyme may have a different affinity for substrate or a different catalytic rate in the 

active and inactive forms. Typical measured values of KM fall into the range 10−7–10−1 M.37 

Whether  or  is larger depends on the specific enzyme.

As a final link between the language of chemical rates and physical energies, we can recast 

detailed balance between [EA] and [EI] as
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(22)

where εA and εI are the free energies of the enzyme in the active and inactive states, 

respectively, and , where kB is Boltzmann’s constant and T is the temperature of the 

system. Whether the active state energy is greater than or less than the inactive state energy 

depends on the enzyme. For example, εI < εA in ATCase, whereas the opposite holds true, 

εA < εI, in chemoreceptors.9,32

Using eqs 20–22, we can recast the cycle condition (19) (as shown in the underbraces) into a 

simple relationship between the steady-state enzyme concentrations. Additionally, we can 

use these equations to define the weights of each enzyme state in Figure 3. Following 

section 2.1, the probability of each state equals its weight divided by the sum of all weights

(23)

(24)

(25)

(26)

where

(27)

Note that multiplying all of the weights by a constant c will also multiply Ztot by c, so that 

the probability of any state will remain unchanged. That is why in Figure 2 we could neglect 

the e−βε factor that was implicitly present in each weight.

Einav et al. Page 9

J Phys Chem B. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The total amount of enzyme is conserved among the four enzyme states, [Etot] = [EA] + 

[EAS] + [EI] + [EIS]. Using this fact together with eqs 20–22 enables us to solve for the 

concentrations of both types of bound enzymes, namely,

(28)

(29)

Substituting these relations into eq 15 yields the rate of product formation

(30)

The probabilities (23) – (26) of the different states and the rate of product formation (30) are 

shown in Figure 4. Although we use the same parameters from Figure 1 for the active state, 

the pEA and pEAS curves in Figure 4A look markedly different from the pE and pES 

Michaelis–Menten curves in Figure 1A. This indicates that the activity of a MWC enzyme 

does not equal the activity of two independent Michaelis–Menten enzymes, one with the 

MWC enzyme’s active state parameters and the other with the MWC enzyme’s inactive state 

parameters. The interplay of the active and inactive states makes a MWC enzyme inherently 

more complex than a Michaelis–Menten enzyme.

When [S] = 0, the enzyme only exists in the unbound states EA and EI whose relative 

probabilities are given by . When [S] → ∞, the enzyme spends all of its 

time in the bound states EAS and EIS which have relative probabilities . 

The curves for the active states (for free enzyme pEA and bound enzyme pEAS) intersect at 

, while the curves of the two inactive states intersect at . For the particular 

parameters shown, even though the unbound inactive state (green) dominates at low 

substrate concentrations, the active state (gold) has the largest statistical weights as the 

concentration of substrate increases. Thus, adding substrate causes the enzyme to 

increasingly favor the active state.
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Using this framework, we can compute properties of the enzyme kinetics curve shown in 

Figure 4B. One important property is the dynamic range of an enzyme, the difference 

between the maximum and minimum rate of product formation. In the absence of substrate 

([S] → 0) and a saturating concentration of substrate ([S] → ∞), the rate of product 

formation (eq 30) becomes

(31)

(32)

From these two expressions, we can write the dynamic range as

(33)

where every term in the fraction has been written as a ratio of the active and inactive state 

parameters. We find that the dynamic range increases as , e−β(εA−εI), and  increase 

(assuming ).

Another important property is the concentration of substrate at which the rate of product 

formation lies halfway between its minimum and maximum value, which we will denote as 

[S50]. It is straightforward to show that the definition

(34)

is satisfied when

(35)
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With increasing e−β(εA−εI), the value of [S50] increases if  and decreases otherwise. 

[S50] always decreases as  increases. Lastly, we note that, in the limit of a Michaelis–

Menten enzyme, εI → ∞, we recoup the familiar results

(36)

(37)

2.3. Allosteric Regulator

The catalytic activity of many enzymes is controlled by molecules that bind to regulatory 

sites which are often different from the active sites themselves. As a result of ligand-induced 

conformational changes, these molecules alter the substrate binding site which modifies the 

rate of product formation, . Allosterically controlled enzymes represent important 

regulatory nodes in metabolic pathways and are often responsible for keeping cells in 

homeostasis. Some well-studied examples of allosteric control include glycogen 

phosphorylase, phosphofructokinase, glutamine synthetase, and aspartate transcarbamoylase 

(ATCase). In many cases the data from these systems are characterized phenomenologically 

using Hill functions, but the Hill coefficients thus obtained can be difficult to interpret.39 In 

addition, Hill coefficients do not provide much information about the organization or 

regulation of an enzyme, nor do they reflect the relative probabilities of the possible enzyme 

conformations, although recent results have begun to address these issues.40 In this section, 

we add one more layer of complexity to our statistical mechanics framework by introducing 

an allosteric regulator.

Consider a MWC enzyme with one site for an allosteric regulator R and a different site for a 

substrate molecule S that will be converted into product. We can define the effects of the 

allosteric regulator directly through the states and weights. As shown in Figure 5, the 

regulator R contributes a factor  when it binds to an active state and a factor  when it 

binds to an inactive state where  and  are the dissociation constants between the 

regulator and the active and inactive states of the enzyme, respectively. Unlike the Michaelis 

constants  and  for the substrate, the dissociation constants  and  enter the states 

and weights because the regulator can only bind and unbind to the enzyme (and cannot be 

transformed into product). In other words, if we were to draw a rates diagram for this 

enzyme system, detailed balance between the two states where the regulator is bound and 

unbound would yield a dissociation constant ( ) rather than a Michaelis constant 

( ).

Using the states and weights in Figure 5, we can compute the probability of each enzyme 

state. For example, the probabilities of the four states that form product are given by
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(38)

(39)

(40)

(41)

where

(42)

is the sum of all weights in Figure 5. An allosteric activator has a smaller dissociation 

constant  for binding to the active state enzyme, so that for larger [R] the probability 

that the enzyme will be in the active state increases. Because the active state catalyzes 

substrate at a faster rate than the inactive state, , adding an activator increases the 

rate of product formation . An allosteric inhibitor has the flipped relation  and 

hence causes the opposite effects.

Proceeding analogously to section 2.2, the total enzyme concentration [Etot] is a conserved 

quantity which equals the sum of all enzyme states ([EA], [EAS], [EAR], [EASR], and their 

inactive state counterparts). Using the probabilities in eqs 38–41, we can write these 

concentrations as [EAS] = [Etot]pEAS, [EASR] = [Etot]pEASR, …, so that the rate of product 

formation is given by
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(43)

The rate of product formation (43) for different [R] values is shown in Figure 6. It is 

important to realize that, by choosing the weights in Figure 5, we have selected a particular 

model for the allosteric regulator, namely, one in which the regulator binds equally well to 

an enzyme with or without substrate. There are many other possible models. For example, 

we could add an interaction energy between an allosteric regulator and a bound substrate. 

However, the simple model in Figure 5 already possesses the important feature that adding 

more allosteric activator yields a larger rate of product formation , as shown in Figure 6.

An allosteric regulator effectively tunes the energies of the active and inactive states. To 

better understand this, consider the probability of an active state enzyme–substrate complex 

(with or without a bound regulator). Adding eqs 38 and 39,

(44)

where

(45)

(46)

We now compare the total probability that an active state enzyme will be bound to substrate 

in the presence of an allosteric regulator (eq 44) to this probability in the absence of an 

allosteric regulator (eq 24). These two equations show that a MWC enzyme in the presence 

of regulator concentration [R] is equivalent to a MWC enzyme with no regulator provided 

that we use the new energies ε̃A and ε̃I for the active and inactive states. An analogous 

statement holds for all of the conformations of the enzyme, so that the effects of a regulator 
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can be completely absorbed into the energies of the active and inactive states! In other 

words, adding an allosteric regulator allows us to tune the parameters εA and εI of an 

allosteric enzyme, and thus change its rate of product formation, in a quantifiable manner. 

This simple result emerges from our assumptions that the allosteric regulator and substrate 

bind independently to the enzyme and that the allosteric regulator does not affect the rate of 

product formation.

One application of this result is that we can easily compute the dynamic range of an enzyme 

as well as the concentration of substrate for half-maximal rate of product formation 

discussed in section 2.2. Both of these quantities follow from the analogous expressions for 

a MWC enzyme (eqs 33 and 35) using the effective energies ε̃A and ε̃I, resulting in a 

dynamic range of the form

(47)

and an [S50] value of

(48)

As expected, the dynamic range of an enzyme increases with regulator concentration [R] for 

an allosteric activator ( ). Adding more activator will shift [S50] to the left if 

 (as shown in Figure 6) or to the right if . The opposite effects hold for an 

allosteric inhibitor ( ).

2.4. Competitive Inhibitor

Another level of control found in many enzymes is inhibition. A competitive inhibitor C 

binds to the same active site as substrate S, yet unlike the substrate, the competitive inhibitor 

cannot be turned into product by the enzyme. An enzyme with a single active site can either 

exist in the unbound state E, as an enzyme–substrate complex ES, or as an enzyme–

competitor complex EC. As more inhibitor is added to the system, it crowds out the 

substrate from the enzyme’s active site which decreases product formation. Many cancer 

drugs (e.g., lapatinib, sorafenib, erlotinib) are competitive inhibitors for kinases involved in 

signaling pathways.41

Starting from our model of a MWC enzyme in Figure 3, we can introduce a competitive 

inhibitor by drawing two new states (an enzyme–competitor complex in the active and 

inactive forms), as shown in Figure 7. Only the enzyme–substrate complexes in the active 
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(EAS) and inactive (EIS) states form product. The probabilities of each of these states is 

given by eqs 24 and 26 but using the new partition function (which includes the competitive 

inhibitor states)

(49)

Repeating the same analysis from section 2.2, we write the concentrations of bound enzymes 

as [EAS] = [Etot]pEAS and [EIS] = [Etot]pEIS, where [Etot] is the total concentration of 

enzymes in the system and pEA,IS is the weight of the bound (in)active state enzyme divided 

by the partition function, eq 49. Thus, the rate of product formation equals

(50)

Figure 8 shows the rate of product formation for various inhibitor concentrations [C]. 

Adding more competitive inhibitor increases the probability of the inhibitor-bound states and 

thereby drains probability out of those states competent to form product, as expected. 

Similarly to our analysis of allosteric regulators, we can absorb the effects of the competitive 

inhibitor ( ) in eq 50 into the enzyme parameters (εA,I, )

(51)

where we have defined the new energies and Michaelis constants

(52)
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(53)

(54)

(55)

Note that eq 51 has exactly the same form as the rate of product formation of a MWC 

enzyme without a competitive inhibitor, eq 30. In other words, a competitive inhibitor 

modulates both the effective energies and the Michaelis constants of the active and inactive 

states. Thus, an observed value of KM may not represent a true Michaelis constant if an 

inhibitor is present. In the special case of a Michaelis–Menten enzyme (e−βεI → 0), we 

recover the known result that a competitive inhibitor only changes the apparent Michaelis 

constant.17

As shown for the allosteric regulator, the dynamic range and the concentration of substrate 

for half-maximal rate of product formation [S50] follow from the analogous expressions for 

a MWC enzyme (section 2.2, eqs 33 and 35) using the parameters ε̃A,I and . Hence, an 

allosteric enzyme with one active site in the presence of a competitive inhibitor has a 

dynamic range given by

(56)

and an [S50] value of

(57)

Notice that eq 56, the dynamic range of a MWC enzyme in the presence of a competitive 

inhibitor, is exactly the same as eq 33, the dynamic range in the absence of an inhibitor. This 
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makes sense because in the absence of substrate ([S] → 0) the rate of product formation 

must be zero and at saturating substrate concentrations ([S] → ∞) the substrate completely 

crowds out any inhibitor concentration. Instead of altering the rate of product formation at 

these two limits, the competitive inhibitor shifts the  curve, and therefore [S50], to the 

right as more inhibitor is added.

Said another way, adding a competitive inhibitor effectively rescales the concentration of 

substrate in a system. Consider a MWC enzyme in the absence of a competitive inhibitor at 

a measured substrate concentration [Sno[C]]. Now consider a separate system where an 

enzyme is in the presence of a competitive inhibitor at a concentration [C] and at a measured 

substrate concentration [Swith[C]]. It is straightforward to show that the rate of product 

formation  is the same for both enzymes

(58)

provided that

(59)

For any fixed competitive inhibitor concentration [C], this rescaling amounts to a constant 

multiplicative factor which results in a horizontal shift on a log scale of substrate 

concentration [S], as is indeed shown in Figure 8.

As we have seen, the effects of both an allosteric regulator and a competitive inhibitor can be 

absorbed into the parameters of a MWC enzyme. This suggests that experimental data from 

enzymes that titrate these ligands can be collapsed into a one-parameter family of curves 

where the single parameter is either the concentration of an allosteric effector or a 

competitive inhibitor. Indeed, in section 3.1, we shall find that this theory matches well with 

experimentally measured activity curves.

2.5. Multiple Substrate Binding Sites

In 1965, Gerhart and Schachman used ultracentrifugation to determine that ATCase can be 

separated into a large (100 kDa) catalytic subunit where substrate binds and a smaller (30 

kDa) regulatory subunit which has binding sites for the allosteric regulators ATP and CTP.42 

Their measurements correctly predicted that ATCase had multiple active sites and multiple 
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regulatory sites, although their actual numbers were off (they predicted two active sites and 

four regulatory sites, whereas ATCase has six active sites and six regulatory sites).13 Three 

years later, more refined sequencing by Weber and crystallographic measurements by Wiley 

and Lipscomb revealed the correct quaternary structure of ATCase.43–45

Many enzymes are composed of multiple subunits that contain substrate binding sites (also 

called active sites or catalytic sites). Having multiple binding sites grants the substrate more 

locations to bind to an enzyme which increases the effective affinity between both 

molecules. A typical enzyme will have between one and six substrate binding sites, and 

binding sites for allosteric regulators can appear with similar multiplicity. However, extreme 

cases exist such as hemocyanin which can have as many as 48 active sites.46 Interestingly, 

across different species, the same enzyme may possess different numbers of active or 

regulatory sites, as well as be affected by other allosteric regulators and competitive 

inhibitors.10,47 Furthermore, multiple binding sites may interact with each other in a 

complex and often uncharacterized manner.48

We now extend the single-site model of a MWC enzyme introduced in Figure 3 to a MWC 

enzyme with two substrate binding sites. Assuming that both binding sites are identical and 

independent, the states and weights of the system are shown in Figure 9. When the enzyme 

is doubly occupied EAS2, we assume that it forms product twice as fast as a singly occupied 

enzyme EAS.

It has been shown that, in MWC models, explicit cooperative interaction energies are not 

required to accurately model biological systems; cooperativity is inherently built into the 

fact that all binding sites switch concurrently from an active state to an inactive state.16 For 

example, suppose an inactive state enzyme with two empty catalytic sites binds with its 

inactive state affinity  to a single substrate, and that this binding switches the enzyme 

from the inactive to the active state. Then, the second, still empty, catalytic site now has the 

active state affinity , an effect which can be translated into cooperativity. Note that an 

explicit interaction energy, if desired, can be added to the model very simply.

As in the proceeding sections, we compute the probability and concentration of each enzyme 

conformation from the states and weights (see eqs 23–29). Because the active and inactive 

conformations each have two singly bound states and one doubly bound state with twice the 

rate, the enzyme’s rate of product formation is given by

(60)

We will have much more to say about this model in section 3.2.2, where we will show that 

 as a function of substrate concentration [S] may form a peak. For now, we mention the 

Einav et al. Page 19

J Phys Chem B. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



well-known result that a Michaelis–Menten enzyme with two independent active sites will 

act identically to two Michaelis–Menten enzymes each with a single active site (as can be 

seen in the εI → ∞ limit of eq 60).17 It is intuitively clear that this result does not extend to 

MWC enzymes:  for a two-site MWC enzyme, eq 60, does not equal twice the value of 

 for a one-site MWC enzyme, eq 30.

2.6. Modeling Overview

The above sections allow us to model a complex enzyme with any number of substrate 

binding sites, competitive inhibitors, and allosteric regulators. Assuming that the enzyme is 

in steady state and that the cycle condition holds, we first enumerate its states and weights 

and then use those weights to calculate the rate of product formation. Our essential 

conclusions about the roles of the various participants in these reactions can be summarized 

as follows:

1. The (in)active state enzyme contributes a factor (e−βεI) e−βεA to the weight. The 

mathematical simplicity of this model belies the complex interplay between the 

active and inactive states. Indeed, a MWC enzyme cannot be decoupled into two 

Michaelis–Menten enzymes (one for the active and the other for the inactive 

states).

2.
Each bound substrate contributes a factor  in the (in)active state where 

 is a Michaelis constant between the substrate and enzyme. It is this 

Michaelis constant, and not the dissociation constant, which enters the states and 

weights diagram.

3. Each bound allosteric regulator or competitive inhibitor X contributes a factor 

 in the (in)active state where  is the dissociation constant 

between X and the enzyme. An allosteric regulator R effectively tunes the 

energies of the active and inactive states, as shown in eqs 45 and 46. A 

competitive inhibitor C effectively changes both the energies and Michaelis 

constants of the active and inactive states, as described by eqs 52–55.

4. The simplest model for multiple binding sites assumes that each site is 

independent of the others. The MWC model inherently accounts for the 

cooperativity between these sites, resulting in sigmoidal activity curves despite 

no direct interaction terms.

In section B of the Supporting Information, we simultaneously combine all of these 

mechanisms by analyzing the rate of product formation of ATCase (which has multiple 

binding sites) in the presence of substrate, a competitive inhibitor, and allosteric regulators. 

In addition, the supplementary Mathematica notebook lets the reader specify their own 

enzyme and see its corresponding properties.

Note that while introducing new components (such as a competitive inhibitor or an allosteric 

regulator) introduces new parameters into the system, increasing the number of sites does 
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not. For example, a MWC enzyme with one (Figure 3), two (Figure 9), or more active sites 

would require the same five parameters: e−β(εA−εI), , and .

3. APPLICATIONS

Having built a framework to model allosteric enzymes, we now turn to some applications of 

how this model can grant insights into observed enzyme behavior. Experimentally, the rate 

of product formation of an enzyme is often measured relative to the enzyme concentration, a 

quantity called activity

(61)

Enzymes are often characterized by their activity curves as substrate, inhibitor, and regulator 

concentrations are titrated. Such data not only determines important kinetic constants but 

can also characterize the nature of molecular players such as whether an inhibitor is 

competitive, uncompetitive, mixed, or noncompetitive.49–51 After investigating several 

activity curves, we turn to a case study of the curious phenomenon of substrate inhibition, 

where saturating concentrations of substrate inhibit enzyme activity, and propose a new 

minimal mechanism for substrate inhibition caused solely by allostery.

3.1. Regulator and Inhibitor Activity Curves

We begin with an analysis of α-amylase, one of the simplest allosteric enzymes, which only 

has a single catalytic site. α-Amylase catalyzes the hydrolysis of large polysaccharides (e.g., 

starch and glycogen) into smaller carbohydrates in human metabolism. It is competitively 

inhibited by isoacarbose51 at the active site and is allosterically activated by Cl− ions at a 

distinct allosteric site.52

Figure 10 plots substrate concentration divided by activity, [S]/A, as a function of substrate 

[S]. Recall from section 2.3 that an enzyme with one active site and one allosteric site has 

activity given by eq 43

(62)

Thus, we expect the [S]/A curves in Figure 10 to be linear in [S]
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(63)

Figure 10 shows that the experimental data is well characterized by the theory so that the 

rate of product formation at any other substrate and allosteric activator concentration can be 

predicted by this model. The fitting procedure is discussed in detail in section B of the 

Supporting Information.

In the special case of a Michaelis–Menten enzyme (εI → ∞), the above equation becomes

(64)

The x-intercept of all lines in such a plot would intersect at the point ( , 0) which 

allows an easy determination of . This is why plots of [S] vs [S]/A, called Hanes plots, 

are often seen in enzyme kinetics data. Care must be taken, however, when extending this 

analysis to allosteric enzymes where the form of the x-intercept is more complicated.

We now turn to competitive inhibition. Figure 11A plots the inverse rate of product 

formation  of α-amylase as a function of the competitive inhibitor concentration [C]. 

The competitive inhibitor isoacarbose is titrated for three different concentrations of the 

substrate α-maltotriosyl fluoride (αG3F).

Recall from section 2.4, eq 50 that the rate of product formation for an allosteric enzyme 

with one active site in the presence of a competitive inhibitor is given by

(65)

so that the best fit  curves in Figure 11A are linear functions of [C]. Rather than 

thinking of eq 65 as a function of the competitive inhibitor concentration [C] and the 

substrate concentration [S] separately, we can combine these two quantities into a single 

natural parameter for the system. This will enable us to collapse the different activity curves 

in Figure 11A onto a single master curve, as shown in Figure 11B. Algebraically 

manipulating eq 65,
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(66)

where

(67)

(68)

Therefore,  curves at any substrate and inhibitor concentrations can be compactly 

shown as data points lying on a single curve in terms of ΔF, which is called the Bohr 
parameter. Such a data collapse is also possible in the case of allosteric regulators or 

enzymes with multiple binding sites, although those data collapses may require more than 

one variable ΔF. In section C of the Supporting Information, we show that the Bohr 

parameter corresponds to a free energy difference between enzyme states and examine other 

cases of data collapse.

3.2. Substrate Inhibition

We now turn to a striking phenomenon observed in the enzyme literature: not all enzymes 

have a monotonically increasing rate of product formation. Instead, peaks such as those 

shown schematically in Figure 12 can arise in various enzymes, displaying behavior that is 

impossible within Michaelis–Menten kinetics. By exploring these two phenomena with the 

MWC model, we gain insight into their underlying mechanisms and can make quantifiable 

predictions as to how to create, amplify, or prevent such peaks.

In Figure 12A, the monotonically increasing Michaelis– Menten curve makes intuitive sense

—a larger substrate concentration implies that at any moment the enzyme’s active site is 

more likely to be occupied by substrate. Therefore, we expect that the activity, , 

should increase with the substrate concentration [S]. However, many enzymes exhibit a peak 

activity, a behavior called substrate inhibition.53

Even more surprisingly, when a small amount of competitive inhibitor—a molecule whose 

very name implies that it competes with substrate and decreases activity—is mixed together 

with enzyme, it can increase the rate of product formation. This latter case, called inhibitor 
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acceleration, is shown in Figure 12B.10,56 In contrast, a Michaelis–Menten enzyme shows 

the expected behavior that adding more competitive inhibitor decreases activity. We will 

restrict our attention to the phenomenon of substrate inhibition and relegate a discussion of 

inhibitor acceleration to section D of the Supporting Information.

Using the MWC enzyme model, we can make predictions about which enzymes can exhibit 

substrate inhibition. We first formulate a relationship between the fundamental physical 

parameters of an enzyme that are required to generate such a peak and then consider what 

information about these underlying parameters can be gained by analyzing experimental 

data.

3.2.1. Single-Site Enzyme—As a preliminary exercise, we begin by showing that an 

enzyme with a single active site cannot exhibit substrate inhibition. Said another way, the 

activity, eq 61, of such an enzyme cannot have a peak as a function of substrate 

concentration [S]. For the remainder of this paper, we will use the fact that all Michaelis and 

dissociation constants (KM’s, CD’s, and RD’s) are positive and assume that both catalytic 

constants (  and ) are strictly positive unless otherwise stated.

Consider the MWC enzyme with a single substrate binding site shown in Figure 3. Using eq 

30, it is straightforward to compute the derivative of activity with respect to substrate 

concentration [S], namely,

(69)

Since the numerator cannot equal zero, this enzyme cannot have a peak in its activity when 

[S] is varied. Note that the numerator is positive, indicating that enzyme activity will always 

increase with substrate concentration.

The above results are valid for an arbitrary MWC enzyme with a single site. In particular, in 

the limit εI → ∞, a MWC enzyme becomes a Michaelis–Menten enzyme. Therefore, a 

Michaelis–Menten enzyme with a single active site cannot exhibit a peak in activity. In 

section E of the Supporting Information, we discuss the generalization of this result: a 

Michaelis–Menten enzyme with an arbitrary number of catalytic sites cannot have a peak in 

activity. However, as we shall now see, this generalization cannot be made for a MWC 

enzyme, which can indeed exhibit a peak in its activity when it has multiple binding sites.

3.2.2. Substrate Inhibition—As many as 20% of enzymes are believed to exhibit 

substrate inhibition, which can offer unique advantages to enzymes such as stabilizing their 

activity amid fluctuations, enhancing signal transduction, and increasing cellular 

efficiency.54 This prevalent phenomenon has elicited various explanations, many of which 

rely on nonequilibrium enzyme dynamics, although some equilibrium mechanisms are 

known.53 An example of this latter case is seen in the enzyme aspartate transcarbamoylase 
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(ATCase) which catalyzes one of the first steps in the pyrimidine biosynthetic pathway. 

Before ATCase can bind to its substrate asparatate (Asp), an intermediate molecule 

carbamoyl phosphate (CP) must first bind to ATCase, inducing a change in the enzyme’s 

shape and electrostatics which opens up the Asp binding slot.57,58 Because Asp can weakly 

bind to the CP binding pocket, at high concentrations Asp will outcompete CP and prevent 

the enzyme from working as efficiently, thereby causing substrate inhibition.59

To the list of such mechanisms, we add the possibility that an enzyme may exhibit substrate 

inhibition without any additional effector molecules. In particular, an allosteric enzyme with 

two identical catalytic sites can exhibit a peak in activity when the substrate concentration 

[S] is varied. We will first analyze the properties of this peak and then examine why it can 

occur. For simplicity, we will assume  throughout this section and leave the general 

case for section E of the Supporting Information.

Using eqs 60 and 61, the activity of a MWC enzyme with two active sites is given by

(70)

A peak will exist provided that  has a positive [S] root. The details of differentiating 

and solving this equation are given in section E of the Supporting Information, the result of 

which is that a peak in activity A occurs as a function of [S] provided that

(71)

The height of such a peak is given by

(72)

Examples of peaks in activity are shown in Figure 13 for various values of e−β(εA−εI). 

Substituting in the peak condition eq 71, the maximum peak height is at most

(73)
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If we consider the maximum value of e−β(εA−εI) allowed by the peak condition eq 71, the 

peak height approaches  for large  (as seen by the green curve e−β(εA−εI) = 80 in 

Figure 13B). In this limit, the active bound state dominates over all the other enzyme states 

so that the activity reaches its largest possible value, . Although the “peak height” is 

maximum in this case, the activity curve is nearly sigmoidal, making the peak hard to 

distinguish. To that end, it is reasonable to compare the peak height to the activity at large 

substrate concentrations

(74)

As the energy difference between the active and inactive states e−β(εA−εI) increases, the peak 

height Apeak monotonically increases but the relative peak height  monotonically 

decreases. These relations might be used to design enzymes with particular activity curves; 

conversely, experimental data of substrate inhibition can be used to fix a relation between the 

parameters e−β(εA−εI) and  of an enzyme.

We now turn to the explanation of how such a peak can occur. One remarkable fact is that a 

peak cannot happen without allostery. If we consider a Michaelis–Menten enzyme (by 

taking the limit  and εI → ∞), then the peak condition eq 71 cannot be satisfied.

To gain a qualitative understanding of how a peak can occur, consider an enzyme that 

inherently prefers the active state (e−β(εA−εI) > 1) but with substrate that preferentially binds 

to the inactive state ( ). Such a system is realized in bacterial chemotaxis, where the 

chemotaxis receptors are active when unbound but inactive when bound to substrate.32 This 

setup is shown schematically in Figure 14. At low substrate concentrations, , most 

enzymes will be unbound and therefore in the active state. At intermediate substrate 

concentrations, , many enzymes will be singly bound. Because , the 

substrate will pull these bound enzymes toward the inactive state. For large substrate 

concentrations, , most of the enzymes will be doubly bound and hence will be 

predominantly in the inactive form. Because the inactive state does not catalyze substrate 

( ), only the number of substrates bound to active state enzymes increases the rate of 

product formation, and because more of these exist in the intermediate regime, a peak forms. 

To be more quantitative, the activity eq 70 at the medium substrate concentration ( ) 

is given by
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(75)

Comparing this to A[S]→∞ in eq 74, we find that  provided that

(76)

This is in close agreement with the peak condition eq 71, and the factor of  is due to the fact 

that the peak need not occur precisely at .

Note that the peak condition eq 71 does not necessarily force the unbound enzyme to favor 

the active state (e−β(εA−εI) > 1), since this condition can still be satisfied if e−β(εA−εI) < 1. 

However, the peak condition does require that substrate preferentially binds to the inactive 

state enzyme (in fact, we must have  to satisfy the peak condition).

Recall that as many as 20% of enzymes exhibit substrate inhibition, and this particular 

mechanism will not apply in every instance. To be concrete, an allosteric enzyme that obeys 

the mode of substrate inhibition proposed above (1) must have at least two catalytic sites and 

(2) must be driven toward the inactive state upon substrate binding. Therefore, an enzyme 

such as ATCase which exhibits substrate inhibition but where the substrate preferentially 

binds to the active state enzyme must have a different underlying mechanism.60 Various 

alternative causes including the effects of pH due to substrate or product buildup17,61 or the 

sequestering effects of ions62,63 may also be responsible for substrate inhibition. However, 

the mechanism of substrate inhibition described above exactly matches the conditions of 

acetylcholinesterase whose activity, shown in Figure 12A, is well categorized by the MWC 

model.55 It would be interesting to test this theory by taking a well characterized enzyme, 

tuning the MWC parameters so as to satisfy the peak condition eq 71 (or an analogous 

relationship for an enzyme with more than two catalytic sites), and checking whether the 

system then exhibits substrate inhibition. Experimentally, tuning the parameters can be 

undertaken by introducing allosteric regulators or competitive inhibitors as described by eqs 

45 and 46 and eqs 52–55, respectively. For example, in section E of the Supporting 

Information, we describe an enzyme system where introducing a competitive inhibitor 

induces a peak in activity.

4. DISCUSSION

Allosteric molecules pervade all realms of biology from chemotaxis receptors to chromatin 

to enzymes.15,64–66 There are various ways to capture the allosteric nature of 

macromolecules, with the MWC model representing one among many.8,67,68 In any such 
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model, the simple insight that molecules exist in an active and inactive state opens a rich 

new realm of dynamics.

The plethora of molecular players that interact with enzymes serve as the building blocks to 

generate complex behavior. In this paper, we showed the effects of competitive inhibitors, 

allosteric regulators, and multiple binding sites, looking at each of these factors first 

individually and then combining separate aspects. This framework matched well with 

experimental data and enabled us to make quantifiable predictions on how the MWC 

enzyme parameters may be tuned upon the introduction of an allosteric regulator (eqs 45 and 

46) or a competitive inhibitor (eqs 52–55).

As an interesting application, we used the MWC model to explore the unusual behavior of 

substrate inhibition, where past a certain point adding more substrate to a system decreases 

its rate of product formation. This mechanism implies that an enzyme activity curve may 

have a peak (see Figure 12), a feat that is impossible for a Michaelis–Menten enzyme. We 

explored a novel minimal mechanism for substrate inhibition which rested upon the 

allosteric interactions of the active and inactive enzyme states, with suggestive evidence for 

such a mechanism in acetylecholinesterase.

The power of the MWC model stems from its simple description, far-reaching applicability, 

and its ability to unify the proliferation of data gained over the past 50 years of enzymology 

research. A series of activity curves at different concentrations of a competitive inhibitor all 

fall into a one-parameter family of curves, allowing us to predict the activity at any other 

inhibitor concentration. Such insights not only shed light on the startling beauty of 

biological systems but may also be harnessed to build synthetic circuits and design new 

drugs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dynamics of the Michaelis–Menten enzyme. (A) Probabilities of the free enzyme pE and 

bound enzyme pES states as a function of substrate concentration. As the amount of substrate 

[S] increases, more enzyme is found in the bound state rather than the free state. (B) The rate 

of product formation for a nonallosteric enzyme. The rate of product formation has the same 

functional form as the probability pES of the enzyme– substrate complex, as illustrated by 

eqs 2 and 7.
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Figure 2. 
States and weights for the Michaelis–Menten enzyme. Each enzyme conformation is shown 

together with its weight and its catalytic rate. The probability of finding an enzyme (green) 

in either the free or bound state equals the weight of that state divided by the sum of all 

weights ( ) where [S] is the concentration of substrate (dark red) and  is 

the Michaelis constant. At [S] = KM, half of the enzyme population exists in the free form 

and half exists in the bound form. For [S] > KM, more than half of all enzymes will be 

bound to substrate.
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Figure 3. 
States and weights for a MWC enzyme. The energies εA and εI provide the free energy scale 

for the substrate-free conformations, dictating their relative probabilities. Decreasing the 

energy εA of the active state would increase the probability of all the active enzyme 

conformations relative to the inactive conformations.  denotes the substrate concentration 

at which half of the active enzymes are bound and half of the active enzymes are unbound, 

as indicated by the crossing of the (pEA, blue) and (pEAS, gold) curves at  in Figure 

4.  serves an analogous role for the inactive states.
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Figure 4. 
Quantitative description of a MWC enzyme. (A) Probabilities of each enzyme state. While 

the active state has the same catalytic rate  and Michaelis constant  as the Michaelis–

Menten enzyme in Figure 1A, the inactive state significantly alters the forms of pEA and 

pEAS. The dashed vertical lines indicate where the substrate concentration equals  and 

, respectively. (B) The rate of product formation, . Assuming  (blue curve 

in part B) is dominated by the active enzyme–substrate complex, pEAS (gold curve in part 

A). Parameters were chosen to reflect “typical” enzyme kinetics values: 

, and e−β(εA−εI) = e−1.38 Substrate concentrations are shown normalized 

relative to the active state parameter , although the inactive state parameter  could also 

have been used.
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Figure 5. 
States and weights for a MWC enzyme with an allosteric regulator. The allosteric regulator 

(purple) does not directly interact with the substrate (dark red) but instead introduces a factor 

 into the weights where RD is a dissociation constant. Note that the regulator can only 

associate to and dissociate from the enzyme, whereas substrate can be turned into product as 

shown by the Michaelis constant KM. An allosteric activator binds more tightly to the active 

state enzyme, , which leads to an increased rate of product formation because the 

active state catalyzes substrate at a faster rate than the inactive state, . An allosteric 

inhibitor would satisfy .
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Figure 6. 

Effects of an allosteric regulator R on the rate of product formation . The regulator’s 

greater affinity for the active enzyme state increases the fraction of the active conformations 

and hence . Parameters used were  and the parameters from Figure 4.
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Figure 7. 
States and weights for a MWC enzyme with a competitive inhibitor. While the substrate S 

(dark red) can be transformed into product, the inhibitor C (light blue) can occupy the 

substrate binding site but cannot be catalyzed. As seen with the allosteric regulator in section 

2.3, the competitive inhibitor contributes a factor  to the statistical weight of a state where 

CD is the inhibitor’s dissociation constant.
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Figure 8. 

Effects of a competitive inhibitor C on the rate of product formation . When 

, the inhibitor cannot out-compete the substrate at high substrate 

concentrations, while the free form of enzyme dominates at low substrate concentrations. 

Therefore, increasing [C] up to values of  or  has little effect on . Once 

, the inhibitor can out-compete substrate at large concentrations, pushing the 

region where the enzyme–substrate complex dominates further to the right. Parameters used 

were  and the parameters from Figure 4.
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Figure 9. 
States and weights for a MWC enzyme with two substrate binding sites. Each binding site 

acts independently, and the rate of product formation of a doubly bound state is twice the 

rate of the corresponding singly bound state.
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Figure 10. 
Theoretically and experimentally probing the effects of an allosteric regulator on activity. 

Data points show experimentally measured activity from Feller et al. for the enzyme α-

amylase using substrate analogue [S] (EPS) and allosteric activator [R] (NaCl).52 Best fit 

theoretical curves described by eq 63 are overlaid on the data. The best fit parameters are 

e−β(εA−εI) = 7.8 × 10−4, 

, and .
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Figure 11. 
Theoretically and experimentally probing the effects of a competitive inhibitor on activity. 

(A) Data points show experimentally measured activity in arbitrary units from Li et al. for 

the enzyme α-amylase using substrate analogue [S] (α-maltotriosyl fluoride) and 

competitive inhibitor [C] (isoacarbose).51 Best fit theoretical curves described by the inverse 

of eq 65 are overlaid on the data. The best fit parameters are e−β(εA−εI) = 36, 

, and . Note that the x-axis 

varies [C] rather than [S] as in most other plots. (B) A data collapse of the three curves using 

the Bohr parameter ΔF from eq 68 which encompasses the effects of both the substrate and 

inhibitor upon the system.
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Figure 12. 
Enzyme activity curves do not need to be monotonic as predicted by Michaelis–Menten 

enzyme kinetics. (A) As many as 20% of enzymes exhibit substrate inhibition, where at high 

substrate concentrations activity decreases, in contrast to a Michaelis–Menten enzyme 

shown for reference.53,54 Activity for acetylcholinesterase is shown in units of (nanomol of 

product)·min−1·(mL of enzyme)−1.55 (B) Some enzymes exhibit inhibitor acceleration, 

where adding a small amount of a competitive inhibitor increases the rate of product 

formation. This generates a peak in activity, in stark contrast to a Michaelis–Menten enzyme 

which only decreases its activity as more competitive inhibitor is added. Relative activity is 

shown for ATCase, where relative activity equals activity at [C] divided by the activity with 

no competitive inhibitor.10 The data and best fit parameters for the substrate inhibition and 

inhibitor acceleration curves are discussed in section C of the Supporting Information.
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Figure 13. 

Peaks in enzyme activity  as a function of substrate concentration [S]. Activity is 

shown in units of , which rescales the activity curves vertically. The peak for (A) small 

and (B) large ratios of the enzyme’s energy in the active versus inactive state, e−β(εA−εI). 

The height of the peak increases with e−β(εA−εI). The activity is computed from eq 70 using 

the parameters , and the different values of e−β(εA−εI) shown. As predicted 

by eq 71, every value in the range  will yield a peak in activity. While 

the peak is more pronounced when the active state is energetically favorable (e−β(εA−εI) < 1) 

in part A, the maximum peak height is much larger in part B, as seen by the different scale 

of the y-axis.

Einav et al. Page 44

J Phys Chem B. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 14. 
Mechanism underlying the peak in activation by substrate S. At low substrate concentrations 

(left region), all enzymes are unbound and are mostly in the active form (rounded, green). 

As the amount of substrate is increased (middle region), the probability that an enzyme is 

singly bound and then doubly bound increases. Because the substrate prefers to bind to an 

inactive state (sharp, green) enzyme–substrate complex, binding more substrate pushes the 

enzymes into the inactive state. At medium substrate concentrations, more active state 

enzyme–substrate complexes exist than at high substrate concentrations (right region) which 

yields a peak. Each enzyme fluctuates between its different configurations, and the cartoons 

show the distributions of the most prevalent states.
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