Skip to main content
. 2014 Apr 9;7(4):2833–2881. doi: 10.3390/ma7042833

Table 1.

Summary of methods of obtaining zinc oxide.

Method Precursors Synthesis conditions Properties and applications References
Mechanochemical process ZnCl2, Na2CO3, NaCl calcination: 2 h, 600 °C hexagonal structure; particles diameter: 21–25 nm [30]
400–800 °C hexagonal structure; particles diameter: 18–35 nm [31]
400 °C regular shape of particles; diameter ~27 nm, BET: 47 m2/g [32]
0.5 h particles diameter: 27–56 nm [33]
300–450 °C particles diameter: ~51 nm, BET: 23 m2/g [34]

Precipitation process Zn(CH3COO)2, and KOH as a water solutions temperature of process: 20–80 °C; drying: 120 °C particles diameter: 160–500 nm, BET: 4–16 m2/g [35]

Zn(CH3COO)2, (NH4)2CO3, PEG10000 as a water solutions drying: 12 h, 100 °C; calcination: 3 h, 450 °C zincite structure; spherical particles (D ~ 30 nm); application: as a photocatlyst in photocatalytic degradation [36]

Zn(NO3)2 calcination: 2 h, 600 °C; aging: 240 h, 320 °C wurtize structure; particles diameter: 50 nm; application: as a gas sensor [37]

Zn(NO3)2, NaOH synthesis: 2 h; drying: 2 h, 100 °C particles of spherical size of around 40 nm [38]

ZnSO4, NH4HCO3, ethanol drying: overnight, 100 °C; calcination: 300–500 °C wurtize structure; crystallite size 9–20 nm; particle size D: ~12 nm, BET: 30–74 m2/g [39]

Zn(CH3COO)2, NH3 aq. precipitation temperature: 85 °C; drying: 10 h, 60 °C hexagonal structure, shape of rods, flower-like particles: L: 150 nm, D: 200 nm [40]

ZnSO4, NH4OH, NH4HCO3 reaction: 30 min, 60 °C; drying: 12 h, 100 °C; calcination: 2 h, 400 °C hexagonal structure, flake-like morphology (D: 0.1–1 μm, L: 60 nm) [41]

microsized ZnO powder, NH4HCO3 reaction: ~2 h, 25 °C; drying: 80 °C; calcination:1 h, 350 °C hexagonal wurtize structure; flower-like and rod-like shape (D: 15–25 nm, BET: 50–70 m2/g) [42]

Zn(CH3COO)2, NaOH reaction: 30 min, 75 °C; drying: overnight, room temperature hexagonal structure; flower shape (L: >800 nm); application: antimicrobial activity [43]

Precipitation in the presence of surfactants ZnCl2, NH4OH, CTAB aging: 96 h, ambient temperature, calcination: 2 h, 500 °C zincite structure; particles diameter: 54–60 nm, BET = ~17 m2/g [44]

Zn(NO3)2, NaOH, SDS, TEA (triethanolamine) precipitation: 50–55 min, 101 °C wurtize structure, shape of rod-like (L: 3.6 μm, D: 400–500 nm) shape of nut-like and rice-like, size: 1.2–1.5 μm [45]

Sol-gel Zn(CH3COO)2, oxalic acid, ethanol and methanol reaction temperature: 60 °C; drying: 24 h, 80 °C; calcination: 500 °C zincite structure; aggregate particles: ~100 nm; shape of rod; particles L: ~500 nm, D: ~100 nm; BET: 53 m2/g; application: decontamination of sarin (neuro-toxic agent) [46]

Zn(CH3COO)2, oxalic acid (C2H2O4), ethanol reaction: 50 °C, 60 min; dried of gel: 80 °C, 20 h; calcined: under flowing air for 4 h at 650 °C hexagonal wurtize structure; uniform, spherically shaped of particles [47]

zinc 2-ethylhexanoate, TMAH ((CH3)4NOH), ethanol and 2-propanol reaction: room temperature; drying: 60 °C cylinder-shaped crystallites, D: 25–30 nm; L: 35–45 nm [48]

Zn(CH3COO)2, diethanolamine, ethanol reaction: room temperature; annealed of sol: 2 h, 500 °C hexagonal wurtize structure; particles: nanotubes of 70 nm [49]

Solvothermal hydrothermal and microwave techniques ZnCl2, NaOH reaction: 5–10 h, 100–220 °C in teflon-lined autoclave particles morphology: bullet-like (100–200 nm), rod-like (100–200 nm), sheet (50–200 nm), polyhedron (200–400 nm), crushed stone-like (50–200 nm) [50]

Zn(CH3COO)2, NaOH, HMTA (hexamethylenetetraamine) reaction: 5–10 h, 100–200 °C; HMTA concentration: 0–200 ppm spherical shape; particles diameter: 55–110 nm [51]

Zn(CH3COO)2, Zn(NO3)2, LiOH, KOH, NH4OH reaction: 10–48 h, 120–250 °C hexagonal (wurtize) structure, size of microcrystallites: 100 nm–20 μm [52]

Zn(CH3COO)2, NH3, zinc 2-ethylhexanoate, TMAH, ethanol, 2-propanol time of autoclaving: 15 min, 2–72 h; final pH: 7–10 particles with irregular ends and holes; aggregates consist particles of 20–60 nm, BET: 0.49–6.02 m2/g [53]

trimethylamine N-oxide, 4-picoline N-oxide, HCl, toluene, ethylenediamine (EDA), N,N,N’,N’-tetramethylethylenediamine (TMEDA) reaction: 24–100 h, 180 °C wurtize structure; particles morphology: nanorods (40–185 nm), nanoparticles (24–60 nm) [54]

Solvothermal hydrothermal and microwave techniques Zn(CH3COO)2, Zn(NO3)2, ethanol, imidazolium tetrafluoroborate ionic liquid reaction: 150–180 °C; drying: 80 °C in vacuum oven; calcinations: 500 °C hexagonal (wurtize) structure, hollow microspheres (2–5 μm) consisted nano-sized particles and contained channels (10 nm); hollow microspheres consisted of nanorods (~20 nm); flower-like microspheres (2.5 μm) [55]

zinc acetylacetonate, methoxy-ethoxy- and n-butoxyethanol, zinc oximate precursor concentration: 2.5–10 wt%; microwave heating: 800 W, 4 min; drying: 75 °C in air zincite structure; average crystallite size: 9–31 nm; particles diameter: 40–200 nm; BET: 10–70 m2/g [56]

Zn(NO3)2, deionized water, HMT (hexamethylenetetramine) microwave heating: 2 min, 90 °C; drying: 2 h, 60 °C hexagonal wurtize structure, nanorod and nanowire shape (L: ~0.7 μm, D: ~280 nm); application: electronic and optoelectronic devices [57]

Emulsion Zn(NO3)2, surfactant (ABS, Tween-80 and 40, C21H38BrN) reaction: 25 °C, pH~8; drying: 24 h, 80 °C; calcination: 2 h, 600 °C grain size: cationic surfactants (40–50 nm), nonionic surfactants (20–50 nm), anonic surfactants (~20 nm) [37]

Zn(C17H33COO)2, NaOH, decane, water, ethanol reaction: 2 h, room temperature or 90 °C particles morphology: irregular particles aggregates (2–10 μm); needle-shaped (L: 200–600 nm, T: 90–150 nm); nearly spherical and hexagonal (D: 100–230 nm); spherical and pseudospherical aggregates (D: 150 nm) [58]

Zn(CH3COO)2, heptanes, Span-80, NH4OH reaction: 1 h; aging: 2.5 h; drying: in rotary evaporator; calcination: 2 h, 700–1000 °C hexagonal structure; spherical shape; particles diameter: 0.05–0.15 μm [59]

Zn(CH3COO)2, NaOH and KOH, cyclohexane, non-ionic surfactants reaction: ambient temperature; drying: 24 h, 120 °C hexagonal structure; particles morphology: solids (164–955 nm, BET: 8 m2/g), ellipsoids (459–2670 nm, BET: 10.6 m2/g), rods (396–825 nm, BET: 12 m2/g), flakes (220–712 nm, BET: 20 m2/g); crystallites size: 32–77 nm; application: as a photocatalyst [60]

Microemulsion Zn(NO3)2, NaOH, heptane, hexanol, Triton X-100, PEG400 reaction: 15 h, 140 °C; drying: 60 °C hexagonal (wurtize) structure; particles morphology: needle (L: 150–200 nm, D: ~55 nm), nanocolumns (L: 80–100 nm, D: 50-80 nm), spherical (~45 nm) [61]

Microemulsion Zn(NO3)2, oxalic acid, isooctane, benzene, ethanol, diethyl ether, chloroform, acetone, methanol, Aerosol OT reaction: 1 h; calcination: 3 h, 300 °C equivalent spherical diameter: 11.7–12.9 nm, BET: 82–91 m2/g; grain size: 11–13 μm [62]

Zn(CH3COO)2, Aerosol OT, glycerol, C20H37NaO7S, n-heptane, NaOH, methanol, chloroform reaction: 24 h, 60–70 °C; drying: 1 h, 100 °C; calcination: 3 h, 300–500 °C hexagonal wurtize structure, spherical shape (15–24 nm), rods shape (L: 66–72 nm, D: 21–28 nm) [63]

ZnCl2, Zn(CH3COO)2, heptane, BTME (1,2-trimethoxysilyl)ethane, TMOS (tetramethoxysilane), methanol, Aerosol OT, NaOH reaction: 2–3 h, room temperature or 40 °C; drying: under vacuum overnight; calcinations: 24 h, 700 °C hexagonal structure, uniformly dispersed small particles, size of particles ~10 nm [64]

Other method Zn(CH3COO)2 thermal decomposition: 350–800 °C uniform size of particles 20–30 nm [65]

Zn(NO3)2, deionized water, HMT (hexamethylenetetramine) ultrasonic irradiation: 30 min, 80 °C; drying: 2 h, 60 °C hexagonal wurtize structure, nanorod and nanowire shape (L: ~1 μm, D: ~160 nm); application: electronic and optoelectronic devices [57]

micron scale zinc metal powder feed rate: 1 g/min; plasma power: 1 kW; O2 flow rate: 2.5 lpm; N2 flow rate: 12.5 lpm; reaction: 900 °C nanowires shape (L: 1–30 μm, D: 5–50 nm) application: as hydrodesulfurization catalyst [66]

diethylzinc (DEZ), oxygen helium as a carrier gas wurtize structure; average particle size: 9 nm [67]

Note: BET—surface area calculated based on BET equation; D—particles diameter; L—particles length.